mu]ﬁfhveaqled .
programming with

LAVA

Technology

v
The ultimote: qud: o multifuending

with Iova technglogy!

P:wyfu-l fachniques for enhancirg
rpliction perfocmonge

v

Muleittwepdad progrom dasign for
estwark and Intemat opplicatioes
b4

Fetnnia codo aunmples
fhrmighout

THE SUN MICROSYSTEMS PRESS
JAVA'SERIES @Sun

BIL LEWIS - DANIEL . BERG

Brought to you by ownSky!

Table of
Contents

Multithreaded Programming with JAVA™ Technology

By Bil Lewis, Daniel J. Berg

Publisher : Prentice Hall PTR
Pub Date : December 01, 1999
ISBN : 0-13-017007-0

Pages: 461

Multithreading gives devel opers using the Java 2 platform a powerful tool for
dramatically improving the responsiveness and performance of their programs on any
platform, even those without inherent multithreading support. Multithreaded
Programming with Java Technology is the first compl ete guide to multithreaded
development with the Java 2 platform. Multithreading experts Bill Lewis and Daniel
J. Berg cover the underlying structures upon which threads are built; thread
construction; and thread cycles, including birth, life, death, and cancellation. Next,
using extensive code examples, they cover everything developers need to know to
make the most of multithreading.

http://www.informit.com/safari/author_bio.asp?ISBN=0130170070
http://www.informit.com/safari/author_bio.asp?ISBN=0130170070

Table of Content

Table Of CONIENL ... e e I
(@] 0]/ 10 | o | P Vi
D 7=T0 [[oF=Ui[o] o OSSP Vil
PIEIACE ... et re e Vii
Who Should USe ThiS BOOK........cceiiriiiiiiieiie e viii
How This BOOK IS Organized...........ccooeeiiienierieneenieeie et viii
ACKNOWIEAGMENTS ...t e s teeneesreenneennens IX
Acknowledgments to the Threads Prmercccceieieniineenenenee e X
Acknowledgments to the Pthreads Primer.......ccccoeiriieneniineneee e Xi
(@4 gF=T o] (=3 g I [1 £ Yo [1111 0] o PSP 1
(@4 gF=T o] (= g2 O] o [o1= o £SO SRS 4
Background: Traditional Operating SYStEMScccoveeierienieeneee e 4
What IS @ TRIEAU?...... ettt e 6
Kernel INTEIACHIONcc.eiieiee e 8
The Value of USiNg Threads.........c.ooiiirieeee e 10
What Kinds of Programs to Thread...........ccoceiiiniiiinieeeeeee e 15
What About Shared MEMOIY? ... 17
Threads STANAArdS ..o e 17
PeITOIMEANCE. ... et a e ses 18
SUMMABIY <.ttt be e ae e be e sae e e ase e saeeasseesaeeaabeeaaeeenneesseesaneennnennnas 19
(@ gF=T o1 (=] g T 01U T £ [0] 1 20
Implementation vs. SPeCIfiCAtioNccooeeiiriiieeee e 20
I CSETo B I o = =SSR 20
THe ProCeSS SITUCTUIE........oeiieie et 21
Lightweight PrOCESSESccuvvceeeiicie ettt ee et s nns 22
Threads and LWPS ...t s 24
The POSIX Multithreaded Model...........ccooooiiiiiiieeeeee e 26
YA (=0 1 OF= £SO 26
I [=L SRR 27
SUMMABIY ..ottt e e be e ae e be e sae e e se e saeeasseesseeeabeeabeeenneesaeesnseennneannas 27
(O aF=T o) (=] g S I =T o Yo = 28
Thread LIFECYCIE ..ottt ne s 28
APIs Used IN ThiS CRAPLENccuiiieeeeeesee et 39
SUMIMABIY <.ttt ettt e e ae e b e e sae e e abe e saeeanseesseeanbeeaaeeenneessnesnseesnneannas 42
Chapter 5. SChedUIINGccviieiiee e 43
Different Models of Kernel Scheduling ... 43
Thread SChedUIINGccoiiie e e 46
(@] 01 (=2 (A1 1 (od 1 T S 51
Java Scheduling SUMMATYcccoiieieiieseee e ae e nne s 56
When Should You Care About Scheduling?..........ccovieiniinieneeeeeeee 57
APIs Used IN ThiS CRAPLENccueiieeeeeseee e 57
SUIMIMIATY <.ttt sttt e st e e sab e e s sas e e e abee e sbeeesbeeesabeeesaneeesnneeenaneas 59
Chapter 6. SYNCNIONIZALIONcooiiiiieieee e 60
SYNCNIONIZAION ISSUESoviiiiiiiieeie ettt e 60
Synchronization Variables ... 62
APIs Used IN ThiS ChaPLerccueveeceee ettt 84

SUIMIMIATY .ottt e e st e e sas e e s aaae e e abee e sbeeesbeessabeeesaneeesaneeenaneas 86

Chapter 7. COMPIEXILIESoiiiiieieeeee e re e 87
Complex Locking PHMITIVEScocviiiiiie e 87
THMEOULS ...ttt bbbttt et et e b et e b bt ae e e 94
Other Synchronization Variablescccccviereeiesieese e 96
[V 4] = L1 = SR PR 100
PeITOIMMANCE. ...t nre s 100
Synchronization ProbIems ..o 104
APIs Used iN ThiS CRAPLEN ...cc.eoeieeeeieee e 109
SUMIMABIY ..ttt ettt e se e saeeebe e aae e e be e saeeebeeeaneaseesareenneasnneansneas 111

(O aF=T o1 (= gt S T 1 I SRS 112
Thread-SPecCifiC Dat@........ccccceeieeirieesecce et 112
- AT T 1 5 P 114
APIs Used iN ThiS CRAPLEN ...cc.eoiieeeeeee et 116
SUIMMIATY <.ttt st st sae e s st e e be e e s bee e sbeeesbeeesabeeesabeeenaneeennns 116

Chapter 9. CanCellatioN............cccoeiiiiiieeie e e 117
What CancCellation IS........ccooiiiiiieieee e e 117
RN (=Y g U] o o () TSRS 119
A Cancellation EXamPIecoeeieeiiiieceee e 127
USING CaNCEIIALION ..o ee s 131
(@3- T o 11] o USROS 136
Implementing enablelNterruptS() ..o 137
A Cancellation Example (IMproved)........ccoeieeceneenece e 138
SIMPIE POHING ..ot 138
APIs Used iN ThiS CRAPLENcc.eoiiieeeeeee et 139
SUIMIMIATY <.ttt sab e s st e e e be e e s ae e e sbeeesabe e e sabeeesareeesnneeennns 141

(@ gF=T o1 (=] g O T 7V | OSSR 142
RILLLCSE2T0 B T (0 TU] 1SRRI 142
IS To IS T=Tox U 1 YRS 142
DaemON THIEAUS.......cceieeeece et 148
Daemon Thread GrOUPScccoeeierienieieeie et ee e e 149
Calling NAtiVe COUEocceeeieeeeeeeee e 149
A Few AsSSorted Methods ... 151
Deprecated MEthOUScccviiiieece e nne s 151
The Effect of USING @ JIT ..o e 152
APIs Used iN ThiS ChaPerc.cceeie ettt 152
SUIMIMIATY <.ttt st e s st e e s be e e s bee e s beeesabe e e sabeeesabeeenaneeennns 158

(@4 gF=T o (= g 0 A I o =V =SSOSR 159
The Native Threads LIDraries ... 159
Multithreaded KErNEIS........ooi i 159
Are LIDraries SAE7 ... e 161
Java's Multithreaded Garbage ColleCtOrccoceiieiiiiireeeeee e 166
SUIMIMIATY <.ttt st st sab e s st e e be e e s bee e sbeeesabeeesabeeesareeesaneeennns 166

(@ gF=T o1 (=] g 2 I T [| o SRS 168
Making Libraries Safe and HOt........ccoeoiiriiieniee e 168
Program DESIgN.....coci ettt et sre e e e e e e 178
DTS (o | g I = A (= 1 USSP 182
SUIMIMIATY <.ttt st e s st e e s be e e s bee e s beeesabe e e sabeeesabeeenaneeennns 182

Chapter 13. RMI ...ttt sttt s sre e sneenne s 183
Remote Method INVOCALION...........ccceiiiiiieee e 183

SUIMIMIAIY <.ttt sttt e st e s st e e bs e e s ae e e ebeeesbeeesabeeesnbeeesaneeennns 192

Chapter 14, TOOIS ... e ne s 193
Static LOCK ANAIYZET ..o e 193
Using a Thread-Aware, Graphical Debuggercccocevvrievveiiesieene e 193
[o Tox (T | TP 195
TINFVIBW ...ttt ettt et e e s e et e e s ae e et e e sae e e seesaeeeabeesneeenneenneeas 196
SUMIMABIY <.ttt et e e ae e s e e sae e e be e eae e e se e saeeabeeeaeeaseesaneeaneasnneensnens 201

Chapter 15. PerfOrManCe........cccvcueiieieiie e eee s e sie e e e s e e enaesneennens 202
Optimization: Objectives and ObJeCtiONS.........cccoververieninir e 202
CPU Time, I/O Time, Contention, ELC........cccccveriiriieiinieneseee e 204
LIiMItS ON SPEEAUP ...eoeeeieeeee ettt te e e e neenaesneenreas 206
AMABNIS LAW ..ottt sttt b e 208
Performance BOtENECKS...........ooiiiiiee e 209
Benchmarks and Repeatable Testing.......cccoceieroeiieniniisee e 210
The LeSSONS OF NFS ... 216
SUMIMABIY ..ottt e e e ae e se e saee e be e e aeeese e saeeebeeemeeaseesareeaneasnseensnens 218

Chapter 16. HArAWAIEooeiiiiiieiecee et s nne s 219
TYPES Of MUIIPIOCESSOISeeeieeeeseeecie ettt ettt re e 219
BUS AICIITECIUIES ...t 221
MEMOIY SYSTEIMISottt e e ae e sb e s ae e e ne e s re e eaneesneeennas 229
SUMIMABIY <.ttt et e e se e s aee e be e saeeebe e saeeabeeenneaseesaneeaneasnreensneas 232

Chapter 17. EXQMPIESoceeiieececeee ettt sneeae e s 233
Threads and WINAOWS.........ccoiiiiiieee et 233
Displaying Things for a Moment (MEMOKY . JAVA)ccccceeeerieeceseere e 237
Socket Server (Master/Slave VErsion).........ccccveieeeneeneniinseesiesee e 239
Socket Server (Producer/Consumer VErSION)cccceeeereeieeseeseeseeseesseseesnes 239
Making a Native Call to pthread_setconcurrency ()ccceevvnveennens 247
Actual Implementation of POSIX Synchronization...........ccccceeeneeieninneeneene 247
A Robust, INterruptible SEIrVer ... 250
Disk Performance With Java ... 260
Other Programs 0N the WED..........ccoov i 265
SUMIMABIY <.ttt et e e se e saee e be e aaeeese e saeeebeeeaeeaseesaneeaneesnneansneas 265

APPENTIX AL INTEINET ..ot sre e 266
ThreadS NEWSGIOUDccveieieerieeieseesteestesee s e esaesee e etesseesseesesseesseensesseesseensenns 266
COdE EXAMPIES ...t a e re s 266
Vendor's Threads Pages. ...t e 266
Threads RESEAICH........cooe s 267
FrE@WAIE TOOIS....cc.iiieicieieie ettt bbb 267
(@11 g1 01T] (= £ TSR 267
The Authors 0N the Net ... 268

APPENIX B. BOOKS.......ociiceiee ettt ne e 269
THreadsS BOOKS..........oiiiieeeeee et 269
Related BOOKS........coiiiiiiiteeeeeesee ettt e e nne s 270

F Y o] o= T) G I T 11 o £ S 272
L0 T USSR 272

APPENAIX D. APIS ..ttt sr e 275
FUNCLION DESCIPLIONS ...cviiieieeciee et s ee s 275
The Class java.lang. Thread...........cccoveieieiiciesee e 275
The Interface java.lang.Runnable............ccooriiiiiiii e 280
The Class java.lang.ObjJecCT.........cooiirieeee e 280

The Class java.lang. ThreadLocalcccccoveeienieeni e 281

The Class java.lang. ThreadGroup ... 281
Helper Classes from Our Extensions LibraryThe Class
Extensions.InterruptibleThreadccooveeeeerecce e 285
The Class EXtensions.SemaphOrecoeeriiieneeie e 286
The Class EXtENSIONS.MULEX.........ccceiiriiiiienee e 286
The Class Extensions.ConditioNVar.........ccoeviiiieneninenieerese s 287
The Class EXtensionS.RWLOCK.........cccceiiiiininereseseseeee s 287
The Class EXtENSIONS.BAITIEN ... 287
The Class EXtensions.SiNGIEBarTIer.........ccvveieiieere e 288
(€] (011 T oS 290

Copyright

© 2000 Sun Microsystems, Inc.—
Printed in the United States of America.
901 San Antonio Road,

Palo Alto, Cdifornia

94303 U.SA.

All rights reserved. This product and related documentation are protected by copyright and
distributed under licenses restricting its use, copying, distribution, and decompilation. No part of
this product or related documentation may be reproduced in any form by any means without prior
written authorization of Sun and itslicensors, if any.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR
52.227-19.

The products described may be protected by one or more U.S. patents, foreign patents, or pending
applications.

TRADEMARKS—Sun, Sun Microsystems, the Sun logo, Java, and all Java-based trademarks are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

The publisher offers discounts on this book when ordered in bulk quantities. For more information,
contact: Corporate Sales Department, Phone: 800-382-3419; Fax: 201-236-7141; E-mail:
corpsales@prenhall.com; or write: Prentice Hall PTR, Corp. Sales Dept., One Lake Street, Upper
Saddle River, NJ 07458.

Editorial/production supervisor: Faye Gemmellaro
Acquisitions editor: Gregory G. Doench

Editorial assistant: Mary Treacy

Manufacturing manager: Alexis R. Heydt

Cover design director: Jerry Votta

Cover designer: Anthony Gemmellaro

Cover illustrator: Karen Strelecki

Marketing manager: Bryan Gambrel

Interior designer: Gail Cocker-Bogusz

Sun Microsystems Press:

Vi

mailto:corpsales@prenhall.com

Marketing manager: Michael Llwyd Alread
Publisher: Rachel Borden
10987654321

Sun Microsystems Press

A Prentice Hall Title

Dedication

To Elaine, my wife and best friend, for her encouragement and understanding during all the late
nights and weekends when | should have been spending time with her. Thank Youl!

—Dan
To Sveta, who makes life worth living.

—Bil

Preface

Today, there are three primary sets of multithreading (MT) libraries. the POSIX threads library,
the Win32 threads library (both native), and Java. Although the APIs and implementations differ
significantly, the fundamental concepts are the same. Theideasin this book are valid for all threeg;
the details of the APIs differ.

. "Applications Programming Interface." This is the set of standard library calls that an operating
system makes available to applications programmers. For POSIX, this means all the threads library
function calls. For Java, it's one keyword, three classes, and a few methods.

All the specific discussion in this book focuses on the Java multithreading model, with
comparisons to POSIX and Win32 throughout. Java threads are always implemented upon alow-
level library which does the real work. Hence Java on UNIX is generally based on POSIX, while
Javaon NT will be based on Win32 threads.

Because these lower-level libraries have so much impact on the actual performance of a Java
program, we will devote significant attention to the native libraries. Because POSIX threads are
more primitive than Win32 threads, they will be our basis of comparison and explanation. This
allows us to explain the inner workings of threads before jumping to the more intricate workings
of Java.

A frank note about our motivation isin order here. We have slaved away for countless hours on
this book because we're propeller-heads who honestly believe that this technology is a superb
thing and that the widespread use of it will make the world a better place for hackers like
ourselves.

Vii

Y our motivations for writing MT programs? Y ou can write your programs better and more easily,
they'll run faster, you'll get them to market more quickly, they'll have fewer bugs, and you'll have
happier programmers, customers, and higher sales. The only losers in this game are the
competitors, who will lag behind you in application speed and quality.

MT is heretoday. It is now ubiquitous. As a professional programmer, you have an obligation to
understand this technology. It may or may not be appropriate for your current project, but you
must be able to make that conclusion yourself. This book will give you what you need to make
that decision.

Welcome to the world of the future!

Who Should Use This Book

This book aims to give the programmer or technical manager a solid understanding of threads—
what they are, how they work, why they are useful, and some of the programming issues
surrounding their use. As an introductory text, it does not attempt a deep, detailed analysis of the
most current research, but it does come close. After reading this book the reader should have a
solid understanding of the fundamentals, be able to write credible, modestly complex, threaded
programs, and have the understanding necessary to analyze their own programs and determine the
viability of threading them.

This book has been written with the experienced Java programmer in mind. Thereis a definite
UNIX bias, but none of that is essential to understanding. A Java programmer who does not know
C will find the POSIX code fragments mildly challenging, although possible to decipher. The
concepts should be clear. A technically minded nonprogrammer should be able to follow most of
the concepts and understand the value of threads. A nontechnical person will not get much from
this book.

This book does not attempt to explain the use of Win32 or POSIX APIs. It does contrast them to
Java APIs to explain some of the higher-level Java behavior in lower-level terms.

How This Book Is Organized

Chapter 1, Introduction— In which we discuss the motivation for creating thread libraries, the
advent of shared memory multiprocessors, and the interactions between threads and SMP
machines.

Chapter 2, Concepts— In which the reader is introduced to the basic concepts of multitasking
operating systems and of multithreading as it compares to other programming paradigms. The
reader is shown reasons why multithreading is a valuable addition to programming paradigms, and
anumber of examples of successful deployment are presented.

Chapter 3, Foundations— In which we introduce the reader to the underlying structures upon
which threads are built, the construction of the thread itself, and the operating system support that
allows efficient implementation.

Chapter 4, Lifecycle— Inwhich the reader istreated to a comprehensive explanation of the
intricaciesin the life of athread— birth, life, and death—even death by vile cancellation. A small
program that illustrates all these stages concludes the chapter.

viii

Chapter 5, Scheduling— In which we explain the myriad details of various scheduling models
and alternative choices that could be made, describe context switching in detail, and delve into
gruesome detail on various design options. Thereislight at the end of the tunnel, however.

Chapter 6, Synchronization— In which the reader isled on ahunt for the intimidating
synchronization variable and discovers that it is not actually as frightening as had been thought.
Programs illustrating the basic use of the POSIX and Java primitives are shown.

Chapter 7, Complexities— In which a series of more complex synchronization variables and
options are presented and the trade-off between them and the simpler ones are discussed.
Synchronization problems and techniques for dealing with them conclude the chapter.

Chapter 8, TSD— In which explanations of thread-specific data, their use, and some
implementation details are provided.

Chapter 9, Cancellation— In which we describe the acrimonious nature of some programs and
how unwanted threads may be disposed of. The highly complex issues surrounding bounded time
termination and program correctness are also covered. A simple conclusion is drawn.

Chapter 10, Details— In which a number of minor details are covered.

Chapter 11, Libraries— In which we explore avariety of operating systems issues that bear
heavily upon the usability of threadsin actual programs. We examine the status of library
functions and the programming issues facing them. We look at some design alternatives for library
functions.

Chapter 12, Design— In which we explore some designs for programs and library functions.
Making both programs and individual functions more concurrent is amajor issue in the design of
these functions. We look at avariety of code examples and the trade-offs between them.

Chapter 13, RMI— In which we examine RMI and see what it provides in terms of a distributed
object programming model. We look at how threading interacts with it and how it uses threads.

Chapter 14, Tools— In which we consider the kinds of new tools that a reader would want when
writing a threaded program. An overview of the Solaris tool set is given, as representative of what
should be looked for.

Chapter 15, Performance— In which we make things faster, look at general performance issues,
political performance issues, and thread specific performance issues. We conclude with a
discussion of the actual performance of multithreaded NFS.

Chapter 16, Hardwar e— In which we look at the various designs for SMP machines (cache
architectures, interconnect topologies, atomic instructions, invalidation techniques) and consider
how those designs affect our programming decisions. Some optimization possibilities are looked
at.

Chapter 17, Examples— In which several complete programs are presented. The details and
issues surrounding the way they use threads are discussed, and references to other programs on the
Net are made.

Acknowledgments

Sometimes | really do think it's funny that Bil and Dan have managed to get three books out of
what's basically one book of material with "a bunch of words changed."—Dave Butenhof

We didn't intend to write this book. It just sort of happened. Bil discovered that there were alot
more people interested in Java threads than in POSIX, and Dan made himself a Java Guru for Sun.
There weren't any books on Java threads that covered the topic in the way we wanted, so we
started by discussing the various issues with the principals. The next thing we knew, we had the
makings of a book.

We owe debts of gratitude to all of the above and:

e Thereviewers:
o DaveButenhof (Digita Classic)
o David Holmes (Macquarie University, NSW)
o DouglasLea(SUNY, Oswego)
o Tim Lindholm (Sun)

e Thefolks who helped us get information, fix mistakes, test programs, and avoid
confusion: Ole Agesen, Alan Armstrong, Timothy Bell, Martin Bertolino, Sean Bowes,
David Chase, Adrian Colley, Rgj Datta, Laird Dornin, Quentin Fennessy, Linda Haight,
Jarek Knap, Sheng Liang, Thomas Maslen, Himagiri Mukkamala, Hans Muller, John
Murayama, Scott Oaks, Bob O'Brien, Jochen Schlick, Jan Springer, Jim Waldo, and Bob
Withers.

e Theeditors and staff: Rachel Borden, Gregory G. Doench, Craig Little, Mary Treacy.

e Theauthors of al the other books that we perused so carefully.

e And: Mom.

— Dan Berg

—Bil Lewis

Acknowledgments to the Threads Primer

Thanksto Matt Delcambre for his support of the book and his assistance in the review process.
Thanks also to John Bost and James Hollingshead for their support and funding of the trips to
Cdlifornia. Thanks also go to Mary Himelfarb for putting up with al the paper and time |
consumed on her printer.

Special thanksto Ty "Tyrone" McKercher, for al the time in the review process and for always
taking the time to listen to my wild new ideas; also for his keen insight during the many late-night
and weekend programming sessions where many of the examplesin the book were born.

Many thanks to Tim Hayes, Richard Robison, and Jim Thompson for providing their customer
testimonials and for their early adoption of threading technology in their production applications.
Thanks also go to all the people who make up the POSIX committee for all their work on the
Pthreads draft and the threads documentation team for al their work on the quality documentation.

We owe an enormous debt to Devang Shah and Dan Stein for their constant support, answering
innumerable questions, and debating issues of presentation and concept. In spite of numerous
barriers, we always managed to come to a consensus on the major issues—which speaks well for
the true nature of science.

Many thanks to Charles Fineman, Eric Jaeger, Adrienne Jardetzky, Richard Marejka, and Richard
Schagefer for their assistance in the review process and their numerous accurate and insightful

comments and suggestions; to Ron Winacott for coming al the way to Sweden to introduce me to
the subject; to Chris Crenshaw for his comments and discussion; to Karin Ellison for starting us on
this book and for her enormous energy in dealing with all those little problems that always seem to
crawl out of the woodwork at 2 a.m. Roses to Marianne Muller, who made the Web work for us
and was aways there with reassurance and support when things got rough.

Thanksto Ben Catanzaro, Larry Gee, Mukul Goyal, Morgan Herrington, Brian Kinnard, Bill
Lindeman, Paul Lorence, Shaun Peterson, and Leif Samuelson for their help, comments, and
guidance in the numerous fine points of writing, formatting, and interpretation; to my peersin
Developer Engineering and the Shaysa council; to RMS, who did more to shape my writing
abilities than he realizes; to Manoj Goyal, who was so pivotal in making the personal interactions
at Sun work as they should.

Appreciation for reviewing and discussing numerous points to Tom Doeppner, Carl Hauser, Barry
M edoff, and Bart Smaalders.

For assistance on numerous points, large and small, thanks to Kim Albright, Burke Anderson,
Susan Austin, David Boreham, Mike Boucher, Susan Bryant, Ben Catanzaro, Don Charles, Dave
Crowley, Robert Demb, Jeff Denham, Greg G. Doench, William E. Hannon Jr., Larry Kilgallen,
Timo Kunnas, Greg Nakhimovsky, Christopher Nicholas, Bill Paulsen, Rob Rimbold, Bob
Rushby, Michael Sebree, Tarmo Talts, and Steve Vinoski.

A special thanks to two computer scientists who | have always held in awe and whose writing
abilities and finely tuned senses of humor | admire more than | can express, Peter vander Linden
and the great Quux. How two people can have such depth of understanding and also be such
amazing copyeditors, | don't know!

Tusan tack till allapa Sun Sverige, och kram till degj, Madelene.

JaTarvi, Kati, Lovi, Tiia, Epp, Mari ja Kaur, kuna monikord vajab inimene sopru rohkem kui
midagi muud.

Acknowledgments to the Pthreads Primer

Thefirst edition of this book was a rush job—we completed the manuscript in four months. After
work hours. Four very long months. By the end of the year we could see the copious flaws and
egregious omissions. "Let's just take a couple of months, change the focus to POSIX, and fix a
couple of those problems," we said.

Two years later, we have this book, which we think is finally a reasonable introduction to the
subject. (But not great, that's for the third edition.) This book is the product of an enormous
amount of thought, discussion, and experimentation. A book, even a bad book, requires an
amazing amount of effort. And to compare the fruit of our laborsto atruly excellent text—it's
humbling.

We didn't even do all the work on this book! The people who helped are legion. We owe debts of
gratitude to:

e Theroughly 3000 people who took our classes and presentations on threads, in the United
States, Sweden, India, Finland, and Estonia, plus those who helped organize them.

e Thehundreds of people who have asked questions, given answers, or just plain argued
issues on the newsgroup.

e Everyone who brought issues to our attention that forced us to think deeper.

Xi

Thereviewers.

o Mike Boucher (Dakota Scientific Software)
Gregory Bumgardner (Rogue Wave)
Dave Butenhof (Digital)
Dave Cortesi (SGI)
William E. Hannon, Jr. (IBM)
Shin Iwamoto (who both reviewed and translated!)
Richard Margjka (Sun, Canada)
Richard Schaefer (Sun)

o Chary G. Tamirisa(IBM)
The folks who helped us get information, fix mistakes, test programs, and avoid
confusion: Glenn J. Allin, Jeremy Allison, Rolf Andersson, Tom Barton, Keith Bierman,
John Bossom, Stacey Carroll, Matt Dillon, Tom Doeppner, lan Emmon, Charlie Fineman,
Pankaj Garg, Brian Hall, Asad Hanif, Pekka Hedqvist, David Holmes, Peter Jeffcock,
Tarik Kerroum, Sanjay Kini, Dan Lenoski, Xavier Leroy, Toshihiro Matsu, Bertrand
Meyer, Imhof Michael, Frank Mueller, Prakash Narayan, Dr. Douglas Niehaus, Scott
Norton, Bryan O'Sullivan, Matthew Peters, Michael T. Peterson, James Pitcairn-Hill,
Christopher Provenzano, Jacqueline Proulx Farrell, Doug Schmidt, Ted Selker, Bart
Smaalders, |van Soleimanipour, Richard Marlon Stein, Bo Sundmark, Chris Thomas,
Steve Vinoski, and Wolf-Dietrich Weber.
The editors and staff: Rachel Borden, John Bortner, Gwen Burns, Gregory G. Doench and
Mary Treacy.
The authors of al the other books that we perused so carefully.
All the folks on 1003.1c, who did such an excellent jab.
Bil's PacAir Formula, which never lost athermal, or bonked alanding, which kept him
both alive and sane.
And: Mom.

O O0OO0OO0OO0OO0Oo

—Dan Berg

—Bil Lewis

Xii

Chapter 1. Introduction

In which we discuss the motivation for creating thread libraries, the advent of shared memory
multiprocessors, and the interactions between threads and SMP machines.

Multithreading (MT) is atechnique that allows one program to do multiple tasks concurrently.
The basic concept of multithreaded programming has existed in research and development labs for
several decades. Co-routine systems such as Concurrent Pascal and InterLisp's Spaghetti stacks
were in use in the mid-70s and dealt with many of the same issues. Ada's tasks are a language-
based construct that maps directly onto threads (so directly, in fact, that current Ada compilers
implement tasks with threads). Burroughs shipped a commercial mainframe OS with co-routine-
style threads as early as 1960.

The emergence of this concept in industry as an accepted, standardized programming paradigmis
a phenomenon of the 1990s. As with many other concepts, the research and experimental use of
threads have been widespread in specific industries, universities, and research institutes and are
entering industry as arelatively well-formed whole on all fronts almost simultaneously. In 1991,
no major commercia operating systems contained arobust user-level threads library. In 1999,
every mgjor player in the computer industry has one.

Some of the mativation for this emergence can be ascribed to general good sense and the
recognition of atechnology whose time has come. Some can be related to the unification efforts
surrounding UNIX. Probably the greatest push, especially when viewed from the point of view of
the independent software vendor (1SV) and the end user, is the emergence of shared memory
symmetric multiprocessors (SMPs). MT provides exactly the right programming paradigm to
make maximum use of these new machines.

Javawas designed from the very beginning with threads in mind, and some of its functionality is
based very directly on having threads. The ability to have appletsis based in alowing them to run
in different threads in a browser. Because of Javas high-level approach to programming, it is
much easier to build athreaded program in Java than in POSIX or Win32. At the same time, the
fundamental issues do not change. This may well lure many programmers into writing threaded
programs before they truly understand all of the intricacies. Oh, well.

The threading models we describe are strictly software models that can be implemented on any
general-purpose hardware. Much research is directed toward creating better hardware that would
be uniquely suited for threaded programming. We do not address that aspect in this book.

To those of us concerned with the theoretical underpinnings of programming paradigms and
language design, the true value of multithreading is significant and obvious. It provides a far
superior paradigm for constructing programs. For those concerned with the practical details of
getting real tasks done using computers, the value is significant and obvious as well.
Multithreading makes it possible to obtain vastly greater performance than was ever before
possible by taking advantage of multiprocessor machines.

At whatever price point, the purchasers of workstations want maximum performance from their
machines. The demands of computationally intensive users are aways growing, and they
invariably exceed the provisions of their wallets. They might want a "personal Cray," but they
can't afford one.

One of the solutions to this demand lies in the ever-increasing performance of CPUs. Along with
the obvious technique of increasing the clock speed, awide range of other methods is used to
increase the performance of individual CPUs. The use of long instruction pipelines or superscalar
techniques has alowed us to produce multiple-instruction-issue machines that can do alot more in

asingle clock tick. Finer compiler optimization techniques, out-of-order execution, predictive
branching, VLIW, etc., allow usto obtain better and better performance from processors. However
good these methods are, they till have their limits.

One of the major limiting factors is the problem of limited bus, memory, and peripheral speeds.
We can build CPUs today that operate at 600 MHz, but we can't build communications buses that
operate at the same speed. RAM speeds are also falling further behind the demands of the CPUs.
It is expensive to build 600-MHz CPUs, but as there are only afew in asystem, it is affordable.
To build memory that can keep up with these speeds would be prohibitively expensive. A great
many machines today implement two- and even three-level cachesto deal with this problem
(single-level caches weren't enough!). Multilevel caches work effectively with well-behaved
programs, where sequentia data and instruction references are likely to be physically adjacent in
memory. But truly random-access programs wreak havoc on this scheme, and we can point to any
number of programs that run faster on slower machines that lack that second-level cache.

None of the issues addressed above play favorites with any manufacturers. Sun, Intel, HP, IBM,
SGlI, DEC, etc., have come up with techniques for dealing with them. Some techniques have
proven to be more effective than others, but none of them avoids the fundamental limitations of
physics. Nature is a harsh mistress.

Thisiswhere SMP comes into play. It is one more weapon in our arsenal for performance. Just as
the foregoing techniques have allowed us to increase our single-CPU performance, SMP alows us
to increase our overall system performance. And that's what we really care about—overall system
performance. As one customer put it, "SMP, superscalar—buzzwords! | don't careif you have
little green men inside the box! | want my program to run faster!"

We can build 64-processor machines today (e.g., the Cray CS6400) that will yield 64 times the
performance of a single-processor machine (on some problems). The cost of that 64-CPU machine
isafraction of the cost of 64 single-processor machines. In a 64-way SMP machine, al 64
processors share the system costs. chassis, main memory, disks, software, etc. With 64
uniprocessors, each processor must have its own chassis, memory, etc. This fact makes SMP
highly attractive for its price/performance ratio. An additional attraction of SMPisthat it isalso
possible to purchase a machine with a small number of CPUs and add more CPUs as demands
(and budgets) increase. In Figure 1-1, these advantages of SMP are clear.

Figure 1-1. Performance for Digital's Alpha Servers (8400 5/625)

SPEC_CFP95 102.Swim
60 n 400
PY @
45 ® - 300
30 e
a 200
o
15 100
- -
0 0
1 2 4 6 8
Number of CPUs
o .
SPEC_CFP5 102.Swim

The economics of purchasing an SMP machine are pretty much the same as the economics of
purchasing any machine. There are some extra unknowns ("'l have 600 different applications that |
run from time to time; how much faster will they al run? How much time will | savein aday?"),
but if we focus on the primary applicationsin use, we can get reasonable data upon which to make
our decisions. The basic question is, "If my applications run an average of N% faster on a dual-
CPU machine that costs M% more, isit worth it?"

Only you (or your customers) can answer this question, but we can give you some generalities.
Hereisatypical situation: The customer's magjor application is MARC Analysiss MARC Solver
(for circuit smulation). The MARC Solver runs about 80% faster on a dual-processor
SPARCstation™ 20 than it does on a single-processor SPARCstation 20. The single-processor
machine costs $16,000; the dual-processor unit costs $18,000 (about 12% more). If the designers
(who cost at least $100,000/year) are constantly waiting for the solver to completeitsruns, isit
worth it? Obvioudly, yes. Y ou will save alot of money on a minor investment. Indeed, MARC
sells very well on SMP machines.

If you are a program devel oper (either in-house or an 1SV), your question is going to be, "Should |
spend the time to write my program so that it will take advantage of SMP machines?' (This
probably means threading, although there are other possibilities.) Y our answer will be related to
your anticipated sales. If your program runs 50% faster on a dual-processor machine, will your
customers buy SMP machines and more of your software? Or, to pose the question differently, if
you don't do it, will some competitor do it instead and steal your customers?

The answer depends upon your program. If you write a simple text editor that is never CPU-bound,
the answer isaclear "no." If you write a database that is aways CPU-bound, it's "yes." If you
write a page-layout program that is sometimes CPU-bound, the answer is "maybe.” In general, if
users ever have to wait for your program, you should be looking at threading and SMP.

But there is more value to threading than just SMP performance. In many instances, uniprocessors
will also experience a significant performance improvement. And that bit about programming
paradigms? It really does count. Being able to write simpler, more readable code helps you in
almost all aspects of development. Y our code can be less buggy, get out there faster, and be easier
to maintain.

Multithreading is not a magic bullet for all your ills/ and it does introduce a new set of
programming issues that must be mastered, but it goes along way toward making your work
easier and your programs more efficient.

(¢ you have ever spent days debugging complex signal handling code, you may disagree. For
asynchronous code, it is a magic bullet!

Chapter 2. Concepts

Background: Traditional Operating Systems
What Isa Thread?

Kernel Interaction

The Value of Using Threads

What Kinds of Programsto Thread

What About Shared Memory?

Threads Standards

Performance

In which the reader is introduced to the basic concepts of multitasking operating systems and of
multithreading as it compares to other programming paradigms. The reader is shown reasons why
multithreading is a valuable addition to programming paradigms, and a number of examples of
successful deployment are presented.

Background: Traditional Operating Systems

Before we get into the details of threads, it will be useful for us to have some clear understanding
of how operating systems without threads work. In the simplest operating system world of single-
user, single-tasking operating systems such as DOS, everything is quite easy to understand and to
use, although the functionality offered is minimal.

DOS divides the memory of a computer into two sections: the portion where the operating system
itself resides (kernel space®™) and the portion where the programs reside (user space). The division
into these two spaces is done strictly by the implicit agreement of the programmersinvolved—
meaning that nothing stops a user program from accessing data in kernel space. This lack of
hardware enforcement is good, because it is simple and works well when people write perfect
programs. When a user program needs some function performed for it by kernel code (such as
reading afile from adisk), the program can call the DOS function directly to read that file.

M kernel space is UNIX lingo for this concept, but the concept is valid for all operating systems.

Each program has some code that it runs (which isjust a series of instructions, where the program
counter points to the current instruction), some data (global and local) that it uses, and a stack
where local data and return addresses are stored (the stack pointer designates the current active
location on the stack).

Figure 2-1 illustrates the traditional DOS operating system memory layout. Thus, as shown in
Figure 2-1, the division between user space and kernel spaceis adivision by agreement of the
programmers; there is no hardware enforcement of the policy at all. The drawbacks to this
technique are significant, however. Not all programs are written flawlessly, and a programming
mistake (or virus!) here can bring down the entire machine or, worse, destroy valued data. Neither
can a machine run more than one program at atime, nor can more than one user log in to the
machine at atime. Dealing with networks from DOS machines is somewhat awkward and limited.

Figure 2-1. Memory Layout for DOS-Style Operating Systems

Stack & Stack Pointer Program Counter

T~ i
\ -II.:'r
= - . User
I:l | Code
ser] P Global
Space : Dala
Kernel {KDDS)
Space AL < DOS
7 L— Code

Dos g
Data

In atypical multitasking operating system such asVMS, UNIX, Windows NT, etc., this dividing
line between the user space and the kernel space is solid (Figure 2-2); it's enforced by the
hardware. There are actually two different modes of operation for the CPUs. user mode, which
allows normal user programs to run, and kernel mode, which also allows some special instructions
to run that only the kernel can execute. These kernel-mode instructions include I/O instructions,
processor interrupt instructions, instructions that control the state of the virtual memory subsystem,
and, of course, the change mode instruction.

Figure 2-2. Memory Layout for Multitasking Systems

_'..
Process = 4>| \
ser |:|
Space
Kernel Process Structure
Space
—1 Kernel

So a user program can execute only user-mode instructions, and it can execute them only in user
space. The data it can access and change directly is also limited to datain user space. When it
needs something from the kernel (say, it wants to read afile or find out the current time), the user
program must make a system call. Thisisalibrary function that sets up some arguments, then
executes a special trap instruction. This instruction causes the hardware to trap into the kernel,
which then takes control of the machine. The kernel figures out what the user wants (based upon
the data that the system call set up) and whether the user has permission to do so. Finally, the
kernel performs the desired task, returning any information to the user process.

Because the operating system has complete control over 1/0, memory, processors, etc., it needsto
maintain data for each processit's running. The data tells the operating system what the state of
that process is—what files are open, which user isrunning it, etc. So, the concept of processin the
multitasking world extends into the kernel (see Figure 2-2), where thisinformation is maintained
in a process structure. In addition, as thisis a multitasking world, more than one process can be
active at the same time, and for most of these operating systems (notably, neither Windows NT

nor 0S/2), more than one user can log in to the machine independently and run programs
simultaneoudly.

Thus, in Figure 2-3, process P1 can be run by user Kim while P2 and P3 are being run by user Dan,
and P4 by user Bil. There isalso no particular restriction on the amount of memory that a process
can have. P2 might use twice as much memory as P1, for example. It is aso true that no two
processes can see or change each other's memory unless they have set up a special shared memory
segment.

Figure 2-3. Processes on a Multitasking System

Processes
P1 P2 P3 P4
Kernel

For all the user programsin all the operating systems mentioned so far, each has one stack, one
program counter, and one set of CPU registers per process. So each of these programs can do only
one thing at atime. They are single threaded.

What Is a Thread?

Just as multitasking operating systems can do more than one thing concurrently by running more
than a single process, a process can do the same by running more than a single thread. Each thread
isadifferent stream of control that can execute its instructions independently, allowing a
multithreaded process to perform numerous tasks concurrently. One thread can run the GUI while
a second thread does some 1/0 and a third performs calculations.

A thread is an abstract concept that comprises everything a computer doesin executing a
traditional program. It is the program state that gets scheduled on a CPU; it isthe "thing" that does
the work. If a process comprises data, code, kernel state, and a set of CPU registers, then a thread
is embodied in the contents of those registers—the program counter, the general registers, the
stack pointer, etc., and the stack. A thread, viewed at an instant of time, is the state of the
computation.

"Gee," you say, "That sounds like a process!" It should. They are conceptually related. But a
process is a heavyweight, kernel-level entity and includes such things as a virtual memory map,
file descriptors, user ID, etc., and each process has its own collection of these. The only way for
your program to access data in the process structure, to query or change its state, is via a system
call.

All parts of the process structure are in kernel space (Figure 2-4). A user program cannot touch
any of that data directly. By contrast, al of the user code (functions, procedures, etc.), along with
the data, isin user space and can be accessed directly.

Figure 2-4. Relationship between a Process and Threads

Ti'ssPp T1sPC T2'sPC T¥sPC

T2's SP
. - User
T3s SP Code
—1 Global
— Data

Process Structure

Kernel

A thread is alightweight entity, comprising the registers, stack, and some other data. The rest of
the process structure is shared by all threads: the address space, file descriptors, etc. Much (and
sometimes all) of the thread structure isin user space, alowing for very fast access.

The actual code (functions, routines, signal handlers, etc.) isglobal, and it can be executed on any
thread. In Figure 2-4 we show three threads (T1, T2, and T3), along with their stacks, stack
pointers (SP), and program counters (PC). T1 and T2 are executing the same function. Thisisa
normal situation, just as two different people can read the same road sign at the same time.

All threads in a process share the state of that process (Figure 2-5'%)). They reside in exactly the
same memory space, see the same functions, and see the same data. When one thread altersa
process variable (say, the working directory), al the others will see the change when they next
accessit. If one thread opensafileto read it, all the other threads can also read fromiit.

2 From here on, we will use the squiggle shown in the figure to represent the entire thread—stack,
stack pointer, program counter, thread structure, etc.

Figure 2-5. Process Structure and Thread Structures

User-Level . Threads
Thread Structures -
-\"'MH ﬂ:”f
) Nl
|]
Thread Library —1
Process Data > i
(Memory Map, — |
File Descriptors, K |
Working Directory, eme

etc.)

Let's consider a human analogy: a bank. A bank with one person working in it (traditional process)
has lots of "bank stuff," such as desks and chairs, a vault, and teller stations (process tables and
variables). There are lots of services that a bank provides: checking accounts, loans, savings
accounts, etc. (the functions). With one person to do all the work, that person would have to know
how to do everything, and could do so, but it might take a bit of extra time to switch among the
various tasks. With two or more people (threads), they would share all the same "bank stuff,” but
they could specialize in their different functions. And if they all came in and worked on the same
day, lots of customers could get serviced quickly.

To change the number of banksin town would be abig effort (creating new processes), but to hire
one new employee (creating a new thread) would be very simple. Everything that happened inside
the bank, including interactions among the employees there, would be fairly simple (user space
operations among threads), whereas anything that involved the bank down the road would be
much more involved (kernel space operations between processes).

When you write a multithreaded program, 99% of your programming isidentical to what it was
before—you spend your efforts in getting the program to do its real work. The other 1% is spent in
creating threads, arranging for different threads to coordinate their activities, dealing with thread-
specific data, etc. Perhaps 0.1% of your code consists of calls to thread functions.

Kernel Interaction

We've now covered the basic concept of threads at the user level. As noted, the concepts and most
of the implementational aspects are valid for al thread models. What's missing is the definition of
the relationship between threads and the operating systems. How do system calls work? How are
threads scheduled on CPUS?

Itisat thisleve that the various implementations differ significantly. The operating systems
provide different system calls, and even identical system calls can differ widely in efficiency and
robustness. The kernels are constructed differently and provide different resources and services.

Keep in mind as we go through this implementation aspect that 99% of your threads programming
will be done above thislevel, and the major distinctions will be in the area of efficiency.

Concurrency vs. Parallelism

Concurrency means that two or more threads (or traditional processes) can be in the middle of
executing code at the same time; it could be the same code or it could be different code (see
Figure 2-6). The threads may or may not actually be executing at the same time, but rather, in the
middle of it (i.e., one started executing, it was interrupted, and the other one started). Every
multitasking operating system has always had numerous concurrent processes, even though only
one could be on the CPU at any given time.

Figure 2-6. Three Threads Running Concurrently on One CPU

T — —] E—
AN

T2] / CPU
T3] F

L 1

Parallelism means that two or more threads actually run at the same time on different CPUs (see
Figure 2-7). On a multiprocessor machine, many different threads can run in parallel. They are, of
course, also running concurrently.

Figure 2-7. Three Threads Running in Parallel on Three CPUs

1 — H | CPU
T2 - H } CPU
™ - H CPU

The vast mgjority of timing and synchronization issues in multithreading (MT) are those of
concurrency, not parallelism. Indeed, the threads model was designed to avoid your ever having to
be concerned with the details of parallelism. Running an MT program on a uniprocessor (UP) does
not simplify your programming problems at al. Running on a multiprocessor (MP) doesn't
complicate them. Thisisagood thing.

Let usrepeat this point. If your program is written correctly on a uniprocessor, it will run correctly
on amultiprocessor. The probability of running into a race condition is the same on both a UP and
an MP. If it deadlocks on one, it will deadlock on the other. (There are lots of weird little
exceptions to the probability part, but you'd have to try hard to make them appear.) Thereisa
small set of bugs, however, which may cause a program to run as (naively) expected on a UP, and
show its problems only on an MP (see Bus Architectures).

System Calls

A system call is basically afunction that ends up trapping to routines in the kernel. These routines
may do things as simple as looking up the user 1D for the owner of the current process, or as
complex as redefining the system's scheduling algorithm. For multithreaded programs, thereisa
serious issue surrounding how many threads can make system calls concurrently. For some
operating systems, the answer is"one"; for others, it's "many.” The most important point is that
system calls run exactly as they did before, so al your old programs continue to run as they did
before, with (almost) no degradation.

Signals

Signals are the UNIX kernel's way of interrupting a running process and letting it know that
something of interest has happened. (NT has something similar but doesn't expose it in the Win32
interface.) It could be that atimer has expired, or that some I/O has completed, or that some other
process wants to communicate something.

Happily, Java does not use UNIX signals, so we may conveniently ignore them entirely! Therole
that signals play in UNIX programsis handled in Java either by having athread respond to a
synchronous request or by the use of exceptions.

Synchronization

Synchronization is the method of ensuring that multiple threads coordinate their activities so that
one thread doesn't accidentally change data that another thread is working on. Thisis done by
providing function calls that can limit the number of threads that can access some data
concurrently.

In the simplest case (a mutual exclusion lock—a mutex), only one thread at a time can execute a
given piece of code. This code presumably alters some global data or performs reads or writesto a
device. For example, thread T1 obtains alock and starts to work on some global data. Thread T2
must now wait (typicaly, it goesto sleep) until thread T1 is done before T2 can execute the same
code. By using the same lock around all code that changes the data, we can ensure that the data
remains consistent.

Scheduling

Scheduling is the act of placing threads onto CPUs so that they can execute, and of taking them
off those CPUs s0 that others can run instead. In practice, scheduling is not generally an issue
because "it all works" just about the way you'd expect.

The Value of Using Threads

Thereisrealy only one reason for writing MT programs—to get better programs more quickly. If
you're an Independent Software Vendor (1SV), you sell more software. If you're developing
software for your own in-house use, you simply have better programs to use. The reason you can
write better programsisthat MT gives your programs and your programmers a number of
significant advantages over nonthreaded programs and programming paradigms.

A point to keep in mind hereis that you are not replacing simple, nonthreaded programs with
fancy, complex, threaded programs. Y ou are using threads only when you need them to replace
complex or slow nonthreaded programs. Threads are just one more way to make your
programming tasks easier.

The main benefits of writing multithreaded programs are:

Performance gains from multiprocessing hardware (parallelism)
Increased application throughput

Increased application responsiveness

Replacing process-to-process communications

Efficient use of system resources

One binary that runs well on both uniprocessors and multiprocessors

10

e Theability to create well-structured programs

The following sections elaborate further on these benefits.

Parallelism

Computers with more than one processor offer the potential for enormous application speedups
(Figure 2-8). MT is an efficient way for application devel opers to exploit the parallelism of the
hardware. Different threads can run on different processors simultaneously with no special input
from the user and no effort on the part of the programmer.

Figure 2-8. Different Threads Running on Different Processors

S

I ' £
g S v
Processors

A good example is a process that does matrix multiplication. A thread can be created for each
available processor, allowing the program to use the entire machine. The threads can then compute
distinct elements of the resulting matrix by performing the appropriate vector multiplication.

Throughput

When atraditional, single-threaded program requests a service from the operating system, it must
wait for that service to complete, often leaving the CPU idle. Even on a uniprocessor,
multithreading allows a process to overlap computation with one or more blocking system calls
(Figure 2-9). Threads provide this overlap even though each request is coded in the usua
synchronous style. The thread making the request must wait, but another thread in the process can
continue. Thus, a process can have numerous blocking requests outstanding, giving you the
beneficia effects of doing asynchronous I/0 while still writing code in the simpler synchronous
fashion.

Figure 2-9. Two Threads Making Overlapping System Calls

11

Working Sleeping System Call or Return *T

Responsiveness

Blocking one part of a process need not block the entire process. Single-threaded applications that
do something lengthy when abutton is pressed typically display a"please wait" cursor and freeze
while the operation isin progress. If such applications were multithreaded, long operations could
be done by independent threads, allowing the application to remain active and making the
application more responsive to the user. In Figure 2-10, one thread is waiting for I/O from the
buttons, and severa threads are working on the calculations.

Figure 2-10. Threads Overlapping Calculation and 1/O

-#l— Controller Thread Worker Threads

_Run) Quit] SW Corner: =2.=05 /

Communications

An application that uses multiple processes to accomplish its tasks can be replaced by an
application that uses multiple threads to accomplish those same tasks. Where the old program
communicated among its processes through traditional interprocess communications facilities (e.g.,
pipes or sockets), the threaded application can communicate via the inherently shared memory of
the process. The threadsin the MT process can maintain separate connections while sharing data
in the same address space. A classic example isaserver program, which can maintain one thread

12

for each client connection, such asin Figure 2-11. This program provides excellent performance,
simpler programming, and effortless scalability.

Figure 2-11. Different Clients Being Handled by Different Threads

-l Client 1

T1
- Client 2

T2

-}

Client 3

T3

System Resources

Programs that use two or more processes to access common data through shared memory are
effectively applying more than one thread of control. However, each such process must maintain a
complete process structure, including afull virtual memory space and kernel state. The cost of
creating and maintaining this large amount of state makes each process much more expensive, in
both time and space, than athread. In addition, the inherent separation between processes may
require amajor effort by the programmer to communicate among the different processes or to
synchronize their actions. By using threads for this communication instead of processes, the
program will be easier to debug and can run much faster.

An application can create hundreds or even thousands of threads, one for each synchronous task,
with only minor impact on system resources. Threads use a fraction of the system resources
needed by processes.

Distributed Objects

With the first releases of standardized distributed objects and object request brokers, your ability
to make use of these will become increasingly important. Distributed objects are inherently
multithreaded. Each time you request an object to perform some action, it executes that actionin a
separate thread (Figure 2-12). Object servers are an absolutely fundamental element in distributed
object paradigm, and those servers are inherently multithreaded.

Figure 2-12. Distributed Objects Running on Distinct Threads

13

- - -

T1 T2 T3

Although you can make a great deal of use of distributed objects without doing any MT
programming, knowing what they are doing and being able to create objects that are threaded will
increase the usefulness of the objects you do write.

Same Binary for Uniprocessors and Multiprocessors

In most older parallel processing schemes, it was necessary to tailor a program for the individual
hardware configuration. With threads, this customization isn't required because the MT paradigm
works well irrespective of the number of CPUs. A program can be compiled once, and it will run
acceptably on a uniprocessor, whereas on a multiprocessor it will just run faster.

Program Structure

Many programs are structured more efficiently with threads because they are inherently
concurrent. A traditional program that tries to do many different tasks is crowded with lots of
complicated code to coordinate these tasks. A threaded program can do the same tasks with much
less, far smpler code, asin Figure 2-13. Multithreaded programs can be more adaptive to
variationsin user demands than single-threaded programs can.

Figure 2-13. Simplified Flow of Control in Complex Applications

Complex Flow of Control Simple Flow of Control
(no threads) (with threads)
Task 1 Task 2 Task 1 Task 2

(thread 1) (thread 2)

=

il

- .
B
|

h\-‘___‘

Thisis quite some set of claims, and a bit of healthy skepticismis called for. Sure, it sounds good
when we say it, but what about when you try to use it? We cannot guarantee that you will

Il

IS

14

experience the same wonderful results, but we can point out a number of cases where other folks
have found MT programming to be of great advantage (see Performance).

What Kinds of Programs to Thread

There is a spectrum of programs that one might wish to thread. On one end, there are those that
are inherently "MT-ish"—you look at the work to be done, and you think of it as several
independent tasks. In the middle, there are programs where the division of work isn't obvious, but
possible. On the far other end, there are those that cannot reasonably be threaded at all.

Inherently MT Programs

Inherently MT programs are those that are easily expressed as numerous threads doing numerous
things. Such programs are easier to write using threads, because they are doing different things
concurrently anyway. They are generally simpler to write and understand when threaded, easier to
maintain, and more robust. The fact that they may run faster is a mere pleasant side effect. For
these programs, the general rule is that the more complex the application, the greater the value of
threading.

Typical programsthat are inherently M T include:
Independent tasks

A debugger needs to run and monitor a program, keep its GUI active, and display an interactive
data inspector, dynamic call grapher, and performance monitor—all in the same address space, all
at the sametime.

Servers

A server needs to handle numerous overlapping reguests simultaneously. NFS®, NIS, DBM Ss,
stock quotation servers, etc., all receive large numbers of requests that require the server to do
some 1/O, then process the results and return answers. Completing one request at a time would be
very slow.

Repetitive tasks

A simulator needs to simulate the interactions of numerous different elements that operate
simultaneoudly. CAD, structural analysis, weather prediction, etc., all model tiny piecesfirst, then
combine the results to produce an overall picture.

Not Obviously MT Programs

Not obviously MT programs are those not inherently M T but for which threading is reasonable.
Here you impose threads upon an algorithm that does not have an obvious decomposition, in order
to achieve a speedup on an MP machine. Such a program is somewhat harder to write, abit more
difficult to maintain, etc., than its nonthreaded counterpart, but it runs faster. Because of these
drawbacks, the (portions of) programs chosen are generally quite simple.

Typica programsin this class include:

Numerical programs

15

Many numerical programs (e.g., matrix operations) are made up of huge numbers of tiny, identical,
and independent operations. They are most easily (well, most commonly) expressed as |loops
inside loops. Slicing these loops into appropriate-sized chunks for threadsis dightly more
complicated, and there would be no reason to do so, save for the order-N speedup that can be
obtained on an N-way SMP machine.

Old code

These are the "dightly modified existing systems." Thisis existing code that makes you think to
yourself: "If | just change afew bits here and there, add afew locks, then | can thread it and
double my performance.”

It'strue, it is possible to do this, and there are lots of examples. However, thisis atough situation
because you will constantly be finding new interactions that you didn't realize existed before. In
such cases (which, due to the nature of the modern software industry, are far too common), you
should concentrate on the bottlenecks and look for absolutely minimal submodules that can be
rewritten. It's always best to take the time to do it right: re-architect and write the program
correctly from the beginning.

Automatic Threading

In asubset of cases, it is possible for a compiler to do the threading for you. If you have a program
written in such away that a compiler can anayze its structure, analyze the interdependencies of
the data, and determine that parts of your program can run simultaneously without data conflicts,
then the compiler can build the threads.

With current technology, the capabilities above are limited largely to Fortran programs that have
time-consuming loops in which the individual computations in those loops are obviously
independent. The primary reason for this limitation is that Fortran programs tend to have very
simple structuring, both for code and data, making the analysis viable. Languages like C, which
have constructs such as pointers, make the analysis enormously more difficult. There are MP
compilersfor C, but far fewer programs can take advantage of such compiling techniques.

With the different Fortran MP compilers2 it is possible to take vanilla Fortran 77 or 90 code,
make no changes to it whatsoever, and have the compiler turn out threaded code. In some cases it
works very well; in others, not. The cost of trying it out is very small, of course. A humber of Ada
compilers will map Adatasks directly on top of threads, allowing existing Ada programs to take
advantage of parallel machines with no changes to the code.

Bl Digital's Fortran compiler, Sun® Fortran MP, Kuck and Associates' Fortran compiler, EPC's
Fortran compiler, SGI's MP Fortran compiler, probably more.

Programs Not to Thread

Then thereis alarge set of programs that it doesn't make any sense to thread. Probably 99% of all
programs either do not lend themselves easily to threading or run just fine the way they are. Some
programs simply require separate processes in which to run. Perhaps they need to execute one task
as root but need to avoid having any other code running as root. Perhaps the program needs to be
able to control its global environment closely, changing working directories, etc. Most programs
run quite fast enough as they are and don't have any inherent multitasking, such as an icon editor
or acalculator application.

In all truth, multithreaded programming is more difficult than regular programming. There are a
host of new problems that must be dealt with, many of which are difficult. Threads are of value
primarily when the task at hand is complex.

16

What About Shared Memory?

At thistime, you may be asking yourself, "What can threads do that can't be done by processes
sharing memory?"' The first answer is, "nothing." Most anything that you can do with threads, you
can do with processes sharing memory. Indeed, a number of vendors implement a significant
portion of their threads library in roughly this fashion. There are afew details, such as managing
shared file descriptors, which are not supported on all systems. Nonethel ess, the additional
expense and complication of using multiple processes restricts the usefulness of this method. Java
is defined in such away that sharing memory between processes is not an option, so we will skip
over thistechnique, which is sometimes interesting to C/C++ programmers.

Threads Standards

There are three different definitions for native thread libraries competing for attention today:
Win32, 052, and POSIX. Thefirst two are proprietary and limited to their individual platforms
(Win32 threads run only under NT and Win95, OS/2 threads only on 0OS/2). The POSIX
specification (IEEE 1003.1c, a.k.a. Pthreads) isintended for all computing platforms, and
implementations are available or in development for amost all major UNIX systems (including
Linux), along with VMS and A S/400—not to mention a freeware library for Win32.

By contrast, Java threads are implemented in the JVM, which in turn is built on top of the native
threads library for the specific platform.! Java does not expose the native threads' APIs, only its
own, very small set of functions. This alows Javathreadsto be easier to use than the native
libraries and more portable, but there are still some significant issuesin making programs run
uniformly across all platforms.

4 Actually, the JVM is allowed to implement threads any way it feels like. Indeed, the first
implementations of Java used green threads, which were not native. Today, most JVMs are built on
native threads.

POSIX Threads

The POSIX standard defines the API and behavior that al Pthreads libraries must meet. It is part
of the extended portion of POSIX, so it is not a requirement for meeting XPG4, but it is required
for X/Open UNIX 98, and al major UNIX vendors have implemented this standard. In addition,
UNIX98 includes a small set of extensions to Pthreads.

Win32 and OS/2 Threads

Both the NT and OS/2 implementations contain some fairly radical differences from the POSIX

standard—to the degree that even porting from one or the other to POSIX will prove moderately
challenging. Microsoft has not announced any plans to adopt POSIX. There are freeware POSIX
libraries for Win32, and OS/2 aso has an optional POSIX library.

DCE Threads

Before POSIX completed work on the standard, it produced a number of drafts that it published
for comment. Draft 4 was used as the basis for the threads library in DCE. It issimilar to the find
spec, but it does contain a number of significant differences. Presumably, no one iswriting any
new threaded DCE code.

17

Solaris Threads

Also known as Ul threads, thisisthe library that SunSoft used in developing Solaris 2 before the
POSIX committee completed its work. It will be available on Solaris 2 for the foreseeable future,
although we expect most applications writers will opt for Pthreads. The vast majority of the two
libraries are virtually identical.

Performance

Even after reading all these wonderful things about threads, there's always someone who insists on
asking that ever-so-bothersome question: "Does it work?" For an answer, we turn to some real,
live shipping programs. Some of these are described in greater detail inthe MT "Case Studies®
(see Threads Newsgroup).

Operating Systems

OSs arelarge, complex, yet still highly efficient and robust programs. The various OSs have been
in daily use by millions of users over the past couple of years and have endured the stress put on
them by hundreds of thousands of programmers who are not known for their generosity toward
operating system quirks. Mach, Windows NT, Windows 95, Solaris, IRIX, AlX, OS/2, and Digital
UNIX are all threaded, and many of the other UNIX vendors are also moving toward a threaded
kernel.

NFS

Under most UNIX systems, both the NFS client and server are threaded (Figure 2-14). There
aren't any standardized benchmarks for the client side, so you'll have to take our word for it that
it'sfaster. On the server side, however, there is the LADDIS benchmark from SPEC. A great deal
of time has been spent optimizing NFS for multiple CPUs, quite successfully.

Figure 2-14. NFS Performance on MP Machines (SPEC '96)

NFS Throughput

20,000 #UE 6000: 23,076
e
15,000 _/__,./-F’"’
UE 4000: 13,536

10,

0.000 UE 3000: 8,103

el
5.000 /ﬁE 2- 4.303
UE 1: 2,102
1 4 8 12 16 20 24 28
Number of CPUs (Sun UE Series)
SPECfp 95

18

The rule for the SPECfp benchmark is that a compiler is allowed to do pretty much anything it
wants to, as long as that compiler is available to customers and nobody changes the source code at
al. The various Fortran 77/90 MP compilers automatically multithread a program with no user
intervention, so they are legal. Y ou give the compiler the code, completely unchanged, and it
looksto seeif thereis any possibility of threading it. It is possible to thread 6 of the 14 SPECfp
programs automatically. The results are very impressive (Table 2-1).

Table 2-1. SPECfp95 Results for Alpha 4100 5/466 (SPEC '97)

\Number of CPUs |T0mcatv \Swim |Su200r \HydroZd |Mgrid \Turb3d
1 23.8 254 |10.1 10.0 175 19.1
2 331 46.2 |18.0 15.4 245 334
4 40.3 83.8 |30.3 21.3 346 549

SPECint_rate95

SPECfp 95 is areasonable set of benchmarks for single-CPU machines, but it does not give a
good picture of the overall performance potential of multiprocessor machines (Figure 2-15). The
SPECrate is intended to demonstrate this potential by alowing the vendor to run as many copies
of the program as desired (e.g., in one test with 30 CPUs, Sun ran 37 copies of each program).
This benchmark does not use the MP compiler.

Figure 2-15. Running SPECrate_fp95 on an SGI Origin/200, 2000 (SPEC '96)

SPECint_rate95

2500 B 2429 (32)

2000

1500

1000 B 1182 (16)

500 m 595(8)
N 278 (4)

0 8 16 24 32
CPUs

Java Benchmarks

There are currently no Java benchmarks of interest to parallel processing.

Summary

Threads allow both concurrent execution in a single address space and parallel execution on
multiple-processor machines, and they also make many complex programs easier to write. Most
programs are simple and fast enough that they don't need threads, but for those programs that do
need them, threads are wonderful.

19

Chapter 3. Foundations

Implementation vs. Specification
Thread Libraries

The Process Structure
Lightweight Processes

The POSIX Multithreaded Model
System Calls

Signals

In which we introduce the reader to the underlying structures upon which threads are built, the
construction of the thread itself, and the operating system support that allows efficient
implementation.

Implementation vs. Specification

When writing a book of this nature, the authors are often faced with a difficult decision: How
much should they restrict themselves to the pure specifications, and how much in the way of
implementation should they allow to show through? By talking only about the specifications, the
reader is given a pure rendition of what the library should do and is not misled into thinking that
because a particular implementation did things one way, they all have to be like that. X

A specification is a description of what a program is supposed to do. An implementation is an
actual program, which hopefully does what the spec says it should. The U.S. Constitution is a
specification for a country. The United States is an implementation.

Unfortunately, describing only the specification is rather akin to teaching the concepts of
mathematics without ever mentioning the existence of numbers!2 It's clean and pure, but terribly
difficult to comprehend fully. So we have chosen to bring in implementation details when we
think they will aid in comprehension. The implementation we refer to most is the Solaris
implementation, largely because we know it best.

2l Yes, we are members of the "New Math" generation.

Please keep in mind that these implementation details are included for your edification, but you
should never write programs that depend upon them. They can change at any time, with no
notification. Learn from the implementation; write to the specification.

Thread Libraries

There are two fundamentally different ways of implementing threads. The first isto write a user-
level library that is substantially self-contained. It will make calls to system routines, and it may
depend upon the existence of certain kernel features, but it is fundamentally a user-level library
and contains no "magic” hooks into secret kernel routines. All of the defining structures and code
for the library will bein user space. The vast mgjority of the library calls will execute entirely in
user space and make no more use of system routines than does any other user-level library.

20

The second way isto write alibrary that is inherently a kernel-level implementation. It may define
all the same functions as in the first case, but these functions will be completely dependent upon
the existence of kernel routines to support them and may well be almost entirely in kernel space.
The user-level portion of the library will be relatively small compared to the amount of kernel-
level support it requires. The majority of library calls will require system calls.

Both of these methods can be used to implement exactly the same API, and they overlap in the
kinds of kernel support they require. Some implementations of the POSIX standard are of the first
kind, while both OS/2 and Win32 threads are of the second type. When Javaisimplemented on
these OSsit inherits the underlying behavior.

In either case, the programmer will use an API that isimplemented by athreads library. That
library will provide a set of function calls (POSIX has about 50 calls, while Java has a dozen) that
is the programmer's sole interface to threads. Everything not provided by those calls must come
from the system'’s other libraries, meaning that 99% of writing a multithreaded program consists of
writing regular, old-fashioned code almost the same way as before.

Asyou read the descriptions of the APIs, you may be struck by the lack of fancy features. Thisis
intentional. These libraries provide a foundation for writing MT programs, but not every detail

you might like. They provide you the resources with which to build more elaborate functions. Spin
locks, priority-inheriting mutexes, deadlock-recovery features, etc., can be built out of these
primitives with relative ease. Thus, if you want very fast, minimal functionality constructs, they
are provided. If you want the slower, more complex constructs, you can build them.

We begin by talking about the parts of the system that are not inherently related to threads, but
that do define agreat deal about how threads must work. We use the specific example of how
Solaris deals with the issues involved in building a viable interface between kernel-provided
functionality and the user-level threads requirements. Other operating systems and other libraries
have chosen different ways of providing thisinterface, and we do discuss them in general terms.
We believe that by understanding one implementation in detail, you will acquire the background
needed to fill in the gaps for the other implementations.

The Process Structure

The only thing the kernel knows about is the process structure. And the process structure has
changed (slightly) since you last looked at it in traditional multitasking operating systems such as
SunOS 4.x (see Figure 3-1).

Figure 3-1. Process Structure in Traditional UNIX and in Solaris 2

21

Traditional UNLX Process Structure Solaris 2 Process Structure

Process 1D Process 1D
UID GID ELID EGID CWD... WD GID ELID EGID CWD...
Signal Dispatch Table
Signal Dizpatch Tabla Memory Map
Memory Map
Priority
Signal Mask File Descriptors
Registers
File Descriptors
Kernel Stack
LWP 2 LWP 1
LWP ID LWP 1D
CPU Stat -
e Priority " Prigrty
Signal Mask Signal Mask
Registers Registers
Kernel Stack Kernel Stack

It used to contain the memory map, the signal dispatch table, signal mask, user 1D, group ID,
working directory, etc., along with runtime statistics, CPU state (registers, etc.), and akernel stack
(for executing system calls). In Solaris 2, the last couple bits have been abstracted out and placed
into a new structure called alightweight process (LWP).2! So a process contains all of the above,
except for the runtime statistics, CPU state, and kernel stack, which are now part of the LWP
structure. A process thus contains some number of LWPs (one for a "traditional” process, more for
amultithreaded process). Just as the threads all share the process variables and state, the LWPs do
the same.

B The other operating systems that support user-level threads have different ways of dealing with
the same issue. Some of them copy the entire process structure for each thread, some of them
don't do anything. The concept of a separate, schedulable entity, such as the LWP, proves to be an
excellent pedagogical concept, and the other designs can easily be described in terms of LWPs.
LWP is, of course, a Solaris term.

The process structure shown in Figure 3-1 isin kernel space—below the solid line in the figures. It
is not directly accessible by any user code. User code can accessit only viaasystem call. That
restriction allows the kernel to check the legality of the call and prevent user code from doing
things it shouldn't, either by intention or mistake. Because a system call is required to access the
process structure information, it is a more costly operation than a function call.

Lightweight Processes

A lightweight process™ can be thought of as avirtual CPU that is available for executing code.
Each LWP is separately scheduled by the kernel. 1t can perform independent system calls and
incur independent page faults, and multiple LWPs in the same process can run in parallel on
multiple processors.

22

“ Sunos 4.x had a library known as the LWP library. There is no relationship between Solaris 2
LWPs and SunOS 4.x LWPs.

LWPs are scheduled onto the available CPU resources according to their scheduling class and
priority, asillustrated in Figure 3-6 . Because scheduling is done on a per-LWP basis, each LWP
collectsits own kernel statistics—user time, system time, page faults, etc. Thisalso impliesthat a
process with two LWPs will generally get twice as much CPU time as a process with only one
LWP. (Thisisawild generalization, but you get the idea—the kerndl is scheduling LWPs, not
processes.)

Figure 3-6. Operation of a System Call

User Space

Stack —1 ‘ \

Kernel Space A
Stack @ —

—]

Time

k

An LWP aso has some capabilities that are not exported directly to threads, such as kernel
scheduling classes. A programmer can take advantage of these capabilities while retaining use of
all the thread interfaces and capabilities by specifying that the thread is to remain permanently
bound to an LWP (known as system contention scope scheduling and discussed further in
Realtime LWPs).

LWPs are an implementation technique for providing kernel-level concurrency and parallelism to
support the threads interface. There is never areason for you to use the LWP interface directly.
Indeed, you should specifically avoid it. It gains you nothing but costs you your portability.

Digital UNIX

Aninteresting contrast to LWPs are the techniques that DEC takes. Digital UNIX has two kinds of
"LWPs," one that is an execution engine (the thing that runs on the CPU) and the other isan 1/0
wait engine (which contains just enough state to move its thread back onto an execution engine).
Thisis nice because it minimizes the impact on the kernel of expensive programs which would
otherwise demand numerous LWPs.

Linux

In Linux, alow-level call to clone() creates anew kernel thread in the same fashion as fork ()
creates a process. It aso alows kernel threads of varying functionality. They can share the address
space but not file descriptors, they can share both of those but not signal handlers, etc. The one
noticeable distinction is that these kernel threads will never share a process ID in the way that

23

UNIX and Win32 threads will. Thisis not a disaster, but it does make extrawork for the library
designer.

Threads and LWPs

In atypical, traditional, multitasking operating system, a process comprises memory, the CPU
register state, and some system state (file descriptors, user ID, working directory, etc., all stored in
the process structure). When it's time to context-switch two processes, the kernel saves the
registers in the process structure, changes some virtual memory pointers, loads the CPU registers
with data from the other process structure, and continues.

When context-switching two threads, the registers are saved as before, but the memory map and
the "current process' pointer remain the same. The ideais that you have a single program, in one
memory space, with many virtual CPUs running different parts of the program concurrently.

What actually makes up athread are (see Figure 3-2) its own stack and stack pointer; a program
counter; some thread information, such as scheduling priority, and signal mask, stored in the
thread structure; and the CPU registers (the stack pointer and program counter are actually just
registers).

Figure 3-2. Contents of a Thread

WPROLOGLIEN 1 -=== Stack Frame -

) Return Address Thread 1D
sam'ﬂ.x[h-]ﬁl:_'?.sp Input Arguments:
S'Ellh%hlll'“}“a'r:'hm “Tha Cat Iin tha hat” P i t
sethiBhi[MAR_SEGT) %ol Local variables riority
I [Ho+%IofL10137)), _7
sethi%hil 10134}, %02 b, 1415026308088 Sianal Mask
sethitihilv. 16), %00 Prﬂgfam Stack Frame Folnter g
e - CPU Regist
or W TR .
cal pfn g Cﬂuﬂtﬂr ~-===- Stack Frame ---- EQ slers

Eaturn Address
Input Arguments
“cane backi®

Splldtel), [YespLP 1)
sathihi|l 101 26). %01

of of o, Slo{v. 16),%o0! Local variables
cal 5_wisle 1 “Fural Roubte 27
aplc¥l 0 [Hspe L] L ars Thread Structure
sthiShifL 101 26}, %01
o %ol %ol 10126),% csss BEack FEARE === -
Return Address stack
inter
Code Stack Pointe

{(not part of the thread)

Everything else comes from either the process or (in afew cases) the LWP. The stack isjust
memory drawn from the program’s heap. A POSIX thread could look into and even ater the
contents of another thread's stack if it so desired. (Although you, being a good programmer, would
never do this, your bugs might.)

Putting al thistogether, we end up with a picture such as Figure 3-3. The threads, their stacks, the
code they run, and the global datathat they share are all in user space, directly under user control.
The thread structures are also in user space, but completely under the control of the threads library.
Thereisno legal way for auser program to access those structures directly. The library itself, like
every other system library, isjust regular user code that you could have written yourself.

Figure 3-3. How the Threads Library Fits into a Process

24

IF
—»
Thread _.-E "i E
Stmctures“\\
B ~ User
LWP Code
S .
. . 1] Global
S~ N L1
A N
Process Structure
Kernel

The LWPs are part of the process structure, but we show them crossing the line because thisis
how we think of their use. They are the main vehicle for processing from the threads library's
point of view, so we show them in illustrations crossing that boundary, although they are, strictly
speaking, in kernel space. The actual process structure is completely in kernel space.

As you can deduce, this definition of threads residing in a single address space means that the
entire address spaceis seen identically by al threads. A changein shared data by one thread can
be seen by al the other threads in the process. If one thread is writing a data structure while
another thread is reading it, there will be problems (see Race Conditions).

As threads share the same process structure, they also share most of the operating system state.
Each thread sees the same open files, the same user ID, the same working directory; each uses the
same file descriptors, including the file position pointer. If one thread opens afile, another thread
can read it. If one thread does a seek () while another thread is doing a series of reads on the
same file descriptor, the results may be surprising.

All of thisistrue no matter if you think of the running code as being native or asresiding inside
the JVM; the issues and consequences are the same. In some fashion, the VM uses a threads
library (possibly a native library such as POSIX or Win32, possibly its own library, green threads)
to provide the infrastructure for your threads to run on. Asfar as you can tell, you're just running
Javathreads, but underneath you're running on the lower-level library (Figure 3-4).

Figure 3-4. How Java Is Built on Lower-Level Threads Libraries

S % T L]
Green Threads =

Win32 Threads —
POSIX Threads

JVM

O
O

25

The POSIX Multithreaded Model

In the POSIX multithreaded model (see Figure 3-5), threads are the portable application-level
interface. Programmers write applications using the appropriate API. The underlying threads
library schedules the threads onto LWPs. The LWPs in turn are implemented by kernel threads™
in the kernel. These kernel threads are then scheduled onto the available CPUs by the standard
kernel scheduling routine, completely invisible to the user. This picture is accurate for POSIX
threads. It is equally applicable for Win32 and Java threads, save that there are some limitations
regarding the binding of threads to LWPs (see Different Models of Kernel Scheduling).

B Al the kernels are implemented using a threads library, often similar to Pthreads (Solaris kernel
threads are very similar; DEC's kernel threads were based on Mach and are quite different). These
kernel threads are used to implement LWPs. The kernel also uses them for its own internal tasks,
such as the page daemon. The term kernel thread is not used uniformly, and many people use it to
refer to LWPs (or logical equivalent). We will not deal with kernel threads at all.

Figure 3-5. POSIX Multithreaded Architecture

Traditional
Process

™= Proc1 Proc 2 Proc 3 Proc 4 Proc 5

=] [+] [7 A] [7] [

User E?;

~F
LWPs

Kernel
Threads

Kernel

Hardware Processors

System Calls

A system call isthe way that multitasking operating systems allow user processes to get
information or request services from the kernel. Such things as "Write thisfile to the disk" and
"How many users are on the system?" are done with system calls. We divide system calls into two
categories, blocking and nonblocking calls. In a blocking system call, such as "Read thisfile from
the disk," the program makes the call, the operating system executes it and returns the answer, and
the program proceeds. If a blocking system call takes along time, the program just waits for it.
(Usually, another process will be scheduled while this one is waiting.)

In a nonblocking system call, such as "Write thisfile to the disk without waiting," the program
makes the call, the operating system sets up the parameters for the write, then returns, and the
program continues. Exactly when the disk write actually occursis not particularly important, and
the program is able to continue working. A nonblocking system call may send the process asignal

26

to tell it that the write is completed. Asynchronous I/0 isimportant for many nonthreaded
applications, asit allows the application to continue to work, even while there is I/0 pending.

When a process makes a system call (see Figure 3-6), the following events occur:

The process traps to the kernel.

The trap handler runsin kernel mode and saves all the registers.

The handler sets the stack pointer to the process structure's kernel stack.

The kernel runs the system call.

The kernel places any requested data into the user-space structure that the programmer
provided.

The kernel changes any process structure values affected.

The process returns to user mode, replacing the registers and stack pointer, and returns the
appropriate value from the system call.

agkrowbdpE

No

Of course, system calls don't always succeed. They can out-and-out fail or they can be interrupted.
In C, when they fail they return afailure value and set errno. When interrupted by a signal the
call isforced out of the kernel, the signal handler is run, and the system call returns EINTR.
(Presumably, the program will see this value and repeat the system call.) The Java model for
handling these situations is to throw exceptions (there are a variety of exceptions for failing
system calls and a special exception, InterruptedException, for interruptions).

What happens in a process with multiple LWPs? Almost exactly the same thing. The LWP enters
the kernel, there's a kernel stack for each LWP, al the usual things happen, and the system call
returns. And if several LWPs make system calls? They all execute independently and everything
works as expected, with the usual caveats.

If several calls affect the same data, things could turn ugly. For example, if two threads issue calls
to change the working directory, one of them is going to get a surprise. Or if two threads do
independent callsto read (), using the same file descriptor, the file pointer will not be
coordinated by either one of them, resulting in one thread reading from a different place than it
expected. We'll deal with these issues later.

Thereally nice thing about different threads being able to execute independent system callsis
when the calls are blocking system calls. Ten different threads can issue ten synchronous reads, all
of which block, yet all the other threads in the process can continue to compute. Cool.

Signals

Signals are the mechanism that UNIX has always used to get asynchronous behavior in a program.
With threads, we are able to get most asynchronous behavior without signals. Only interruptions
need some signal-like mechanism in order to work. In Java, the UNIX signal model is not used at
al (thisisagood thing!) and interruptions are done by using the exception system.

Summary

Threads libraries can be implemented as self-contained user-level libraries or as kernel-based
routines. The same program can be written in either, the difference often being quite minor. The
main distinction of threads vs. processes is that threads share all process resources and data. The
programming trade-offs, problems, and designs are the same for POSIX, Win32, and Java.

27

Chapter 4. Lifecycle

Thread Lifecycle

APIsUsed in This Chapter

The Class javalang.Thread

The Class Extensions.InterruptibleThread
The Interface java.lang.Runnable

In which the reader is treated to a comprehensive explanation of the intricaciesin the life of a
thread—birth, life, and death— even death by vile cancellation. A small program that illustrates
all these stages concludes the chapter.

Thread Lifecycle

The fundamental paradigm of threads is the samein all the libraries. In each, the program starts up
in the same fashion as single-threaded programs always have—Iloading the program, linking in the
dynamic libraries, running any initialization sections, and finally, starting a single thread running
main() (the main thread). The main function will then be free to create additional threads as the
programmer sees fit (Code Examples 4-1 to 4-3).

In Pthreads and Win32, you call the create function with afunction to run and an argument for the
function to run on. Java follows the same paradigm, but the API is rather distinct. In Java you
subclass Thread, defining a run() method for it, then instantiate an instance of it and call
start(). You can see how this maps directly onto the POSIX model. It isimportant to
distinguish between the thread object that you've just created with new Thread and the thread as
we've described it, which is created in the start () method.

Example 4-1 Simple Call to Create and Exit a POSIX Thread

error = pthread_create(&tid, NULL, start fn, arg);
void *start_fn(void *arg) {
doWork();

pthread exit(status);
}

Example 4-2 Simple Call to Create and Exit a Java Thread

Public class MyThread extends Thread {
public void run() {
doWork();

}

Thread t = new MyThread();
t.start();

Example 4-3 Simple Call to Create and Exit a Win32 Thread

handle = CreateThread(NULL, NULL, start_fn, arg, NULL, &tid);

void *start_fn(void *arg) {

28

doWork();
ExitThread(status);

}
Exiting a Thread

Conversely, athread is exited by calling the appropriate thread exit function or simply returning
from theinitia function. Beyond the actual call to the create function, there is no parent/child
relationship—any thread can create as many threads as it pleases and, after creation, there will be
no relationship between the creator and createe.

In Javathere is no thread exit function as there isin the other libraries, and the only way of exiting
athread isto return from the run() method. This seems abit odd, but it isintentional. The basic
ideaisthat only the run() method should make the decision to exit. Other methods lower in the
call chain may decide that they are done with what they are doing, or they may encounter an error
condition, but all they should do is pass that information up the call stack. They may return unique
values [tlcl) indicate completion or they may propagate an exception, but they shouldn't exit the
thread.

M in earlier programs we looked at this differently and even wrote a "thread exit" function for Java
using thread.stop(). We recommend not doing that.

Moreover, even the run() method shouldn't be exiting the thread explicitly because it doesn't
"know" that it's running in aunique thread. It is perfectly reasonable for a program to call the
run() method in anew thread sometimes, and from an existing thread other times.

The Runnable Interface

There is a second method of creating a Java thread. In this method you write a class that
implements the Runnab I e interface, defining a run() method on it (Figure 4-1). Y ou then create
athread object with this runnable as the argument and call start() on the thread object. In
simple examples, either method is fine, but well soon discover that the latter method is superior,
and welll useitin all our code (see Code Example 4-4). Y ou will probably never use the first
method yourself.

Example 4-4 Simple Call to Run a Runnable in a Thread

public MyRunnable implements Runnable {
public void run(Q){
doWork();
}

}

Runnable r = new MyRunnable()
Thread t = new Thread(r);
t.start();

Figure 4-1. Creating a Thread via a Runnable

29

Thread t2
._./—\-b MyRunnable r

t2.start ()

return()

—I |—

Finally, you can even use anonymous inner classes to define athread's run() method (Code
Example 4-5). Y ou could even create a thread and passit an inner class runnable, but that seems
silly. Well just define a run() method for the thread.

Example 4-5 Defining run() via an Inner Class in a Thread

new Thread() {
public void run() {
doWork();

}.start();

There are two reasons for using runnable. Thefirst is that we are not changing the nature of the
thread itself, we're only changing the run() method, so subclassing Thread isn't really
appropriate. The second reason isthat if we implement the Runnabl e interface, it's possible to
subclass something else more useful. (True, it's unlikely that you'll ever subclass anything for your
runnable; nonetheless, it's nice to have that option.) Still, the distinction between the two methods
isquite minor. There are afew cases where we will subclass Thread, but in none of those will we
ever definearun() method.

Moreover, we can consider aRunnab I e to be the work to be done, while the thread is the engine
to do the work. From this point of view, it makes no sense to include the work inside the engine.
On top of this, there is no reason to insist that the work be done in aunique thread. It is perfectly
reasonable to execute the run() method of aRunnable in the current thread. Thisis exactly
what we do in Threads and Windows.

What the run() method of Thread does by default isto look for aRunnable and cal its run()
method. Y ou could both subclass Thread and define a run() method on it and then passit a
Runnable to run. In this case the run() method of the thread would be run. This would confuse
the heck out of anyone reading your code. Don't do that.

In Pthreads and Win32 each thread has athread ID (TID), which may be used to control certain
aspects (scheduling classes, cancellation, signals, etc.) of that thread. (Win32 a so defines athread
handle, which isadifferent version of aTID.) In Java, al of thisis more conveniently handled
simply by invoking methods on the thread object. (Y ou will probably never call any methods on
the runnable yourself.)

Waiting for Threads

Sometimes you specifically want to wait for athread to exit (see Figure 4-2 and Code Example 4-
6). Perhaps you've created 20 threads to do 20 pieces of atask, and you can't continue until they
are all finished. One method is to call the wait function (called join in Pthreads and Java) on each
of the desired threads. The caller will block until each of the specified threads has exited. The

30

other way isto use normal synchronization functions. (Well talk about thisin Using Barriers to
Count Exiting Threads .)

Example 4-6 Waiting for Threads to Exit

POSIX Win32 Java
pthread_join(T5,...) WaitForSingleObject(T5,...) T5.join()

Figure 4-2. Using thread. join()

— | | — T1
thread.starc() T5.join() '[
(run{) returns)
_ t T5
] —
Working Sleeping

In addition to waiting for the threads to exit, the caller can receive a status from the exiting threads
in Win32 and POSIX. In Javathere is no such concept, but it's easy enough to build an ad hoc
method should you need to. (Y ou probably won't.) To ensure that no deadlocks occur, it makes no
difference if the waiting thread callsthe join function first or if the exiting thread calls the exit
function first. Calling return() from the run method implicitly calls the thread exit function.
Obviously, you should join athread only once. It islegal in Javato join athread more than once,
but you're probably making a mistake if you do.

Who Am |?

Sometimes you want to know the identity of the current thread. In production programsthisis
pretty rare; most commonly you just want to print out some debugging information about which
thread is running when. In any case, it's easy to do. All the libraries have a"current thread"
function (Code Example 4-7). In Java you may aso wish to know which Runnable isbeing run.
Y ou cannot find this out unless you build in a mechanism for it yourself (see Java TSD).

Example 4-7 Getting the Current Thread's Identity

POSIX Win32 Java
pthread_self() GetCurrentThread() Thread.currentThread()

Don't Wait for Threads, Don't Return Status

When should you wait for athread? Our opinion is never. Consider: Why do you care when a
thread exits? Because you are waiting for that thread to compl ete some task, the results of which
some other thread needs. By doing ajoin on that thread, you are implicitly assuming that the task
will be complete when the thread exits. Although this may indeed be true, it would be
conceptually cleaner if you simply waited for the task itself, using one of the synchronization
variables discussed in Chapter 6. In many of our examples we simply count the number of threads
that exit.

31

The only time you must join athread is when you care about the thread itself (not the thread
object). The only aspect of the thread that you have any kind of dependency on is the memory

used for the thread's stack. In POSIX and Win32 it is possible to "touch" the stack directly. Thisis
not possible in Java (a good thing), so the only possible interaction with the stack is the reuse issue.
If you start a new thread, will it have to allocate new memory or can it use the newly freed
memory from an exiting thread? Although it is possible to write a program where you can measure
this effect, it would be quite artificial.

POSIX and Win32 can return a status value and the same argument applies. It isn't the thread that
has status to return, it's the task that the thread was executing that has status, and that status may
be handled without calling join. In all honesty, there are plenty of programs that don't take our
advice and work just fine. Y ou don't have to take our advice either, but you should consider it
before making your decision.

Exiting the Process

The semantics of exit() [in Java, System.exit()] areretained in MT programsin al the
libraries. When any thread in a process calls exit (), the process exits, returning its memory,
system resources, process structure, all LWPs, etc. In Java, if main() "falls off the bottom" of the
initial thread, the other threads will continueto run. [In the POSIX and Win32, the main thread
will make animplicit call to exit(), aso killing the process. Thisis arequirement for them to
maintain compatibility with existing programs, not to mention the ANSI C spec.]

When any other thread in any of the libraries falls off the bottom of itsinitial function, it exits only
that one thread. [In POSIX and Win32, if the main thread calls the thread exit function directly,
that thread exits but does not call exit(), and the process continues.]

Finally, should all normal user threads exit (the library may create threads for its own use and they
will not be counted; see Daemon Threads), the thread library will detect thisand call exit()
itself. This situation is not typical, however, as you will generally know when it's time to exit your
process. Instead of |etting the threads die one by one, you should call System .exit() explicitly.

Suspending a Thread

Win32 and Java have a function to force a thread to suspend its execution for an arbitrary length
of time and a second function to cause the thread to resume [thread . suspend () and
thread. resume()]. These functions were included for the purpose of allowing such things as
garbage collectors and debuggers to gain full control of aprocess. As such, they are useful;
however, for amost any other purpose they are the wrong thing. Because a suspended thread may
hold locks that a controller thread needs, it is almost impossible to use suspension effectively. In

JaV[E_il these methods have been deprecated in JDK 1.2. In POSIX and UNIX98, they don't exist at
al2

[2] They were to be included in UNIX98, and you may see reference to them, but they were dropped
out at the last minute.

Cancellation

It is possible for one thread to tell another thread to exit. This is known as cancellation in POSIX
and simply askilling a thread in Java and Win32 (Code Example 4-8). In theory it's quite simple.
T2 (Figure 4-3) tells T1 to exit, and it does. There is no relationship between the threads. Maybe
T2 created T1, maybe T3 created both of them, maybe something else.

Example 4-8 Cancellation in the Three Libraries

32

POSIX Java Win32
pthread_cancel (T1); T1l.stop(Q); TerminateThread(T1);

Figure 4-3. Cancellation

exit
—i I T

|

Tl.stop()
. — T2

How to make cancellation work correctly, in bounded time, and without corrupting any dataisa
different story. That part is highly complex and handled in Chapter 9. Moreover, thread.stop()
has been deprecated in JDK 1.2. Well discussthisin Don't Call stop(). Although deprecated,
stop () will continue to be supported in Java for an unspecified amount of time. (It may never

disappear.)

There is another technique that is more suitable for cancellation in Java. Thisisto interrupt the
target thread and cause it to throw an InterruptedException. We can catch that exception
and exit the thread on our own. Thisiswhat well do in An Example: Create and Join.

ThreadDeath

The stop () method isimplemented by causing the target thread to throw an unchecked
exception, ThreadDeath. That exception then percolates up to the run() method, where it
causes the thread to exit. The original implementation of Java was not intended to expose
ThreadDeath, but through some odd circumstances, it got out. Y ou should consider it to be part
of the implementation though, and not use it yourself. Y es, you could throw it yourself. Y ou could
even catch it yourself, but there are better ways of accomplishing whatever task you had in mind.
Don't do that.

Garbage Collecting Threads

When do threads and thread objects get garbage collected? If you drop the last pointer to athread,
will it stop running and be garbage collected? No. When athread is started, the thread object is
entered into athread group (see Thread Groups) and will remain there until it exits. The top-
level thread group is one of the root GC nodes, so it never disappears.

As soon as athread exits, its stack will be freed (this is an implementation detail), and some time
after it exits and you drop the last pointer to the thread object, that thread object will be garbage
collected. In other words, everything works the way you think it should and there's nothing to
worry about.

Zombies

In POSIX, azombie™! thread is a dead thread whose memory has not yet been reclaimed.
Reclamation occurs when that thread is joined. Java does not have thisissue, so it is devoid of
zombies; however, the underlying libraries may well use them to support Java. Nonetheless,
imagining zombies in Figure 4-4 can help clarify the concept.

33

Bl in Haiti, a zombie is an "undead" person who has been cursed with vadoo. This inspired a classic
American horror flick, The Night of the Living Dead, in which all these dead people crawl out of their
graves and come after our heroes. This is the kind of thing that kernel hackers think about late at night.

Figure 4-4. Java Thread Create and Join

[Ajoin) Cjoin{f=———oA Dijoin) |+— E

| Dinterrupt() main

|
Y :
— [mainjoin{jj/=—o] } C

— = A A
— b
Zombie Working Sleeping ' '
create cancel join

Is She Still Alive?

If you wish to know if a given thread is still running, you can call the method

thread. isAlive(). Thiswill tell you if the thread was running when you called it, but by the
time you get around to using the information, it may have changed. In other words, between the
time you find out that the thread is alive and the time when you find something for it to do, the
thread may have exited. Thisis OK, because you don't really want to know that anyway. (If you
think you do, you're wrong. Y ou really want to know something else.)

If you want to know when athread has exited, you join it. If you want to give a thread something
new to do, you write the code so that the thread never exits, or so that the thread exits only on
command.

In short, the method isAlive() is pretty useless. Several other methods are similar. The
activeCount() method tells you how many threads were running when you caled it. The
enumerate() method promises to fill an array you supply with as many of the currently running
thread objects as fit. By the time you use any of the information these methods supply, it may be
out of date. Don't do that.

Restarting Threads

Once athread has exited, it is gone. The stack has been freed, the internal thread structures have
been cleared, the underlying kernel resources have been returned. All that's left is the empty shell
of the thread object. (If you extended the thread object and included your own instance variables,
those will not be changed.) Y ou cannot restart the thread; you cannot reuse the thread object. It's
gone, dead, deceased, passed on, unrevivable.

34

If you created athread using aRunnable, the Runnable isreusable. Indeed, if you did not
specify any instance variables in the Runnabl e, you could simply create a single runnable object
and create |ots of threads that al used it. On the other hand, if you think you might change your
program someday, or if someone else might end up maintaining it, this could be awkward. In all
our programs we create anew Runnab I e for every thread.

An Example: Create and Join

In Figure 4-4 we show the operation of the program Multi . java, which makes a series of calls
to create threads, stop them, and join them. The basic code is very simple and should require little
explanation. A series of well-placed callsto sleep () arranges for the threads to execute in
exactly the order we desire. Removing those calls (or setting breakpoints in the debugger) will
cause the speed and order of execution to change, and some things will not work as intended. The
program is not correct, per se, but it isauseful illustration of how to create and join threads
without all that unsightly synchronization code.

The Main Thread Is Different

One dightly unusual aspect of this program is that we create a new thread which we call
threadMain (Code Example 4-9, which follows). The actual main thread isidentical to all the
other threads, except for one thing. Because you did not create it, you do not know whether or not
main() corresponds exactly to run(). In particular, just because main() returns does not imply
that the main thread can then be joined.

Example 4-9 Java Create and Join

// Multi/Multi.java

/*
Simple program that just illustrates thread creation, thread
exiting, waiting for threads, and interrupting threads.

This program relies completely on the accuracy of the sleep()
method, something that is ill advised in a real program.
For this example, that"s OK. When you write programs,
don®"t do that!
*/

import java.io.*;
import Extensions.*;

public class Multi {
static Thread threadA, threadB, threadC;
static Thread threadD, threadE, threadMain;

public static void main(String[] args) throws Exception {
threadMain = new Thread(new MyMain(), "‘threadMain™);
threadMain.start();

class MyMain implements Runnable {
static long startTime = O;

public void run() {

startTime = System.currentTimeMillis();
System.out.printin();

35

System.out.printIn(""Time\tThread\t\tEvent');
System.out.printin(" \t \t\t ");
System.out._printIn(time() + "threadMain\tStarted ");

InterruptibleThread.sleep(1000);

Multi.threadA = new Thread(new RunnableA(), "threadA™);
Multi.threadA.start();

System.out._printIn(time() + "threadMain\tCreated threadA™);

InterruptibleThread.sleep(1000);

Multi.threadC = new Thread(new RunnableC(), "threadC"™);
Multi.threadC.start();

System.out._printIn(time() + "threadMain\tCreated threadC');

InterruptibleThread.sleep(2000);
System.out.printIn(time() + "threadMain\tCancelling threadD™);
Multi.threadD. interrupt();

InterruptibleThread.sleep(1000);
System.out.printIn(time() + "threadMain\tExiting);
}

public static String time() {
long time = (System.currentTimeMillis() - startTime) / 1000 +
1000;
return(time + "\t");

class RunnableA implements Runnable {
public void run(Q) {
System.out.printIln(MyMain.time() + "threadA\t\tStarting...");
InterruptibleThread.sleep(1000);
Multi.threadD = new Thread(new RunnableD(), "threadD"™);
Multi.threadD.start();
System.out.printin(MyMain.time() + "threadA\t\tCreated
threadD™);

InterruptibleThread.sleep(3000);
System.out.printin(MyMain.time()

+

"threadA\t\tExiting ");

class RunnableB implements Runnable {
public void run(Q) {
System.out.printin(MyMain.time()
InterruptibleThread.sleep(4000);

+

"threadB\t\tStarting... ");

System.out.printin(MyMain.time() + ""threadB\t\tExiting ");

class RunnableC implements Runnable {
public void run() {

System.out.printIin(MyMain.time() + "threadC\t\tStarting... ");
InterruptibleThread.sleep(2000);
System.out.printin(MyMain.time() + "threadC\t\tJoining

threadMain™);

36

try {
Multi.threadMain.join();

} catch (InterruptedException e) {
System.out.printIn("'"CAN"T GET HERE.");
}

System.out.printIn(MyMain._.time() + ""threadC\t\tJoined
threadMain™);
InterruptibleThread.sleep(1000);

Multi.threadB = new Thread(new RunnableB(), "threadB™);

Multi.threadB.start();

System.out._printIn(MyMain_time() + "threadC\t\tCreated
threadB™);

InterruptibleThread.sleep(4000);

System.out._printIin(MyMain.time() + ""threadC\t\tExiting ");

class RunnableD implements Runnable {
public void run() {

try {
System.out.printIin(MyMain.time() + "threadD\t\tStarting...

)
InterruptibleThread.sleep(1000);

Multi.threadE = new Thread(new RunnableE(), "threadE™);

Multi.threadE.start();

System.out.printIin(MyMain._time() + "threadD\t\tCreated
threadE™);

Thread.sleep(5000);

System.out.printIin(MyMain.time() + "threadD\t\tSHOULDN"T
REACH HERE!'");

} catch (InterruptedException e) {

System.out._printIn(MyMain._time() +

"threadD\t\tiInterrupted. Exiting");

class RunnableE implements Runnable {
public void run() {

try {
System.out._printIn(MyMain.time()

+

InterrupiibIeThread.sIeep(3000);

+

System.out.printIn(MyMain.time()
threadA™);
Multi.threadA.join(Q);
System.out.printin(MyMain.time()
threadA™);
InterruptibleThread.sleep(2000);

"threadE\t\tJoining

+

"threadE\t\tJoined

+

System.out.printin(MyMain.time()
threadC™);

"threadE\t\tJoining

37

"threadE\t\tStarting. ..

Multi.threadC.join();

System.out.printin(MyMain.time() + "threadE\t\tJoined
threadC™);

InterruptibleThread.sleep(2000);

System.out.printin(MyMain.time() + "threadE\t\tJoining
threadD™);

Multi.threadD.join();

System.out.printIn(MyMain._time() + "threadE\t\tJoined
threadD™);

InterruptibleThread.sleep(1000);

System.out._printIn(MyMain.time()
} catch (InterruptedException e) {

System.out.printIn(""CAN*T GET HERE.');
}

+ "threadE\t\tExiting ");

}

All code examplesin this book are available from the Web (see Code Examples). They are dl as
nearly identical to the same programs written in C from Multithreaded Programming with
PThreads as we could make them. In afew cases the Java code is a bit constrained because of this,
but there are no significant issues.

The output from Code Example 4-9 (see Code Example 4-10) shows that indeed all the calls occur
exactly when we expect them to.

Example 4-10 Output for Code Example 4-9

bil@cloudbase[264]: java Multi

Time Thread Event

1000 threadMain Started

1001 threadMain Created threadA
1001 threadA Starting...

1002 threadMain Created threadC
1002 threadC Starting...

1002 threadA Created threadD
1002 threadD Starting. ..

1003 threadD Created threadE
1003 threadE Starting...

1004 threadMain Cancelling threadD
1004 threadD Interrupted. Exiting
1004 threadC Joining threadMain
1005 threadMain Exiting

1005 threadC Joined threadMain
1005 threadA Exiting

1006 threadC Created threadB
1006 threadB Starting. ..

1006 threadE Joining threadA
1006 threadE Joined threadA
1008 threadE Joining threadC
1010 threadC Exiting

1010 threadE Joined threadC
1010 threadB Exiting

1012 threadE Joining threadD
1012 threadE Joined threadD
1013 threadE Exiting

bil@cloudbase[265]:

38

There is nothing stopping you from starting the thread in the same line as the constructor (Code
Example 4-11); we just don't do that very often.

Example 4-11 Construct and Start in a Single Line

new MyThread().start();

APIs Used in This Chapter

The Class java.lang.Thread

The class Thread defines thread objects. When the start () method is called, an actua running
thread is created which the Thread object can contral. It isimportant to distinguish between the
object (which isjust memory and a set of methods) and the running thread (which executes code).
All static thread methods apply to the current thread.

Thread
public Thread()
public Thread(String name)
public Thread(Runnable runObj)
public Thread(Runnable runObj, String name)
throws SecurityException,
I1legal ThreadStateException

These create a new thread object.
\References: |Chagters 4 and 10.
start

public void start()
throws 1llegalThreadStateException

Cdlling the start() method on aninstance of Thread will cause the appropriate run() method
to execute in anew thread.

\Reference: \Chagter 4.

run
public void run()

Thisisthe method you define that actually executes the code you want. The base method simply
looksto seeif thereisaRunnable and calsits run() method.

\Reference: \Chagter 4.

currentThread
public static Thread currentThread()

This method returns the current thread object.

\Reference: \Chagter 4.

39

join
public final void join(Q)
public final void join(long milliseconds)
public final void join(long milliseconds, long nanosec)
throws InterruptedException

Thiswaits for the thread to exit.

\Reference: \Chagter 4.
\Comment: \Rarely used.
stop

public final stop()
public final stop(Throwable t)

Thiskills the thread asynchronously.

Reference: Chapter 4.
Comment: It is deprecated in Java 2. Don't use it.
sleep

public static void sleep(long milliseconds)
public static void sleep(long milliseconds, long nanosec)
throws InterruptedException

This causes the current thread to go to sleep for the specified time. The precision of the wakeup is
OS dependent. A typical minimum resolution is 10 ms. (Solaris defaultsto 10 ms; root can set it to
1 ms. On Digital UNIX it's a mibisecond, 1/1024 second, 0.9765 ms.)

\Reference: |Cha9ter 4.

\Comment: |Fine for test programs. Probably will never use this in a real program.

destroy
public final void destroy()

This causes the thread to exit immediately, running no final ly sections, and releasing no locks.
Thiswasincluded in the Java spec to handle the extreme case of broken threads that ignore
stop(). Itisvirtually impossible to use correctly and has never been implemented.

\Reference: \Chagter 4.

isAlive
public final boolean isAlive()

Thisreturnstrueif the target thread is till dive.

\Reference: \Chagter 4.

activeCount
public static final int activeCount()

This returns the number of currently active threads. (Sleeping and blocked threads are active.)

Reference: |Chapter 4.

40

Comment:

Deprecated in Java 1.1. See ThreadGroup.al IThreadsCount().

enumerate

public static final int enumerate(Thread tarray[])

Thisfills tarray with as many currently active threads as fit, returning that number.

\Reference: \Chagter 4.
‘Comment: \Deprecated in Java 1.1. See ThreadGroup.allThreads().

getName setName
public String getName()
public void setName(String name)

throws SecurityException

This gets/sets the print name for the thread.

\Reference:

\Chagter 4.

The Class Extensions.InterruptibleThread

Thisisone of the classes that we defined for this book to provide a consistent interface for dealing
with certain problems.

exit

public void exit()

This causes the current thread to exit. It is syntactic sugar for
Thread.currentThread() .stop().

Reference:

Chapter 4.

Comment:

We wrote this method while trying to deal with the absence of such a
function and the absence of any advice on this apparent oversight. We have
subsequently been convinced that this is the wrong way to do things and that
you should always return from the run() method (see Exiting a Thread).

The Interface java.lang.Runnable

This interface provides the building blocks for threads. Y ou implement this interface, define a
run() method on the class, and pass an instance of it to the thread.

run
public

void run(Q)

Thisisthe method you define that actually executes the code you want.

\Reference: |Chagter 4.
\Comment: |This is the only way to start anything.

41

Summary
The basic paradigm of thread creation in Java, POSIX, and Win32 isto build a new thread entity

that will run agiven function [in Java, run()] on agiven argument (the implicit this argument).
Threads can wait for each other, kill each other, or smply exit themselves.

42

Chapter 5. Scheduling

Different Models of Kernel Scheduling
Thread Scheduling

Context Switching

Java Scheduling Summary

When Should Y ou Care About Scheduling?
APIsUsed in This Chapter

The Classjavalang.Thread

In which we explain the myriad details of various scheduling models and alternative choices that
could be made, describe context switching in detail, and delve into gruesome detail on various
design options. Thereislight at the end of the tunnel, however.

Different Models of Kernel Scheduling

There are three primary techniques for scheduling threads onto kernel resources (and indirectly,
onto CPUs). Two of them involve the use of LWPs (or something similar). These are the
techniques from which the designers of the various operating systems had to choose. They wanted
amodel that would adequately support the complexity of the operating system and still meet the
various demands of dedicated programmers. All three models are perfectly reasonable and give
the programmer different sets of trade-offs, simultaneously building programs that do exactly the
same things with different levels of efficiency. All three of these models are in use by different
vendors.

Many Threads on One LWP

~

Ny

The first technique is known as the many-to-one model. It is also known as co-routining.!
Numerous threads are created in user space, and they all take turns running on the one LWP.
Programming on such a model will give you a superior programming paradigm, but running your
program on an MP machine will not give you any speedup, and when you make a blocking system
call, the whole process will block. However, the thread creation, scheduling, and synchronization
are all done 100% in user space, so they're done fast and cheap and use no kernel resources. This
is how green threads’? works. The DCE threads library also followed this model on HP-UX 10.20.

(1 The exact use of this term varies from book to book, but in broad terms, this is accurate.

(2] During the initial design phase of Java, Sun's native threading library wasn't complete and the
"Green" group chose to implement a simpler library rather than wait. All of the early
implementations of Java were based on green threads.

43

Thereisaclever hack®®! used for blocking system callsin some threads libraries (e.g., DCE
threads in DEC OSF/1) that is worth mentioning. The library puts ajacket routine around each
blocking system call. The jacket routine replaces the blocking system call with a nonblocking one.
Thus, when a thread makes a blocking system call, the library can put that thread to sleep and
allow another one to run. When the signal comes back from the kernel, saying that the system call
is complete, the library figures out which thread made the call and wakes up that sleeping thread,
and everything proceeds as if the thread had blocked in the first place. It's hassle-free async I/O!

B vHassle-free for YOU, maybe. | had to code and debug the monster and | still have to explain it to
users."—Dave Butenhof, reviewing this section.

One Thread per LWP

=

The one-to-one model allocates one LWP™ for each thread. This model allows many threads to
run simultaneously on different CPUs. It also allows one or more threads to issue blocking system
calls as the other threads continue to run—even on a uniprocessor.

4 Remember, when you read about how a vendor implements this model, the vendor may not
distinguish between the thread and the (possibly conceptual) LWP. The vendor may simply refer to
the thread and expect you to understand that it's a single entity containing everything.

This model has the drawback that thread creation involves LWP creation; hence it requires a
system call, as does scheduling and synchronization. In addition, each LWP takes up additional
kernel resources, so you are limited in the total number of threads you can create. Win32 and OS/2
use this model. Some POSIX implementations (DCE, IBM's early threads library, Xavier Leroy's
LinuxThreads) also use it. Any JVMs based on these libraries a so use this model, hence Java on
Win32. (A VM could build atwo-level model on top of a one-to-one kernel model, but none
currently do.)

Many Threads on Many LWPs (Strict)

N

The third model is the strict many-to-many model. Any number of threads are multiplexed onto
some (smaller or equal) number of LWPs. Thread creation is done completely in user space, as are
scheduling and synchronization (well, almost). The number of LWPs may be tuned for the
particular application and machine. Numerous threads can run in parallel on different CPUs, and a
blocking system call need not block the entire process. Asin the many-to-one model, the only
limit on the number of threads is the size of virtual memory.2! No native library actually uses this
strict version, although Sun's implementations of Java 1.1 and 2 do use this.

B on a 32-bit machine, this is roughly 2 GB (total virtual memory) / 8 kB (minimum stack size) =
256,000 threads.

The Two-Level Model

4%]

—>

The two-level model (known commonly as the many-to-many model) is a strict many-to-many
model with the ahility to specifically request a one-to-one binding for individua threads. This
model is probably the best of the choices. Several operating systems now use this model (Digital

UNIX, Solaris, IRIX, HP-UX, AlX). The VMs on these OSs have the option of using any
combination of bound and unbound threads.

The choice of the threading model is an implementation-level decision for writers of the VM.
Javaitself has no concept of LWPs or threading models. Thisis a very reasonable choice by the
Java designers; Java programs shouldn't be looking at this kind of low-level detail. Unfortunately,
it bringsin avery significant area of possible platform behavior difference.

Win32 Fibers
Win32 has afiberslibrary, which sits on top of its threads and gives a rough approximation of the
two-level model. However, fibers have a completely different APl and require explicit context

switching, so it's best not to consider them to be threads. Indeed, you probably never want to work
with fibers at all.

45

Thread Scheduling

Aswe have just seen, there are two basic levels to scheduling threads: process local scheduling
(also known as process contention scope, or unbound threads—the many-to-many model) and
system global scheduling (also known as system contention scope, or bound threads—the one-to-
one model). These scheduling classes are known as the scheduling contention scope, and are
defined concepts only in POSIX. In Win32 and in Java there is no such concept defined in the
specs, no functions to select different models, no method of changing the default behavior at all.
Thisisalimitation in some Javaimplementations and forces the user to call some native methods
in order to get to the desired behavior (see How to Get Those LWPs in Java). Certain things
cannot be done at all.

Process contention scope scheduling means that all of the scheduling mechanism for the thread is
local to the process—the threads library has full control over which thread will be scheduled on an
LWP. This also implies the use of either the many-to-one or many-to-many model. Thisisthe
scheduling method used for Java on Solaris. (Actualy, POSIX alows PCS to be implemented as
SCS, athough we are not aware of any implementations that do so.)

System contention scope scheduling means that the scheduling is done by the kernel (i.e., one-to-
one binding). POSIX alows both (it doesn't require both), whereas Win32 specifies only global
scheduling. Asit turns out, system contention scope scheduling is invariably what the programmer
really wants on many platforms (e.g., Solaris). It provides the most predictable behavior and best
performance.

The entire subject of scheduling is fraught with problems. In al operating systems, both the
scheduling of threads and the scheduling of processes themselves have problems that have never
been resolved to everyone's satisfaction. In brief, there are two basic situations in which we find
ourselves (see Figure 5-1).

Figure 5-1. The Two Basic Types of Scheduling

-— — = = I T

- = = = I I T2

Typical Time-Sliced Scheduling

— e — — T1
B ‘_% — T2

Typical Strict Priority Scheduling

] — | J

Working Sleeping Request Reply

Thefirst case (the independent case) occurs when two processes (or threads) are running almost
completely independently—neither ever has anything it wants from the other, and both would

46

happily chew up every CPU cycle they could get. For example, consider two developers working
on different projects on the same machine. Time dlicing is necessary for both of them to get afair
share of the machine.

The other situation (the dependent case) occurs when the two processes depend directly upon each
other. One process needs another to perform some task before it can continue—atext editor
cannot do anything until the file system has delivered files to it to work on, and the file system has
nothing to do until the text editor requests some services from it. In such a case, time dicing is of
no use at all.

In Figure 5-1 we show two independent threads being time sliced and two dependent threads that
require some resource. In the second case, T1 is allowed to run aslong as it wantsto. It could run
forever if only it didn't need to exchange that resource with T2. A real machine istypically faced
with both situations all the time, along with the judgments of users and system administrators as to
the relative importance of the various processes.

We will not attempt to solve these problems here. Suffice it to say that the use of these techniques
resultsin less than perfect scheduling algorithms, but we have done fairly well with them over the
past 3040 years nonethel ess.

We will now go into some of the gory details of how scheduling is done. The major point we
make is that most threaded programs are of the dependent case above, and scheduling is
accomplished mainly by dependence upon the program's need for synchronization.

Process Contention Scope

PCS scheduling is done by the threads library. The library chooses which unbound thread will be
put on which LWP. The scheduling of the LWP is (of course) still global and independent of the
local scheduling. Although this does mean that unbound threads are subject to a funny, two-tiered
scheduling architecture, in practice you can ignore the scheduling of the LWP and deal solely with
the local scheduling algorithm.

There are four ways to cause an active thread (say, T1) to context switch. Three of them require
that the programmer has written code. These methods are largely identical across al the libraries.

1. Synchronization. By far the most common means of being context switched (awild
generalization) isfor T1 to request amutex lock and not get it. If the lock is already being
held by T2, then T1 will be placed on the sleep queue, awaiting the lock, thus allowing a
different thread to run.

2. Preemption. A running thread (T6) does something that causes a higher-priority thread
(T2) to become runnable. In that case, the lowest-priority active thread (T1) will be pre-
empted, and T2 will take its place on the LWP. The ways of causing this to happen
include releasing alock, and changing the priority level of T2 upward or of T1 downward.

3. Yidding. If the programmer puts an explicit call to theyield call [Thread.yield()
sched_yield()] inthecodethat T1 isrunning, the scheduler will look to see if thereis
another runnable thread (T2). If thereis one, that thread will be scheduled® If thereisn't
one, T1 will continue to run.

] There are no guarantees about the behavior of yield() - Itis legal for it to do nothing!

4. Timedicing. If the vendor's PCS alows time dicing (like Digital UNIX, unlike Solaris),
T1 might ssimply have itstime slice run out and T2 (at the same priority level) would then
receive atime slice.

47

A bit of reflection will show the reader that two of the methods can be executed entirely in user
space, with the thread-level context switch requiring about 10 ms on a 167-MHz UltraSPARC.
Preemption, however, is a bit more involved and requires a system call to execute (see

Preemption).

In actual practice, you, the programmer, will spend very little time thinking about issues of
scheduling. When athread needs a common resource, it uses alock. If it doesn't get the lock, it
blocks, and another thread runs. Sooner or later the owner will release the lock and the first thread
will become runnable again.

Priority Levels

The scheduler for unbound threads has a simple algorithm for deciding which thread to run. Each
thread has an associated priority number. The runnable threads with the highest priorities get to
run. These priorities are not adjusted by the VM. The only way they change is if the programmer
writes an explicit call to do so[thread.setPriority()]. Thispriority isan integer in Java,
with value between MIN_PRIORITY (1) and MAX_PRIORITY (10).

There are al sorts of details and exceptions related to Java priorities. On Windows NT there are
only seven priority levels to which the ten Java priority levels must be mapped. Native POSIX
libraries that use unbound threads don't necessarily propagate those priority numbers up to the
LWPs. Java does not guarantee any behavior related to priority levels.

By default, Java threads will start with NORM_PRIORITY (5). You can change that value as you
please. We don't give you any advice on how to choose the value, as we find that we don't use it
much ourselves. Y ou probably won't, either. We are not aware of any significant programs that set
priority levels!

Nonethel ess, there are plenty of programmers who love priorities. They carefully raise and lower
levels to meet some criteria, expecting to control the program's behavior closely. They are amost
certainly fooling themselves. Don't use priorities.

Scheduling States

The natural consequence of the discussion above on scheduling is the existence of four scheduling
states for threads. (The astute reader who has already figured this all out may skip this section.)

A thread may be in one of the following states:
Active:
Itisonan LWPX

7] Whether or not the LWP is on a CPU is irrelevant.

Runnable:

It isready to run, but there just aren't enough LWPsfor it to get one. It will remain here until an
active thread loses its LWP or until anew LWP is created.

Sleeping:

It iswaiting for a synchronization variable.

48

Suspended:

A call to the suspension function [thread . suspend ()] has been made. It will remain in this
state until another thread calls the resume function on it.

Zombie:

It isadead thread and is waiting for its resources to be collected. (Thisis not a recognizable state
to the user, although it might appear in the debugger. This state does not appear in Java threads at
all, although it may appear in the underlying native library. It is sometimes useful to use this
concept for explaining behavior.)

Figure 5-2 shows a process with eight PCS threads and three LWPs. Five of the threads want to
run, but only three can do so. They will continue to run aslong as they want or until one of them
makes athreads library call that changes conditions, as noted above. The two runnable threads are
of equal or lower priority than the three active ones, of course. Should one of the sleeping or
stopped threads be made runnable, whether they actually become active will be a question of
priority levels. If the newly runnable thread is of higher priority than one of the active threads, it
will displace the lowest-priority active thread. If it is of lower priority than all of them, it won't. If
itisof equal priority, we make no guarantees. Y ou should not write a program assuming anything
about this condition. (It would actually be very difficult to write one that did depend on this.)

Figure 5-2. Some Process Contention Scope Threads in Various States

—DE —"E Runnable 4’5 Suspended

e [7]
Sv2 4{ _.E

Sleeping

N

The LWPs that are to be used by the unbound threads are set up in apool and areidentical in all
respects. This setup allows any thread to execute on any of the LWPs in this pool. Y ou should not
change any attributes of these LWPs (e.g., scheduling class, "nice" level), as you don't know
which thread will be running on them at any given time. Should you want a special LWP, you'd
want a bound thread to run on it (not an option in Java).

When an unbound thread exits or goes to sleep (Figure 5-3), and there are no more runnable
threads, the LWP that was running the thread goes to sleep in the kernel. When another thread
becomes runnable, the idling LWP wakes up and runsit. Should an LWP remain idle for an
extended length of time (5 minutes for Solaris 2.5), the threads library may kill it. Y ou will never
notice this. Should your application become more active later, more LWPs will be created for you.

Figure 5-3. Simplified View of Thread State Transitions

49

Stop

RUNMNABLE)=

Preempt

Continue

STOPPED

~f

Continue

Dispatch

ACTIVE
Sleep

When a bound thread blocks on a synchronization variable, its LWP must also stop running. The
LWP does so by making a system call that putsit to sleep. When the synchronization variable is
released, the thread must be awakened. Thisis done by making a system call to wake up the LWP.
The LWP then wakes up, and the thread resumes running. Much the same thing happens when a
locally scheduled thread blocks on a cross-process synchronization variable. In both cases the
LWP goesto deep in the kernel until the synchronization variableis released. This descriptionis
pretty much the same for Win32. Only the names are different.

System Contention Scope

An SCSthread is nothing more than atypical thread that is permanently bound to a specific LWP.
The LWP runs only that thread and that thread runs only on that LWP. This means that this thread
is never merely runnable, waiting for an LWP. It is always on an LWP, and that LWP is either
sleeping on a synchronization variable, suspended, or active (Figure 5-4).

Figure 5-4. Some System Contention Scope Threads in Various States

St I S S o
!

Stopped e
/ (Ul, Win32, 05/2) Sleeping

Runnable Q CPUs

Active

vy

Win32 has only SCS scheduling, and it is handled completely by the normal kernel scheduler.
There are anumber of different scheduling classes for the different operating systems (batch, time

50

sharing, interactive, realtime, etc.), which we will touch on later. Sufficeit to say that with a SCS
thread, you can set the kernel-level scheduling class and priority using the process-level API.

The primary conclusion in both casesis that you should see no particular differences between
locally and globally scheduled threads as long as there are sufficient LWPs.

Context Switching

Context switching is arather complicated concept and has many details of significance, soitis
difficult to explainin just afew paragraphs. Nonetheless, we shall try. If you don't feel that you
have afirm grasp of how it works, you should go bug afriend to explain al of the subtle nuances.
Threads or no threads, you should understand this concept thoroughly.

A context switch isthe act of taking an active thread off its LWP and replacing it with another one
that iswaiting to run. This concept extends to LWPs and traditional processes on CPUs also. We
will describe context switching in traditional, process/CPU terms.

The state of acomputation is embodied in the computer's registers—the program counter, stack
pointer, and general registers—along with the MMU's (memory management unit) page tables.
These, plus the memory contents, disk files, and other peripherals, tell you everything about the
computer. When it's time to context switch two traditional processes, the register state must be
changed to reflect the new process that we wish to run. It works approximately like this:

e All the current registers are stored into the process structure for P1.

e All the stored register values from the process structure for P2 are loaded into the CPU's
registers.

e The CPU returnsto user mode, and voilal P1 is context switched out and P2 is context
switched in and running.

All the other datain the process structure (working directory, open files, etc.) remain in the
process structure where it belongs. If a process wishes to use that data, it will reference it from the
process structure. When two LWPs in the same process context switch, all of the above happensin
much the same fashion.

Notice also that a context switch must be done by the CPU itself. One CPU cannot do the context
switch for another. CPU1 can send an interrupt to CPU2 to let it know that it should context
switch, but CPU1 cannot actually change the registersin CPU2. CPU2 has to want to context
switch.

Finally, context switching for PCS threads involves much the same procedure. A thread (T1)
decides that it has to context switch (perhapsit is going to sleep on a synchronization variable). It
enters the scheduler. The CPU stores its register state into the thread structure for T1, then it loads
the registers from another thread (T2) into the CPU and returns from the scheduler as T2. No
system calls need be involved. It is possible that it happens completely in user space and is very
fast.

It may be abit unclear what the role of the LWP iswhen threads context switch. Theroleis
invisible. The threads save and restore CPU registers with no regard to the LWP at all. The threads
scheduler does not do anything to the LWP structure. Should the operating system decide to
context switch the LWP, it will do so completely independently of what the LWP happens to be
doing at that time. Should two threads be in the middle of context switching when the kernel
decides to context switch the LWP, it still makes no difference. The threads' context switch will
just take alittle longer.

51

In Figure 5-5 we describe how context switching works for POSIX threads. (Java threads work
exactly the same way, but the Java vocabulary for describing locksis a bit less clear for our
purpose.) Three threads are runnable on two LWPs at time 0. Thread T1 holds alock. Clearly, T1
and T2 will be the active threads, as they have the highest priorities. We'll imagine that T1ison
LWP1, T2 on LWP2, and T3 on the runnable queue.

Figure 5-5. How a Context Switch Works

T T2 T3
Priority: 1 2 0 "°°'{//
Time a3
lock ” o Held?
0 lock -] —
unlock Sleepers| @
LWP1 LWP2
lock Held? V
1 - lock) ug— -
unlock Sleepers| @--»[T12_[@]
LWP1 LwpP2 E

Approaching time 1, T2 attempted to lock the lock and failed. So, as part of the code for
pthread_mutex_lock(), T2 put itself onto the sleep queue for the lock, then called the
scheduler. The scheduler code ran (still as T2) and decided to run T3. Next, the scheduler stored
away the CPU registersinto T2's thread structure and loaded the registers from T3's. (At this
particular instant, it's not defined which thread is running on LWP2, and it's not important, either.)
At time 1, the scheduler code finishes its work and returns with T3 running on LWP2.

At time 2 (see Figure 5-6), T1 releases the mutex. As part of the code for
pthread_mutex_unlock(), it takes the first thread off the lock's sleep queue (T2) and makes
it runnable and releases the mutex. Finally, it calls the scheduler.

Figure 5-6. How a Context Switch Works

T Lock

lock Held?

1 T2 T3
2 lock } &—
unlock (gg o — Sleepers | @

LWP1 SIGLWP LWP2
.

lock Held? V/

3 lock
unlock — (.- Sleepers | @

LWP1 LWP2

The scheduler notices that there's arunnable thread (T2) that has a higher priority than one of the
active threads (T3). The scheduler then sends asignal in order to preempt the thread on LWP2.
Now the scheduler has doneits work. It returns, and T1 continues to run. Thisis the state of the
world at time 2 (with asignal pending).

52

For some short period of time, T3 continues to run. When the signal arrives from the kernel, T3 is
interrupted and forced to run the signal handler. That, in turn, calls the scheduler, which context
switches T3 out and T2 in. And that'sit! Attime 3, T1 and T2 are both active, T3 is runnable, and
T2 holds the lock.

There are a couple things to notice here. There's no guarantee that T2 will get the lock. It's
possible that T1 could have reclaimed it; it's even possible that T3 could have snatched it away
just before the signal arrived. If either of these events occurred, the net result isthat a bit of time
would have been wasted, but they would both work perfectly. This scenario works as described,
irrespective of the number of CPUs. If this runs on a multiprocessor, it will work exactly the same
way as it does on a uniprocessor, only faster.

In this example we have described two context switches. The first one was voluntary—T2 wanted
to go to sleep. The second was involuntary (preemptive)—T3 was perfectly happy and only
context switched because it was forced to.

Preemption

Preemption is the process of rudely kicking athread off its LWP (or an LWP off its CPU) so that
some other thread can run instead. (Thisiswhat happened at time 3.) For SCS threads, preemption
is handled in the kernel by the kernel scheduler. For PCSthreads, it is done by the thread library.
Preemption is accomplished by sending the LWP in question asignal specifically invented for that
purpose.& The LWP then runs the handler, which in turn realizes that it must context switch its
current thread and does so. (Y ou will notice that one LWP is able to direct asignal to another
specific LWP in the case in which they are both in the same process. Y ou should never do this
yourself. Y ou may send signals to threads but never to LWPs.)

) 1n Solaris 2.5 and below, it was SIGLWP. This is a kernel-defined signal that requires a system
call to implement. Digital UNIX uses a slightly different mechanism, but the results are the same.

Preemption requires a system call, so the kernel has to send the signal, which takestime. Finally,
the LWP, to which the signal is directed, must receive it and run the signal handler. Context
switching by preemption isinvoluntary and is more expensive than context switching by
"voluntary” means. (Y ou will never have to think about this while programming.)

The discussion of context switching and preemption above is accurate for al the various libraries.
It is accurate for threads on LWPs and for LWPs (or traditional processes) on CPUs, substituting
the word interrupt for signal.

How Many LWPs?

The UNIX98 threads library hasacall, pthread_setconcurrency (), which telsthe library
how many LWPs you'd like to have available for PCS threads. If you set the number to ten and
you have nine threads, then when you create a tenth thread, you'll get atenth LWP. When you
create an eleventh thread, you won't get another LWP. Now the caveat. Thisis ahint to the library
asto what you'd like. Y ou may not get what you ask for! Y ou might even get more. Y our program
must run correctly without all the LWPs you want, although it may run faster if it getsthem. In
practice, this becomes an issue only when your program needs alot of LWPs.

Y ou've got the power, but how do you use it wisely? The answer istotally application-dependent,
but we do have some generalities. (N.B.: Generalities. If you need a highly tuned application,
you've got to do the analysis and experimentation yourself.) We assume a dedicated machine.

e If your programis completely CPU bound, one LWP per CPU will give you maximum
processing power. Presumably, you'll have the same number of threads.

53

e If your programis highly CPU bound and you do some I/O, one LWP per CPU and
enough to cover all simultaneous blocking system calls¥ is called for.

] Blocking system calls include all calls to the usual system calls such as read() , but
any thread that blocks on a cross-process synchronization variable should also be counted.
Bound threads are independent of this, as they each have their own LWP.

e If your programisonly 1/O bound, you'll want as many LWPs as simultaneous blocking
system calls.

How to Get Those LWPs in Java

And now we get to the specifics. Thisis the one area where things get very implementation and
platform dependent. Thisis also an issue that has aroused great debate in the halls of
comp.programming.threads. V oices have been raised, enormous volumes of argument have been
written, veritable fisticuffs have been exchanged over this!

First let's consider what we really want from our scheduler. We want all of our runnable threads to
run as much as possible. We want to make as many blocking system calls as we fedl like making,
and we want them to execute concurrently.

One implementational technique for getting this effect is to use bound threads. Another isto
ensure that the library creates a sufficient number of LWPs and guarantees that the runnable
threads will be time dliced.

In Windows NT there is no issue with the number of LWPs available for a Java program. NT uses
bound threads for everything, so you get all the LWP equiva ents you need. Digital UNIX
implementsits library in such afashion that you get one "virtual processor” (LWP equivaent) for
each actual CPU and one more for every outstanding /O request. So there are no such problems
with Digital UNIX.

If you are running on a system that implements only PCS scheduling for Java threads (e.g., Solaris)
there is no portable mechanism for specifying how many LWPs you'd like. Moreover, it is

possible that you will want more LWPs than the system will give you automatically. Thisis one of
those (very few) unfortunate places where the default is not what you want and you are forced to
make a call to native code.

In Solaris you are provided with only one LWP by default. If all the LWPsin aprocess are
blocked, waiting for 1/O, Solaris will add another LWP if needed. This ameliorates the problem
partially but still does not provide the full complement of LWPsiif you either have multiple CPUs
or don't make enough blocking calls. In most typical cases you will not get as many LWPs as
you'd like. In Solaris, you are forced to make a native call to pthread_setconcurrency() to
obtain the "expected" level of kernel concurrency. Obviously, thisis not a good thing and makes a
mess of your 100% pure Java program, but it is necessary for most high-performance MT
programs. The technique for doing thisis straightforward and shown in Making a Native Call to
pthread setconcurrency().

Changing Scheduling Parameters for LWPs

Just because a thread is bound to an LWP does not imply that the LWP is going to be scheduled
on aCPU immediately. Depending upon the nature of your application requirements, you may
need to alter the kernel-level scheduling priority of that LWP. If you need merely to ensure that it
gets a CPU within a second, then relying upon the normal time-slicing scheduler is probably
sufficient.

nice()

If responseis required on the order of 100 ms, the default may be sufficient, but it may not should
there be alot of contention for the CPU. In this case, simply raising the time-sharing class priority
of the LWP is probably sufficient. The UNIX system call nice () will do thisfor you. Basicaly
what nice () will doisadd (or subtract) afixed priority number to the level calculated by the
kernel for an LWP, effectively making the LWP in question more "important” and ensuring that it
gets the CPU when it wantsit. In UNIX98, nice () is defined to act on the entire process. It is
entirely implementation dependent and only gives you some vague control. In any case, this
technique cannot be used with Java, as there is no way to bind a thread to any particular LWP.

Realtime LWPs

It's when you require response in the 2—100 ms range that things get interesting. Y ou will need to
put the LWP into the realtime scheduling class. Y ou do all the typical realtime tricks—no
blocking system calls, probably no 1/0,2% no paging (you'll need to lock down all the memory that
your thread will use: functions, stack, data.), etc. ("Etc." meansthat thereis plenty more involved
that we haven't thought about, but that you'd better. Realtime processing is atricky thing; be very
careful!) Java does not have realtime scheduling classes.

1% Eor 1/0, you'd typically set up the buffers in the realtime thread but then allow a normal thread to
execute the 1/O call on those buffers.

Avoid Realtime

Y ou might require a realtime thread when you have the undivided attention of a user and are doing
constant updating (e.g., mouse tracking, video or audio playback) or when you are doing machine
feedback and control (e.g., autonomous vehicle navigation, robotics). Other instances include
when you are doing realtime data collection with analysis.

Y ou might think that you need a realtime thread, but don't, when you update displays with the
divided attention of a human being (if you're 100 ms late in seeing the latest from the stock ticker,
no big deal). Avoid using the realtime classif you possibly can.

Allocation Domains

POSIX recognizes the desire of some programmers for closer control over the scheduling of
LWPs onto CPUs. Unfortunately, thereis little convergence on the methods of doing so by the
vendors, so thereislittle that POSIX can say about it. Basically, POSIX defines allocation
domains, which are sets of CPUs. The programmer then specifies that certain LWPs are allowed
to execute on the CPUs in the chosen domains. All of these functions are implementation specific.

Do alocation domains really gain you anything? In certain realtime applications, yes. Otherwise,
probably not. Our opinion is that you are more likely to bog your program down with excessive
complexity than to improveit if you use them in most programs. Java has no interface for
allocation domains.

Binding LWPs to Processors

It's often possible to ensure that a given LWP will always run on a selected processor. It's also
possible to ensure that a given LWP will run to the exclusion of al other LWPsin all processes by
putting it into the realtime class. Doing both effectively binds the processor to the LWP aslong as
the LWP wantsto run.

55

The question of when these things are useful has a somewhat tricky answer, and it changes with
new operating system releases. If schedulers worked perfectly and had ESP, you would never bind
an LWP to aCPU. In practice, it's sometimes otherwise. Java has no interface for binding LWPs to
CPUs.

Happiness Is a Warm Cache

The main issueisthat of cache memory latency. The current batch of PCs and workstations have
external caches of significant size (typically, 1-4 megabytes). To replace the contents of such a
cache completely can take avery long time (upwards of 100 ms, depending upon individua
architecture). If an LWP isrunning on CPU 0 and it is context switched off for a short time, the
vast mgjority of that cache will still be valid. So, it would be much better for that LWP to go back
onto CPU 0.

The normal schedulersin the various OSs endeavor to do precisely that via processor affinity
(Figure 5-7). Solaris, for example, will delay running an LWP on CPU 1, should that LWP
previously have been on CPU 0. If CPU 0 becomes available relatively quickly (currently, 30
ms—three clock ticks), that LWP will be put back on CPU 0. If CPU 0 does not become available
within that time frame, the LWP will be scheduled on whatever CPU is available.

Figure 5-7. Processor Affinity

CPU1 CPU 2 CPU3

s
N SN

We know of some instances where it has proven valuable to do processor binding of LWPs. If you
are considering this, test first. You should not even consider processor binding unless you already
know that there's a clear problem of this nature. And you must be aware that everything may be
different on a different architecture or different OS release. The details of these issues are well
beyond the scope of this book, and we wish to caution you that it is rare for anyone to have to
address these issues.

Java Scheduling Summary

Javawas designed for writing portable application code across many different types of systems—
various types of UNIX (Solaris, SCO, AlX, Ultrix), Win32, Macintosh, OS/400, MV S, realtime
systems, etc. Consequently, when it came to defining the threading and scheduling model to be
used in Java, it needed to be one that could be supported relatively easily on al platforms. If we
look at what all the primary Java platforms have in common with regard to thread scheduling, we
find amost nothing! Other than having threads and thus needing to schedule them, all the systems
are very different. Thisresulted in Java defining a very loose scheduling model:

e All Javathreads have a priority and the scheduler will generally give preference to
executing the highest-priority runnable thread (i.e., it is notionally priority preemptive).
However, there is no guarantee that the highest-priority thread is always running.

e A system may apply time slicing to threads, but it is not required to. If time slicing does
exist, whether it applies across all threads or only within priority levels, is not defined.

56

Given such aloose specification for scheduling, how can we write portable code? The answer isto
never make optimistic assumptions about scheduling behavior but always assume the worst:

e You must assume that threads could be interleaved at any point in time.

e You must not require that threads be interleaved at some time. If you need to guarantee
that different threads make progress, you will have to explicitly code things such that
progress can occur.

How Many Threads in Java?

The Java spec does not state how many threads an implementation must support. The actual
number is completely implementation dependent. Presumably, the number will be the same as the
limit on the underlying native library. For JVMs based on POSIX threads (most UNIX
implementations, Linux, VMS, AS400), thiswill be aminimum of 64. The actual maximum is
undefined, but probably at least 1000. On Solaris, for example, the limitation is strictly the amount
of virtual memory you have, hence about 4000 threads on 32-bit Solaris, assuming minimal
program and data size and the default 500k stack. On Windows NT the number of threadsis more
limited, as small as 64. (See NT documentation for details.) One implementation, BulletTrain
from Natura Bridge Inc., actually builds a two-level model on top of NT, allowing Javato have
more than 8000 threads simultaneoudly.

If you want more than afew hundred threads, be careful! Y ou are probably doing something
wrong.

When Should You Care About Scheduling?

There are times when you will want to deal with scheduling directly, but those times are few and
far between for any of thelibraries. If you find yourself thinking about this alot, you're probably
doing something wrong. Some examples follow.

It is possible to design a server program where each thread runs forever, picking up requests off
the net, processing them, and returning for more. It is possible for an unbound thread to get starve
for CPU timein this situation. In this case you should add LWPs for the purpose of effecting a
time-dlicing scheme.

A program that used a set of threads to produce data and another single thread to push that data
out to some device in reatime needs to ensure that the output thread runs when it needsto. Here a
higher priority would be in order. In the Delphax/Uniq case study (see Vendor's Threads Pages),
where they built a high-speed printer driver, they found it worthwhile to make a bound thread and
put the LWP into the realtime class.

In spite of al the attention we just paid to explaining it, you will not write much (if any!) code to
deal withit. If the library writers did their job well, everything will "just work," without any effort
on your part. In most MT programs, the different threads al depend upon one another, and it
doesn't really matter which one runsfirst. Sooner or later, the running threads will need something
from the other threads, and they will be forced to sleep until those other threads have produced
that something.

APIs Used in This Chapter

57

The Class java.lang.Thread

yield
public static void yield()

This causes the current thread to give up its LWP (or CPU) to another thread at the same or a
higher priority level (if any). Itislegal for yield() to do nothing, so you must not rely oniit.

Reference: Chapter 5.

Comment: Y ou probably will never use this function.

setPriority getPriority
public final void setPriority(int newPriority)
throws SecurityException, lllegalArgumentException
public final int getPriority()

These change (return) the priority level of the thread. The priority level must be between
MIN_PRIORITY and MAX_PRIORITY if the thread group to which this thread belongs may set a
lower bound than MAX_PRIORITY.

Reference: |Chapter 5.
\Comment: |You probably will never use these functions.
suspend

public final void suspend()

This causes the thread to stop running and wait until you call thread. resume (). Because
suspension is asynchronous, you have no ideawhat the target thread was doing when you
suspended it. For example, it may hold some locks that your other threads need. This makes it
virtually impossible to use.

Reference: Chapter 5.
Comment: It has been deprecated in Java 2.
resume

public final void resume()

This causes a suspended thread to resume.

Reference: Chapter 5.

Comment: It has been deprecated in Java 2.

MIN_PRIORITY MAX_PRIORITY NORM_PRIORITY
public final static int MIN_PRIORITY
public final static int MAX_PRIORITY
public final static int NORM_PRIORITY = 5;

These are the minimum, maximum, and default priorities for normal threads.

Reference: Chapter 5.

Comment: Y ou will probably never use these functions.

58

Summary

Several scheduling models exist, most of which are overkill. For al but truly exceptiona
programs, the normal vendor scheduler does a fine job and that, along with proper synchronization,
means that we don't have to worry about scheduling at all. Realtime folks are on their own.

59

Chapter 6. Synchronization

Synchronization Issues
Synchronization Variables
APIsUsed in This Chapter

The Class javalang.Object

The Class Extensions.Semaphore
The Class Extensions.M utex

The Class Extensions.ConditionV ar

In which the reader isled on a hunt for the intimidating synchronization variable and discovers
that it is not actually as frightening as had been thought. Programs illustrating the basic use of the
POSIX and Java primitives are shown.

Synchronization Issues

To write any kind of concurrent program, you must be able to synchronize the different threads
reliably. Failure to do so will result in all sorts of ugly, messy bugs. Without synchronization, two
threads will start to change some data at the same time; one will overwrite the other. To avoid this
disaster, threads must reliably coordinate their actions.

In Code Example 6-1, your bank has one thread running, cal culating the dividends on your bank
account. If you're like me, that's about $10 @ 1%, giving anewBalance of $10.10. At exactly
thisinstant, the end of the month arrives and a second thread decides to deposit your paycheck. As
awell-paid, highly skilled programmer, that's probably about $20,000. The thread deposits the
check and updates your account to $20,010. One microsecond later the first thread completesits
work, overwriting your bank balance with $10.10. Too bad.

Example 6-1 Why Synchronization Is Necessary

Thread 1 Thread 2
temp = your.bankBalance; temp = your.bankBalance;
dividend = temp * InterestRate; newBalance = deposit + temp;
newBalance = dividend + temp; your .bankBalance = newBalance;

your .bankBalance = newBalance;

Atomic Actions and Atomic Instructions

Implementation of synchronization requires the existence of an atomic test and set instruction in
hardware. Thisistrue for both uniprocessor and multiprocessor machines. Because threads can be
preempted at any time, between any two instructions, you must have such an instruction. Sure,
there might be only a 10-ns window for disaster to strike, but you still want to avoid it.

A test and set instruction tests (or just loads into aregister) aword from memory and setsit to
some value (typically, 1), al in one instruction, with no possibility of anything happening in
between the two halves (e.g., an interrupt or awrite by adifferent CPU). If the value of the target
word is 0, it gets set to 1 and you are considered to have ownership of the lock. If it aready is 1, it
getsset to 1 (i.e., no change) and you don't have ownership. All synchronization is based upon the
existence of thisinstruction.

60

In SPARC machines, the test and set instruction is 1dstub ("load and store unsigned byte"),
which loads a byte into aregister while setting that byte to all ones. Code Example 6-2 shows how
it can be used to create a basic lock. The important thing to understand here is that no matter how
many different threads on how many different CPUs call 1dstub at the same time, only one of
them will get ownership. Exactly how thego_to_sleep function works is unimportant. Indeed,
even if it did nothing at all and just jumped right back to try_again, the locking code would still
work (see Spin Locks). Notice that there is no guarantee that a thread that goes to sleep will get
the lock when it wakes up.

Example 6-2 Pseudo-assembly Code for the Mutual Exclusion Lock

try_again: Idstub address -> register
compare register, O
branch_equal got it
call go_to_sleep
Jump try again

got_it: return

Other types of atomic instructions are used on other machines, most of which are logically
equivalent. The one type of instruction that is substantially different is the compare and swap
instruction, which compares one word of main memory with aregister and swaps the contents of
that word with a second register when equal. This type of instruction allows some other types of
atomic actions which are qualitatively distinct (see Loadl ocked/StoreConditional and Compare
and Swap), giving significantly superior performance for specific situations.

Critical Sections

A critical sectionis asection of code that must be allowed to complete atomically with no
interruption that affects its completion.

We create critical sections by locking alock (asin Code Example 6-2), manipulating the data,
then releasing the lock afterward. Such things as incrementing a counter or updating arecordin a
database need to be critical sections. Other things may go on at the same time, and the thread that
is executing in the critical section may even lose its processor, but no other thread may enter the
critical section. Should another thread want to execute that same critical section, it will be forced
to wait until the first thread finishes.

Critical sections are typically made as short as possible and often carefully optimized because they
can significantly affect the concurrency of the program. Aswith all the code in this book, we rely
upon the programmer to obey the rules for using critical sections. Thereis no external
enforcement that prevents a sloppy programmer from manipulating data without holding the
proper lock.

Lock Your Shared Datal

All shared data must be protected by locks. Failure to do so will result in truly ugly bugs. Keep in
mind that all means all. Data structures that are passed to other threads and global variables are the
obvious examples2 All data structures that can be accessed by multiple threads are included.
Satic variables are included.

(1 It is, of course, possible to have global variables that are not shared, but this would be rather
unusual. Be very careful if you think you have one. If you're wrong, you're going to be unhappy
when something breaks.

61

Staticsin Javaare just global variablesthat are associated with a specific class. It was somewhat
convenient to use these in the single-threaded programs of yore, but in MT programs they are
disasters waiting to strike. Y ou should reconsider your use of statics very carefully. If you do use
‘em, lock 'em first!

Synchronization Variables

To provide synchronization, a system includes special data structures, and a set of functions
manipulate them. POSIX defines three synchronization variables and the function
pthread_join() to provide this functionality. (UNIX98 makesit four.) Win32 provides
synchronization variables of adightly different nature. Java provides the same functionality by
encapsulating synchronization variables within every object. These synchronization variables are
manipulated by means of akeyword (synchronized), thread. join(), and several methods
on Object. In al thelibraries, these provide the only reliable means of coordinating the
interactions of your threads. There are other tricky things you can do to coordinate your threads,
but they won't work reliably because the hardware is designed assuming that you will be using
synchronization variables (see Bus Architectures).

There are two basic things you want to do. Thefirst is that you want to protect shared data. Thisis
what locks do. The second is that you want to prevent threads from running when there's nothing
for them to do. Y ou don't want them spinning, wasting time. This is what semaphores, condition
variables, wait sets, join(), barriers, etc., are for. Once again, we will describe how the simpler
primitivesin POSIX work, then show how Java maps onto them.

Mutexes

The mutual exclusion lock isthe simplest and most primitive synchronization variable. It provides
asingle, absolute owner for the section of code (thus a critical section) that it brackets between the
calsto pthread_mutex_lock() and pthread_mutex_unlock() (Code Example 6-3). The
first thread that locks the mutex gets ownership, and any subsequent attempts to lock it will fail,
causing the calling thread to go to sleep. When the owner unlocks it, one of the sleeperswill be
awakened, made runnable, and given the chance to obtain ownership. It is possible that some
other thread will call pthread_mutex_lock() and get ownership before the newly awakened
thread does. Thisis perfectly correct behavior and must not affect the correctness of your
program.’2 It's unusual to write code that would be affected by this behavior (see FIFO Mutexes).

2 | the absurd case of two threads trying to increment a counter, it is possible that only one of
them will ever run, even though the program was written "correctly." The probability of T1 failing to
get the mutex 1000 times in a row is normally tiny and is only of interest to the rarest of non-
realtime programs.

Example 6-3 Using Mutexes in the Various Libraries

POSIX Win32 Java
pthread_mutex_lock(m) WaitForSingleObject(m) synchronized(o) {

pthread _mutex_unlock(m) ReleaseMutex(m) }

In Figure 6-1, three threads all need amutex. They have different priorities ("P:"), which
determine the order in which they go onto the sleep queue. The threads have requested the lock in
theorder T1, T2, T3. Asthefirst to try, T1 ownsthe lock, and T3 will be awakened assoon as T1
releases it, even though T2 requested the lock before T3.

62

Figure 6-1. Mutex with Several Threads Sleeping on It

-))-— Held? v/

Sleepers | @™ T3 | @+—»{T2| @

T1 T2 T3
P:0 P:1 p:2

Note that the mutex doesn't know who owns it.2! Because mutexes protect sections of code,[‘—11 itis
not legal for one thread to lock a mutex and for another thread to unlock it. Depending upon the
library implementation, this might not result in aruntime error, but it isillegal. The locking may
occur in one function while the unlocking occurs in another; locks may overlap in their use (lock 2,
unlock 1, lock 3, unlock 2, etc.), but under no circumstances should you ever release alock from
the wrong thread. If you think you need this kind of behavior, you should (1) think really hard
about what you're doing, and (2) look at semaphores. This problem does not arise with Java
synchronized sections, but we will be implementing aMutex class abit later for which this caveat

applies.

Bl posIX doesn't prevent a mutex from recording its owner, it just doesn't require it. Some
implementations can be much faster if ownership is not recorded.

“ 7o be more precise, a mutex protects itself. We trick it into protecting sections of code by placing
the lock and unlock functions judiciously. By restricting data access to those functions, we manage
to have mutexes protect our shared data, which is what we really want.

In the execution graph for mutexes shown in Figure 6-2, we see the timing behavior of locks. The
graph is shown for two threads on two CPUs, but for a uniprocessor the behavior will be identical,
save that there will be gapsin each time line as the CPU context switches. Those gaps will affect
neither the correctness of the code nor the probability of encountering race conditions in correctly
locked code (see Race Conditions).

Figure 6-2. Execution Graph of the Operation of a Mutex

——nf s T 1
—1:]-4]1-—-?4 — T2

Expected “Mormal” Behavior

— -+ = e — T
— et — T2

Possible Legal Behavior

C— | | o —_— -

Work Critical Section Sleep Unlock (atlfgﬁﬂhpt}

Figure 6-3 and Code Example 6-4 show the proper way to use mutexes while putting items onto a
list (asthread 1 is doing) and taking them off (thread 2). Should two threads call remove () at the
same time, one of them will get mutex ownership while the other will have to go to sleep. When
the mutex is released, the sleeper will be awakened, but it is possible that either thread 1 or athird
thread could dlip in at just the right instant and get the lock. In this case the new thread, instead of

63

the sleeper, would remove Request2 from the list. Presumably all the threads will be executing
the same code, so it won't make any difference which thread actually gets to process the request.

Figure 6-3. Protecting a Shared List with a Mutex

— remove() -> Request3
P ~

/ A
requests ’—b Requestd |-t Request2 |@1#|Request! |@
-
[~ -
5 N add(Requestd)

—_—

~p|Requestd |@ |

Example 6-4 Protecting a Shared List with a Mutex (POSIX)

Thread 1 Thread 2
add(request_t *request) {
pthread_mutex_lock(&lock);

request->next = requests; request_t *remove() {
requests = request; pthread mutex_lock(&lock);
pthread _mutex_unlock(&lock); ...sleeping...

request = requests;
requests = requests->next;

pthread mutex_unlock(&lock)
return(request);

}

The same lock must be used uniformly to protect data. Using one lock to protect the list in add ()
and adifferent lock in remove () would be a disaster, of course. Don't do that.

Now let'slook at how Javaimplements mutual exclusion. The computational logic for Javais
identical; the coding technique is different. In Java, ablock of code marked synchronized will
be protected by a mutex.

In Java every object has a mutex associated with it implicitly (Figure 6-4). Thereis no direct
access to this mutex; rather, it islocked and unlocked through the use of synchronized statements.
A synchronized statement has the form shown in Code Example 6-5.

Figure 6-4. All Objects Have Their Own Mutex and Wait Set

Type: Object int

FFFF FFFF FFFF FFFF

mutex_ Held? 1

Slﬂepersl .—-D'I T3| .—I—D"I T2| '.|
Sleepars{ .——DIEE’

wait_set_

64

Example 6-5 Synchronized Statement

synchronized(foo){
// code to execute with foo"s mutex held
b

When you enter the synchronized statement the mutex belonging to the object referred to by foo
will be locked for you, and when you leave the statement, whether normally or via an exception,
the mutex will be unlocked for you. Should the mutex already be locked, the thread will block, as
with POSIX. This syntax makes it impossible to forget to unlock a mutex but also requires that all
uses of mutexes are nested (i.e., you always release mutexes in the reverse order to which you
acquire them). Unlike POSIX, in Javathere is no defined wakeup order; even priority levels are
ignored.

As a shorthand notation we can define a method to be synchronized, which has the same effect as
placing the entire body of the method in a synchronized statement using the current object as the
object to lock. The two bits of code shown in Code Example 6-6 behave identically.

Example 6-6 Using synchronized in Java

Explicit Synchronization Implicit Synchronization
public MyClass() { public MyClass() {
int count = O; int count = O;
void frob() { void synchronized frob() {
synchronized(this) {
count++; count++;
} }
} }

}

The mutex that will be used is gotten from the object referenced, either the object the method is
running on (for the implicit case) or from the object specifically mentioned (for the explicit case).
The class Object (and hence any subclass, that is, every class) has two private instance
variables® Oneisamutex, the other is await set, which we'll discuss soon. Primitive types (int,
char, etc.) do not inherit from Ob ject and hence do not have associated mutexes and wait sets.

BT ¢ may seem rather expensive to allocate a few dozen bytes for every single object, especially
when very few mutexes or wait sets ever get used. It would be if they were actually allocated every
time. Clever systems programmers avoid this space overhead by a couple of tricks.

It isimportant to realize that the mutex and wait set are per object, not per class; thus two different
instances of class Foo will have two different mutexes (see Figure 6-5) and locking one will not
protect data used by the other. So the code in Code Example 6-5 is correct because each instance
of MyClass will haveits own instance of count. If count had been declared to be static, the
code would not have worked.

Figure 6-5. Each Instance Has Its Own Mutex

65

InstanceOf Foo: foo1 InstanceOf Foo: foo2

mutex_ Held? 1 mutex_ Held? 1

Sleepers| @- 13 @ Sleepers| @ T1 @ |

wait_set_ Eleepaml .__-... wait_set_| Sieepers| @—1m{T5 @

Class Object: Foo

Held? 1

Slaaparsl @ > 10 @ » 15| @]

mutex_

wait_set_ | sjee pers

o[> @

The class object itself is asubclass of Object; henceit too has a mutex and wait set. This mutex
can be used to protect static data. It is used for static synchronized methods (see Code Example 6-
7). The class lock may be used to protect class internals during instance creation, but this should
not be an issue unless you're holding onto it for unusually long periods of time. In that case you
may wish to use a different object (Code Example 6-8) to protect your static variables (probably
not).

Example 6-7 Static Synchronized Methods Also Use the Class Lock

public class Foo {
static int count = 0;

static public synchronized void inc(int i) {
count = count + 1i;
}

}
Example 6-8 You May Use an Unrelated Object to Protect Static Data

public class Foo {
static int count = 0;
static Object o = new Object();
public void inc(int i) {
synchronized (0) {
count = count + ij;
}

}

Notice that in Code Example 6-9 we use Foo . class to obtain the class object for Foo. Should
you later define Bar, which subclasses Foo, acall to Bar . inc() will of course increment the
same count variable as Foo . inc () (static variables are inherited by subclasses) and the lock
from the Foo class will be locked, not the lock from Bar. Thisis, of course, what we want. If we
had called getClass() instead of Foo.class, wewould have locked the lock for Bar. That

66

would have been a mistake and we would have been using two different locks to protect the same
static variable. Don't do that.

Example 6-9 You May Use the Class Itself to Protect Static Data

public class Foo {
static int count = 0;

public void inc(int 1) {
synchronized (Foo.class) {
count = count + 1i;
3

¥ /7 cf: getClass()
}

Now let'slook at that shared list example implemented in Java (Code Example 6-10). No surprise,
the code looks virtually identical to the POSIX code. (The two methods are part of a class
Workpile, which well see ahit later.)

Example 6-10 Protecting a Shared List with a Mutex (Java)

Thread 1 Thread 2
synchronized void add(Request r)
{
r.next = requests; synchronized Request remove() {
requests = r;
} -..sleeping...

r = requests;
requests = requests.next;
return(r);

For the (rare) situation when you do not want to go to sleep, atrylock function isincluded in
POSIX and Win32. In POSIX, pthread_mutex_trylock() returns0if you get the lock and
EBUSY if you don't. (Win32 functions have timeouts for the same purpose.) If you get EBUSY,
you'll have to figure out something else to do, as entering the critical section anyway would be
highly antisocial. Thisfunction is used very rarely, so if you think you want it, look very carefully
at what you're doing!® [See Making malloc() More Concurrent.] Thereis no such functionality in
Java. Thisis not a particular problem, as Java does not address itself to the kinds of low-level,
realtime problems that trylock is useful for.

®we apologize if these warnings seem a bit much. We realize that you understand the issues
involved. We just want to make it clear for that other programmer.

It isimportant to realize that although locks are used to protect data, what they really doisto
prevent more than one thread from running the section of code they bracket (assuming that the
same mutex is being used). There's nothing that forces another programmer (who writes another
function that uses the same data) to lock his code—nothing but good programming practice.

Moreover, there is no automatic connection between the object's lock and the object's instance
variables. Although it seems obvious that one would use the lock from ob ject1 to protect the
instance variables of objectl, it isn't arequirement and there are situations where you want to
use the lock from object2 to protect the data of objectl! Nonetheless, it is a nice feature of
object-oriented programming for the lock to be encapsulated with the data, making it that much
less likely for you to make a mistake.

67

Win32 provides amutex (which is akernel object), along with acritical section," which is more
like a POSIX mutex. Win32 mutexes are recursive—meaning that the same thread can lock the
mutex multiple times. Java-synchronized sections are a so recursive. Well discuss thisin more
detail in Recursive Mutexes.

[We find it is somewhat confusing to use a generic term like critical section, which refers to a
concept, for the name of a specific synchronization variable.

Semaphores

In the nineteenth century, when trains were still advanced technology and railroad tracks were
exotic and expensive, it was common to run single sets of tracks and restrict the trains to travel in
only one direction at atime. Semaphores were invented to let the trains know if other trains were
on therails at the same time. A semaphore was a vertical pole with a metal flag adjusted to hang at
either 45 or 90 degrees to indicate the existence of other trains.

In the 1960s, E. W. Dijkstra, a professor in the Department of Mathematics at the Technological
University, Eindhoven, Netherlands, extended this concept to computer science. A counting
semaphore® (ak.a. PV semaphore) is avariable that can increment arbitrarily high but decrement
only to zero. A POSIX sem_post() operation (ak.a. "V"—verhogen in Dutch) increments the
semaphore, whileasem_wait() (ak.a "P'—proberen te verlagen) attempts to decrement it. If
the semaphore is greater than zero, the operation succeeds; if not, the calling thread must go to
sleep until adifferent thread incrementsiit.

) The word semaphore has come to take on other meanings in computer science. System V
semaphores, for example, are much more elaborate objects than counting semaphores.

A semaphore is useful for working with "trainlike" objects, that is, what you care about is whether
there are either zero objects or more than zero. Buffers and lists that fill and empty are good
examples. Semaphores are also useful when you want a thread to wait for something. Y ou can
accomplish this by having the thread call sem_wait() on asemaphore with value zero, then
have another thread increment the semaphore when you're ready for the thread to continue (Code

Example 6-11).

Example 6-11 Basic Use of Counting Semaphores

POSIX Win32 Java
(from
Semaphore. java)
sem_wailt(&s); WaitForSingleObject(s,...); s.semWait();
sem_post(&s); ReleaseSemaphore(s,--.); s.semPost();

In Figure 6-6 the semaphore started with avalue of zero. The threads have executed their
respective operationsin the order T1, T2, T3, T4, T5. After T1 executed its sem_wait(), it had
to wait (as the value was zero). When T2 did the sem_post(), T1 was awakened and
decremented the value back to zero. T3 did asem_post(), incrementing the value to one. When
T4 diditssem_wait() it could continue without waiting at all. Finaly, T5 caled sem_wait(),
and is still waiting.

Figure 6-6. How a Semaphore Operates

68

sem_wait \ sem post sem_post sem_wait sem wait

-) -) -

T1 T2 T3 T4 T5

Value 0

Sleepers | @+ 75| @

Although thereisafunction sem_getvalue() which will return the current value of a
semaphore, it is virtually impossible to use correctly because what it returnsis what the value of
the semaphore was. By the time you use the value it returned, it may well have changed. If you
find yourself using sem_getvalue(), look twice; there's probably a better way to do what you

want.

Java does not include semaphores as one of its base classes, but they are easily implemented and
we have done so in our extensions package. Our Semaphore class behaves exactly as POSIX
semaphores do (ignoring UNIX signal issues). Win32 implements counting semaphores with
similar definitions.

In the execution graph (Figure 6-7) we see the operation of Code Example 6-11. Notice that when
T1's decrement attempt fails, it smply goesto sleep and triesit again later. Another thread could
jump in and decrement the value just as thread T1 was waking up, in which case T1 would have to
go back to sleep. Aswith mutexes, thisis usually not a problem.

Figure 6-7. Execution Graph of the Operation of a Semaphore
el e =T
0 S=0, waiting S=0

S=
—] - T2
S=1, waking up T1

_ * - T3
S5=1
» e - T4
5=0
] M= 15
5=0, waiting
l _— l Cl = | :SI D t
- T 0o ecreme
or ritical Section P Post (a ternpt?

A typical use of semaphoresisin Code Example 6-12. Thisis a producer/consumer examplein
which one thread is continually receiving requests from the net, which it addsto alist, while the
other thread is busy removing items from that list and processing them. It is particularly

69

interesting to notice that the number of items on the list is contained in the semaphore, but the
program never actually getsto look at that number. Should the producer place twenty items on the
list al at once, the consumer function will be able to call sem_wait() twenty times without
blocking. The twenty-first time, the semaphore will be zero, and the consumer will have to wait.
Because the critical sections are so small, the chance of any thread ever blocking on the mutex in
get_request() isvery smal.

In Code Example 6-12, the main things to notice are that get_request() must allocate the
memory for the request structure that will be appended to the list, while process_request() is
responsible for freeing it. This code may safely be run by any number of threads running the
producer and any number running the consumer. In no case will aconsumer ever attempt to
remove arequest from an empty list. The semaphore actually encodes the minimum length of the
list. During the brief moments between the time a producer places arequest onto the list and the
time the semaphore is incremented, the semaphore value is one less than the actual length of the
list. For now, thisisfine.

Example 6-12 Classic Producer/Consumer Example (one_queue_problem.c)

producer() {
request_t *request;
while(TRUE) {
request = get_request();
add(request);
sem_post(&requests_length);

}

consumer() {
request_t *request;
while(TRUE) {
SEM_WAIT(&requests_length);
request = remove();
process_request(request);

}

The same problem done in Java (Code Example 6-13) is quite similar again. Unlike C, there will
be no issues surrounding allocating and freeing memory (ain't garbage collection great?).

Example 6-13 Classic Producer/Consumer Example (OneQueueProblem)

public class Consumer implements Runnable {
Workpile workpile;
Server server;

public void run() {
Item item;

while (true) {
s.semWait();
item = workpile.remove();
server .process(item);

}

public class Producer implements Runnable {
Workpile workpile;
Server server;

70

public void run() {
Item item;

while (true) {
item = server.get();
workpile.add(item);
s.semPost();

}

Thelist in both examplesis unbounded and may continue to grow longer until memory is
exhausted. Thisis a problem with our example code that must be solved. Y ou should be able to
come up with a solution yourself now. Well get to it abit later.

Using Barriers to Count Exiting Threads

Sometimes we do want to know when a set of threads have completed their work. One way of
doing thisisto use asingle barrier (distinct from the Barriers). Each exiting thread will increment
the barrier's value, and the thread waiting for them will wait until the value is the number of
threads being waited for. This gives a convenient replacement for calling thread. join(). Well
be using single barriers regularly for this purpose.

WEe'll show the code in Sngle Barriers, but the gist of it is that worker threads call
barrier.barrierPost() asthey exit and the master thread callsbarrier.barrierWait()
(barrier hasbeen initialized to the number of worker threads). Thus the master thread will wait
until all the workers are done. (We don't actually care exactly when the worker threads exit.)

A Different View of Semaphores

Now let'slook at adifferent picture of how a semaphore works. Figure 6-8 depicts the actual
operation of semWait() and semPost() in our extensions package. As the value of the
semaphore is a shared data item, it must be protected in a synchronized section (or logical
equivalent). Thefirst thing semwait () doesis enter that synchronized section (locks the mutex).
Then it checksthe value. If it is greater than zero, the value is decremented, the mutex is rel eased,
and semWait() returns.

Figure 6-8. Flowchart for Semaphores

71

semWait semPost

(lock) (lock)

Y

v+

Y

(unlock)

Y

V- -

(unlock) T’akE“p
(unlock) - ‘

* sleep - |
continue (lock) continue

If the value of the semaphore is zero, the mutex will be released, and the thread will then go to
sleep. Upon waking up, the thread must repeat the operation, reacquiring the mutex and testing the
value.

The operation of semPost() isquite simple. It locks the mutex, increments the value, releases
the mutex, and wakes up one sleeper (if thereis one). The results are exactly what you expect.
Even though you have no idea what the scheduling order might be, it isimpossible to accidentally
decrement the value below zero, and no thread can ever get "stuck” on the sleep queue when the
valueis greater than zero. There are timing gaps where things look momentarily inconsistent, and
it is possible for athread to be awakened by mistake, but the end results are always correct.

A semaphore is perfect for situations where you want to count things and have threads sleep when
some limit is hit. If you wish to count up to some number, say for alist limited to ten items, you
simply view the semaphore as counting the number of "spaces’ in the list, initialize it to ten, and
count down.

There are occasions when you want the same kind of sleeping behavior as with semaphores, but
your test is more complex than just "Isv > 0?"

Condition Variables

Figure 6-9 shows aflowchart for a generalization on semaphores. Here the mutex is visible to the
programmer and the condition is arbitrary. The programmer is responsible for locking and
unlocking the mutex, testing and changing the condition, and waking up sleepers. Otherwise, itis
exactly like a semaphore. We'll look at POSIX condition variablesfirst, then see how Java
implements the same concept.

Figure 6-9. Flowchart for Condition Variables

72

Y

cond=TRUE

S Y
unlock

Y

wakeup

Y (unlock) K ¢

sleep

continue (lock) .
unlock continue

Perhaps you want a thread to execute some code only if X > 17, Y is prime, and grandmother is
visiting next Thursday. Aslong as you can express the condition in a program, you can useitin a
condition variable. A condition variable creates a safe environment for you to test your condition,
sleep on it when false, and be awakened when it might have become true.

It works like this: A thread obtains a mutex (condition variables always have an associated mutex)
and tests the condition under the mutex’s protection. No other thread should alter any aspect of the
condition without holding the mutex. If the condition is true, your thread completes its task,
releasing the mutex when appropriate. If the condition isn't true, the mutex is released for you, and
your thread goes to sleep on the condition variable. When some other thread changes some aspect
of the condition (e.g., it reserves a plane ticket for granny), it calls

pthread_cond_signal) Bwaki ng up one sleeping thread. Y our thread then reacquires the
mutex,™® reeval uates the condiition, and either succeeds or goes back to sleep, depending upon the
outcome.

® The term signal here is distinct from UNIX signals (SIGINT, etc.). Wakeup might be a better term.

[0l Obviously, when a thread sleeps on a condition variable, the mutex must be released (so other
threads can acquire it) and reacquired upon waking. All of this is handled for you by
pthread_cond_wait().

Y ou must reevaluate the condition! First, the other thread may not have tested the complete
condition before sending the wakeup. Second, even if the condition was true when the wakeup
was sent, it could have changed before your thread got to run. Third, condition variables allow for
spurious wakeups. They are allowed to wake up for no discernible reason whatsoever!

1 Due to some arcania in the hardware design of modern SMP machines, it proves to be highly
convenient to define them like this. The hardware runs a little faster, and the programmer needs to
reevaluate the condition anyway.

In Figure 6-10, T1, T2, and T3 &l evaluated the condition, determined it to be false, and went to
sleep on the condition variable. T4 then came along, changed the condition to true, and woke up
the first of the sleeping threads. T3 was awakened, reevaluated the condition, found it to be true,
and did its thing, releasing the mutex when done. We'll assume that T3 also changed the condition
back to false, so there was no reason to wake any other threads. If T3 hadn't changed the condition,
it should have woken up another thread.

Figure 6-10. Threads Using a Condition Variable

73

wait signal

wait - wait) g— - -t
T T2 T3 T4
Priority: 0 1 2 2
Held? 0
Sleepers | @

Sleepers | @—»{ T2| @1+—»{T1| @

Depending upon your program, you may wish to wake up all the threads that are waiting on a
condition. Perhaps they were all waiting for the right time of day to begin background work or
were waiting for a certain network device to become active. A pthread_cond_broadcast()
isused exactly like pthread_cond_signal () (Code Example 6-14). It is caled after some
aspect of the condition has changed. It then wakes all of the sleeping threads (in an undefined
order), which then must al hurry off to reevaluate the condition. This may cause some contention
for the mutex, but that's OK.

Example 6-14 Using a Condition Variable (POSIX)

Thread 1 Thread 2
pthread_mutex_lock(&m);
while (Imy_condition)

pthread cond wait(&c, &m);
pthread_mutex_lock(&m);

. sleeping ... my_condition = TRUE;
pthread_mutex_unlock(&m);
pthread cond_signal (&c);
/* pthread_cond_broadcast(&c); */

do_thing();
pthread_mutex_unlock(&m);

Presumably you are calling signal or broadcast any time that the condition has been changed such
that it may have become true. In most cases you will have evaluated the condition completely
before you signal or broadcast, but you do not have to. Y ou certainly would want to signal any
time that the condition became true.

There are severa things you can do with condition variables that the compiler won't complain
about but are guaranteed trouble. Y ou could use the same condition variable with different
mutexes (some POSIX implementations will detect this at runtime). Y ou could have several
functions that use one condition variable but that evaluate different conditions. (This latter is not
illegal and is sometimes even useful, but not very often.) Be careful!

Java wait/notify

The Java equivalent to condition variables is wait/notify (Code Example 6-15). The behavior is
virtually identical. Y ou enter a synchronized section, evaluate a condition, continue onif true, and
wait (releasing the synchronized section) if not. Another thread will enter a synchronized section,

74

change the condition, and send you awakeup. Y ou reacquire the synchronized section, retest the
condition, etc.

Example 6-15 Using wait/notify (Java)

Thread 1 Thread 2
synchronized (object) {
while (Tobject.my_condition)
object.wait(Q);

synchronized (object) {
object.my_condition = true;
object.notify(Q;
// object._notifyAll();

¥
do_thing();

Whereas in POSIX mutexes and condition variables exist as separate data types that must be
associated together by the programmer, in Java they are tightly integrated with each object. Aswe
mentioned, every Java object has associated with it a mutex, and additionally every Java object
has associated with it a condition variable. The class Ob ject defines the methodswait(),
notify(), and notifyAll () to manipulate the condition variable associated with that object.
These correspond directly to pthread_cond_wait(), pthread_cond_signal (), and
pthread _cond_broadcast().

An object's condition variable is always associated with the object's mutex. Hence, before you can
invoke wait() on the object, you must hold the mutex—that is you must be in a synchronized
statement referring to that object. Unlike POSIX, Java also requires that you hold the object's
mutex before doing anotify() or notifyAll1(). Thismay make notify() and
notifyAll () dightly less efficient due to the extraneous contention for the mutex (see below),
but the extra cost is minimal.

Itislega to cal notify() at any time whatsoever (aslong asthe mutex is held). It's not very
useful to call it unless you have changed some aspect of the condition being tested, but it's never
wrong. It will never cause abug in your program. Moreover, it is always legal to call
notifyAll () instead of notify(). (The oppositeisnot true.) At worst, it will waste a bit of
time while the extra threads wake up, realize there's nothing for them to do, and go back to sleep.
WEe'll have more to say about this soon (see Condition Variables vs. wait/notify).

As with synchronized sections, there is no defined wakeup order for wait/notify. And also as with
synchronized sections, it doesn't matter. Y ou have ajob and you want some thread to wake up and
do that job—you don't care which thread.

Extraneous Contention

Because of the kind of interaction that exists between the condition variable and its associated
mutex, it is possible to get some unwanted contention for the mutex. Thisis most evident when
calling broadcast. Unfortunately, there is not much you can do about it, and your program may
well suffer dozens of microseconds in wasted mutex blocks.

Figure 6-11 illustrates the problem. In the "Desired Behavior" case, the little bit of extratimeit
takesfor T2 to wake up and try for the mutex isjust long enough for T1 to releaseiit. In the
"Possible Behavior" case, the waiting threads wake up, try for the mutex, and have to go right
back to sleep because the mutex hasn't been released yet. The most obvious solution for at least
some of this problem is to make the call to signal or broadcast outside the critical section. Thisis
what all of our POSIX code does.

75

Figure 6-11. Extra Contention: When the Mutex Is Held by a Different Thread

. el et e - T
- * T2
- e - T3

Desired Behavior of Broadcast

A e e —————— - T
* T2
ate .

Possible Behavior of Broadcast

1 | | e e e

Work Critical Section Slee Decrement
P Post (attempt

InterruptedException

Now we need to deal with alittle detail. For reasons we'll go into later (see Defined
Cancellation/Interruption Points), a number of methods throw a specia exception,
InterruptedException. One of those methodsisobject.wait(), another is
Thread.sleep(). We don't want to do anything with it yet, so well simply include atry/ catch
block and ignore it. Our code is shown in Code Example 6-16. In production code you should
never ignore any exceptions.

Example 6-16 Using wait/notify with InterruptedException

try {
synchronized (object) {

while (YTobject.my_condition)
object.wait();

} catch (InterruptedException(e) {} // lgnore for now
Controlling the Queue Length

So how do we prevent the queue from growing in the producer/ consumer example? The simplest
way isto initialize a second semaphore to the maximum allowed length and count it down.2? This
works quite well for simple programs, but you will probably never actually usethisin a

production program.

12 one way to imagine this inverse use of a semaphore is to consider the queue to have some
number of slots available. The semaphore encodes this number. When a producer places a new

76

request onto the queue, there is one less available slot, so we decrement the semaphore. When a
consumer takes a request off, there is one more, so we increment it.

Often, you will find that you have more extensive demands on the program and will need to use a
condition variable (wait/notify). Code Example 6-17 shows this situation. We will use the lock
fromworkpi le to protect both the length of the list and the list itself,“%! so we remove the
locking from add () and remove () and do it in the producer and the consumer directly. (This
code now looks alittle bit ugly with so many referencesto workpi le, but well deal with that
later.) Thereis another little problem with this code, however.

3 we are using one lock to protect two things that must be changed atomically with respect to
each other. Any time we use either of those things, we must lock the same lock. You can never
protect a variable using two different locks.

Example 6-17 Classic Producer/Consumer Model (with a Tiny Bug)

public class Consumer implements Runnable {

public void run() {
Item item;

try {
while (true) {

synchronized (workpile) {
while (workpile.empty())
workpile.wait();

item = workpile.remove();

workpile._notify(Q); // Not quite

right

}

server .process(item);

}
} catch (InterruptedException e) {} // Ignore for now
}

}

public class Producer implements Runnable {
public void run() {
Item item;

try {
while (true) {

item = server.get();
synchronized (workpile) {
while (workpile.full())
workpile.wait();
workpile.add(item);
workpile._notify(); // Not quite right
}

} catch (InterruptedException e) {} // Ignore for now

77

Y ou see, in this design, both consumers and producers will be sleeping on the same synchronized
object. It would be unfortunate should a consumer take an item off the list and wake up another
consumer instead of a producer, as intended.** With the right combination of list lengths, and
number of producers and consumers, this code is likely to be inefficient, and it is even possible
that it will deadlock.

4 This is not an obvious situation and requires some careful analysis to figure out. Moreover, it is
possible that this program will work well on one platform while hanging on another. Part of the logic
here relies on the order of wakeup for sleeping threads, something that is not guaranteed by the
JVM. This, by the way, is a good thing, as the programmer should never rely on wakeup order.

The solution is simple: Consumers should only wake up producers, and producers should only
wake up consumers. Unfortunately, the Java method noti fy () islinked specifically to the
synchronized object, so there's no way to direct wakeups as we'd like. We could wake up
everybody by calling notifyAll (). That would definitely give us a correctly working program,
but it could™ be abysmally inefficient. Let's consider a POSIX-style aternative.

15T Would it be abysmally inefficient? We'll take up this issue in Condition Variables vs. wait/ notify .

POSIX-Style Synchronization in Java

What we're going to do is implement POSI X -style mutexes and condition variables in Java.
Because POSIX mutexes and condition variables are separate, independent objects, it is possible
to construct exactly the program logic that we really want. First, let's ook at the classic POSIX
solution to this problem, shown in Code Example 6-18.

Example 6-18 Classic Producer/Consumer in POSIX

void *producer(void *arg) {
request_t *request;

while(1) {
request = get_request();
pthread mutex_lock(&requests_lock);

while (length >= 10)
pthread_cond_wait(&producerCV, &requests lock);

add_request(request);

length++;
pthread_mutex_unlock(&requests_lock);
pthread_cond_signal (&consumerCV) ;

}

void *consumer(void *arg) {
request_t *request;

while(1) {
pthread mutex_lock(&requests_lock);

while (length == 0)
pthread cond_wait(&consumerCV, &requests lock);

request = remove_request();

length--;
pthread_mutex_unlock(&requests_lock);
pthread cond_signal (&producerCV);

78

process_request(request);
¥

The mutex protects both the list itself and the variable length. The distinction is that when the list
is empty, the consumers will go to sleep on one condition variable (consumerCV) while the
producers will go to sleep on ancther (producerCV) when thelist isfull. In this fashion the
producers can be confident that they are waking up a consumer when they put a new item on the
list, and the consumers know they are waking up a producer when they take one off. Thisisthe
behavior we want. Let's see how we can do thisin Java.

POSIX-Style Mutexes in Java

Implementing mutexes is a snap. We need an object with one boolean and two methods, 1ock()
and unlock(). To lock it, if the mutex is held by another thread, we wait. Otherwise, we set
owned to true (Code Example 6-19). (Later we will use a slightly more elaborate version of
mutexes which record the name of the owner, but right now we'll be simple.) To unlock, we'll just
set owned to false, then call notify () to wake up one sleeper (if any). (A dlightly more
efficient version would count the sleepers.)

A sufficiently intelligent compiler could optimize this down to be identical to Pthread mutexes
with identical performance. (I do not know of any compilers sufficiently intelligent, however, and
the best code currently imaginable would be many times slower than Pthreads. A mutex class as
part of the VM would be avery good thing.)

Code Examples 6-19 and 6-20 are simplified and should not be used. We'll show the full, working
versions of mutexes and condition variablesin Actual Implementation of POSI X Synchronization.

Example 6-19 Implementing POSIX-Style Mutexes in Java

// Don"t use this code, it ignhores exceptions.

public class Mutex {
boolean owned = false;

public synchronized void lock() {
while (owned) {

try {
wait(Q);

} catch (InterruptedException ie) {
// lgnore interrupts for now

}

}

owned = true;

public synchronized void unlock() {
owned = false;

notify();
}

POSIX-Style Condition Variables in Java

79

Implementing a condition variable in Javais not particularly difficult, but there are afew subtle
nuances (Code Example 6-20). The ConditionVar classitself requiresjust two methods,
condwWait() [equivalent to Javaswait()] and condSignal () [Javasnotify()]. [Adding
notifyAll () and atimed wait() isasimple exercise |eft to the reader.] The subtletiesarein
the condwait() method. The mutex must be released and the thread sent to sleep atomically
with respect to the condSignal (), hence the synchronized section.

Consider what would happen if these were not done atomically. With a bit of (bad) luck, thread 1
could call condWait(), release the mutex, and at just that instant thread 2 could be running on a
different CPU. Thread 2 could then lock the mutex, change the condition to true, and call
condSignal (). Thread 1 would not yet be asleep, so it wouldn't be awakened. It would
subsequently go to sleep even though the condition is now true, and the wakeup from thread 2
would be lost. Having done its work, thread 2 might never send another wakeup (it might be
waiting for thread 1 to finish!) and the entire program would hang. This would be a bad thing. It's
known as the "lost wakeup problem” (see The Lost Wakeup).

Example 6-20 Implementing Condition Variables in Java

// Don"t use this code, it ignores exceptions.

public class ConditionVar {
public void condWait(Mutex mutex) {
try {
synchronized (this){
mutex.unlock();

wait();
} catch (InterruptedException ie) { // lgnore for now
} Finally {
mutex. lock();
} // *Always* lock before returning!
}
public synchronized void condSignal() {
notify();
}

}

The synchronized section in condWait() does not include the relocking of the mutex. Thisis
also essentia. Consider what could happen if it did (Code Example 6-21).

Example 6-21 condWait() Done Wrong

public void condWait(Mutex mutex) throws InterruptedException {
synchronized (this) {
mutex.unlock();
wait();
mutex. lock();

}

Running the producer/consumer code shown in Code Example 6-22, thread 1 might call
condwWait(), release the mutex, and go to sleep. Thread 2 could then lock the mutex and call
condSignal (), waking up thread 1. Thread 1 could then reacquire the synchronized section for
the condition variable and call mutex. lock(). At thistime, thread 2 has rel eased the mutex,
hurried back to the top, and relocked that mutex. Thread 1 would have to go to sleep to wait for
thread 2 to release it. Thread 2, however, needsto call condSignal () beforeit releases the

80

mutex. To run condSignal (), it needs to obtain the synchronization for the condition variable,
which isstill held by thread 1. Deadlock.2

(181 By moving the condSignal() call in the P/C code outside the call to mutex.unlock(), this particular
version of the problem could be resolved, but slightly more subtle versions of it would still be there
for other situations. Consider having two consumers and one producer.

Code Example 6-22 shows how we'll write our producer/ consumer model using condition
variables. This code is perfectly correct and will work correctly on al platforms for any number of
producers, consumers, and size limits. Note that we now are forced to use explicit mutexesinstead
of synchronized methods. The reason is that the data must be protected by the same lock in every
instance. If we tried to use synchronized methods, we'd be unable to have our two condition
variables both release that synchronization.

Example 6-22 Producer/Consumer Model Using POSIX-Style Synchronization

public class Consumer implements Runnable {

public void run() {
Item item;

while (true) {
workpile_mutex.lock(Q);
while (workpile.empty(Q)) {
workpile.consumerCV.condWait(workpile._.mutex);
}

item = workpile.remove();

workpile.producerCV.condSignal(); // Normally unlock
first

workpile._mutex.unlock();

}

server.process(item);

public class Producer implements Runnable {

public void run() {
Item item;

while (true) {
item = server.get();
workpile._mutex.lock();
while (workpile.full(Q)) {
workpile.producerCV.condWait(workpile.mutex);
}

workpile._add(item);

workpi le.consumerCV.condSignal(); // Normally unlock
first

workpile._mutex.unlock();

81

A Stoppable Producer/Consumer Example

Let's use the ideas above to deal with a more complex situation. Say you like the operation of the
producer/consumer model but you want to be able to start and stop at will. We'll use a shared
variable, workpi le.stop, which will control the threads. If it is true, al the producers and
consumers will finish what they're doing and exit. Let's say further that we don't want the queueto
be emptied at stop time. When we decide to start up the producers and consumers again, well
require that the consumers empty the queue before any producers are started.

The only tricky part of this exercise isthat some of the threads may be sleeping at the time we set
stop to true, and we must ensure that they are awakened so that they can exit. We must also
have the main thread sleep until the new consumers have emptied the queue. By having the
threads wait on the condition (workpile.full() && (!workpile.stop)), they canbe
awakened on a change of state for either the length or stop (Code Example 6-23).

Example 6-23 Stoppable Producer/Consumer Model

public class Consumer implements Runnable {

public void run(Q) {
Item item;

while (true) {
workpile_mutex.lock(Q);
while (workpile.empty() && 'workpile.stop) {
workpile.consumerCV.condWait(workpile.mutex);

}

it (workpile.stop)
break;

item = workpile.remove();

workpile_.mutex.unlock();
workpile.producerCV.condSignal(); // OUTSIDE the CS
server .process(item);

¥
workpile.mutex.unlock(); // Unlock!
barrier.barrierPost(); // We"re exiting

public class Producer implements Runnable {

public void run(Q) {
Item item;

while (true) {
item = server.get();
workpile_mutex.lock(Q);
while (workpile.full() && 'workpile.stop) {
workpile.producerCV.condWait(workpile.mutex);
}

workpile.add(item);

82

iT (workpile.stop)
break; // Put the ltem on the list!

workpile.mutex.unlock();
workpi le.consumerCV.condSignal) ; // OUTSIDE the CS

}
workpile._mutex.unlock(); // Unlock!
barrier.barrierPost(); // We"re exiting

Notice that we've moved the call to condSignal () outside the critical section. Thisisits normal
position.

When we set stop to true, we will need to wake up all threads that might be sleeping. In Code
Example 6-24, we spawn athread to set stop true after 4 seconds. After it's set, the thread calls
condBroadcast() to wake up al the worker threads. We would do the same if it were a button
we were using, or any other method. Notice that we must lock the mutex before changing the
value of stop; otherwise, well be subject to the lost wakeup problem.

Example 6-24 Stoppable Producer/Consumer Model (Stopper)

public class Stopper implements Runnable {

public void run(Q) {
InterruptibleThread.sleep(delay);
System.out.printIn(*'Stopping...");
workpile_mutex.lock(Q);
workpile._.stop = true;
workpile._mutex.unlock();
workpile.consumerCV.condBroadcast();
workpile.producerCV.condBroadcast();

}

Finally, in this bit of code from main() (Code Example 6-25), we see how we can synchronize
on the exiting of the threads and the emptying of the queue. First we start them all up. Then we
wait for all the threads to complete their work [they'll probably exit a couple of microseconds after
they call semPost(); however, we don't really care]. After they have al completed their work,
we can set stop back to false. (What if we didn't wait for al the threads to finish?) Then we
create the consumers and wait for them to empty the queue. (Notice how we reuse the condition
variable producerCV here. We could have used a third condition variable, but the extra
efficiency we'd get would be absurdly small.) Once the queue is empty, we start up the producers

again.

Example 6-25 Stoppable Producer/Consumer Model (Starting Up and Shutting
Down in main()

public static void main(String argv[]) {

barrier = new SingleBarrier(nConsumers + nProducers);

83

for (int j =0; j < 3; j++) {
System.out.printIn(''Starting consumers... List length: " +
workpile.length(Q));
for (int 1 = 0; 1 < nConsumers; i++) {
t = new Thread(new Consumer(workpile, s, barrier));
t.start();

}

workpile._mutex.lock();

while (lworkpile.empty())
workpile.producerCV.condWait(workpile.mutex);

workpile._mutex.unlock();

System.out.printIn(*’'Starting producers...List length: " +
workpile.length(Q));

for (int i = 0; 1 < nProducers; i++) {
t = new Thread(new Producer(workpile, s, barrier));
t.start();

}

new Thread(new Stopper(workpile, 5000)).start();

barrier._barrierWait();

System.out.printIn(*'Stopped! List length:" +
workpile.length(Q));

workpile._stop = false;

InterruptibleThread.sleep(2000);

}

System.out.printIn(*'Finished! Produced: "™ + s._pcounter
+ " Consumed: "™ + s.ccounter
+ " items. List length: " + workpile.length());
System.exit(0);
}

A minor point: Whenwe set stop = false, we don't have to lock the mutex. Why can we get
away with this?

We can do this because we wrote the program and we happen to know that there are no other
threads running by the time we get to thisline, so for one brief moment, stop is not a shared

variable. In production code it would be well advised to protect it anyway— no sense in making
someone el se wonder about it.

APIs Used in This Chapter

The Class java.lang.Object

synchronized
synchronized

This language keyword causes the current thread to obtain the hidden lock for the object. If the
lock is aready held by the current thread, it will essentially increment a counter for that lock (it'sa

recursive lock). If the lock is held by a different thread, this thread will go to deep waiting for it to
become available.

\Reference: \Chagter 6.

wait
public void wait()
throws InterruptedException

This causes the current thread to block until it is awakened by either acall to notify (),
interruption, or by a spurious wakeup. It will release the synchronization lock for the object as it
goes to sleep and reacquire it before returning.

Reference: (Chapter 6.

notify notifyAll
public void notify()
public void notifyAll()

These cause (one/all) of the threads that arein await () call for this object to wake up and return.

Reference: (Chapter 6.

The Class Extensions.Semaphore

Thisisone of our classes. It implements POSIX-style semaphores. It is probably not useful except
for demo programs.

semWait
public void semWait()

This attempts to decrement the value of the semaphore. If it succeeds, it ssimply returns. If the
valueis zero, this will cause the current thread to go to sleep until another thread incrementsit.

\Reference: |Chagter 6.

semPost
public void semPost()

This increments the value of the semaphore, waking up one thread (if any are slegping).

Reference: Chapter 6.

The Class Extensions.Mutex

Thisisone of our classes. It implements POSIX-style (non-recursive) mutex locks. Use only when
synchronized sections won't work, such as chained locking.

lock
public void lock()

This locks the mutex. If the lock is held by a different thread, this thread will go to deep, waiting
for it to become available.

85

\Reference: \Chagter 6.

unlock
public void unlock()

This unlocks the mutex, waking up one thread (if any are sleeping).

Reference: Chapter 6.

The Class Extensions.ConditionVar

Thisisone of our classes. It implements POSIX-style condition variables. Use only when
synchronized sections and wait/notify won't work.

condwWait
public void condWait(Mutex m)

This causes the current thread to block until it is awakened by either a call to condSignal () or
by a spurious wakeup (not by interruption). It will release the mutex lock for the object as it goes
to sleep, and reacquire it before returning.

Reference: Chapter 6.

condSignal condBroadcast
public void condSignal()
public void condBroadcast()

These cause (one/all) of the threads that arein acondwWait() call to wake up and return.

Reference: (Chapter 6.

Summary

Themain issuein writing MT programsis how to get threads to work together. Locks
(synchronized sections) and condition variables (wait/notify) are the fundamental building blocks
from which anything can be built. Although there are many nonintuitive aspects of
synchronization, most of them can be ignored, as things "just work."

86

Chapter 7. Complexities

Complex Locking Primitives
Timeouts

Other Synchronization Variables
Voldtile

Performance

Synchronization Problems
APIsUsed in this Chapter

The Class Extensions.RWLock
The Class Extensions.Barrier

The Class Extensions.SingleBarrier

In which a series of more complex synchronization variables and options are presented and the
trade-off between them and the simpler ones are discussed. Synchronization problems and
techniques for dealing with them conclude the chapter.

Complex Locking Primitives

There are times when a simple mutex does not provide enough functionality. There are situations
in which you can improve your program's efficiency or fairness by implementing more complex
locking primitives. Keep in mind that the locks described below are more complex and therefore
slower than normal mutex locks, generally by afactor of 2 or more. They are not generally useful,
so be advised to consider your requirements closely before using them.

Readers/Writer Locks

Sometimes you will find yourself with a shared data structure that gets read often but written only
seldom. The reading of that structure may require a significant amount of time (perhapsit's along
list through which you do searches). It would seem awaste to put a mutex around it and require al
the threads to go through it one at a time when they're not changing anything. Hence,
readers/writer locks.

With an RWIlaock, you can have any number of threads reading the data concurrently, whereas
writers are serialized. The only drawback to RWlocks is that they are more expensive than
mutexes. So you must consider your data structure, how long you expect to be in it, how much
contention you expect, and choose between a mutex and an RWlock on those bases. As arule of
thumb, a simple global variable will always be locked with a mutex, while searching down a
1000-€element, linked list will often be locked with an Rwlock.

The operation of RWIlocks is as follows: The first reader that requests the lock will get it.
Subsequent readers also get the lock, and al of them are allowed to read the data concurrently.
When awriter requests the lock, it is put on asleep queue until al the readers exit. A second
writer will also be put on the writer's sleep queue. Should a new reader show up at this point, it
will be put on the reader's dleep queue until al the writers have completed. Further writers will be
placed on the same writer's sleep queue as the others (hence, in front of the waiting reader),
meaning that writers are always favored over readers. (Writer priority is simply a choice we made
in our implementation; you may make a different choice.)

The writers will obtain the lock one at atime, each waiting for the previous writer to complete.
When all writers have compl eted, the entire set of sleeping readers are awakened and can then

87

attempt to acquire the lock. Should another writer show up before the readers get the lock, that
writer will get priority.

"But,” you may ask, "won't writer priority lead to starvation of readersin some cases?' Yup. And
you can make a case for nonpreferential RWIocks, or even reader-priority. However, we are
concerned primarily with producing practical, well-performing programs, not proving theorems
about degenerate cases. RWIlocks are used primarily in situations where there are a great many
read requests and very few write requests. If you have alarge number of write requests, you
shouldn't be using RWIlocks.

In Figure 7-1, five threads all need an RWIlock. They have different priorities, which determine the
order in which they go onto the writers' deep queue. The threads have requested the lock in the
order T1, T2, T3, T4, T5. T1 and T2 own the lock, and T5 will be awakened as soon as they both
release it, even though T3 and T4 requested the lock before T5. In Figure 7-2 we see exactly this
happening. Note the overlapping read sectionsfor T1 and T2.

Figure 7-1. How Readers/Writer Locks Work

read read
- - - Current
Writers? 0
write
Current 2
Readers?
T1 T2 T3 il
Prio: 0 Prig: 0 Prio: 0 :
Sleeﬂlﬂ-g = T5 -] T3
Writers ._ ._ .
- . Sleeping | @—t»T4| @
read write Readers
T4 TS

Prio: 0 Prio: 1

Figure 7-2. Execution Graph for Readers/Writer Locks

— e - T1
— e el - T2

g — T TS

4 — T4
e N] el + T5
| | = —— e

Work Critical Section Sleep Unlock Lock
(attempt)

88

In the UNIX98 implementation of RWIocks, blocked threads are placed on the writer's sleep
gueuein priority order. (Priorities are uninteresting for readers.) Weignore prioritiesin our
implementation, which is the right thing to do for most cases—better a faster, dightly unfair
RWlock than a slower, fairer one.

Y ou will be disappointed to discover that none of the three libraries define RWlocks. However, all
isnot lost. They can be built out of the primitives already available to you—mutexes and
condition variables. We build them in our extensions library. RWlocks are also defined in
UNIX98. A good example of using RWlocksisin Global RWL ock with Global Mutex to Protect
Salaries.

In our sample Javaimplementation (shown in Code Example 7-1), we use the explicit condition
variables and mutexes. This allows usto send wakeups to only that set of waiters (either one
writer or al readers) when we need to. If we had used native Java wait/ notify, we would have had
to wake up all sleepers at every wakeup point. In the vast mgjority of cases, that would not be a
problem, as we've aready assumed that writers are rare.

Example 7-1 Readers/Writer Locks in Java

// Extensions/RWLock.java
package Extensions;
import java.io.*;

public class RWLock {

Thread owner = null;

int nCurrentReaders = 0;
int nWaitingWriters = 0;
int nWaitingReaders = 0;
Mutex m = new Mutex(Q);

ConditionVar readersCV = new ConditionVar();
ConditionVar writersCV = new ConditionVar();

public String toString() {
String name;

it (owner == null)
name = "null™;
else
name = owner.getName();

return "<RWLock: o:" + name + r:" + nCurrentReaders +

ww
+ nWaitingWriters + " wr:" + nWaitingReaders + m +'">";
¥
public void readLock() {
m.lock(Q);
nWaitingReaders++;

while ((owner !'= null) || (nWaitingWriters > 0)) {
readersCV.condWait(m);

}
nWaitingReaders--;
nCurrentReaders++;

89

m.unlock(Q);

}
public void writeLock() {
m.lock(Q);
nWaitingWriters++;
while ((owner !'= null) || (nCurrentReaders > 0)) {

writersCV.condWait(m);

}

nWaitingWriters—-;
owner = Thread.currentThread();
m.unlock();

public void unlock() {
m.lock(Q);
it (owner = null) {
owner = null;
} else
nCurrentReaders--;

ifT ((nWaitingWriters > 0) && (nCurrentReaders == 0)) {
writersCV.condSignal();

3} else {
ifT ((nWaitingWriters == 0) && (nWaitingReaders > 0)) {
readersCV.condBroadcast();
}

}

m.unlock();

}
Priority Inheritance Mutexes

Should a high-priority thread (T2 in Figure 7-3) be blocked, waiting for alock that is held by
another thread of lower priority (T1), it may have to wait alonger time than seems reasonable,
because a third thread (T3) of middling priority might be hogging the CPU. To do justice to
overall system performance, it would be reasonable to elevate the scheduling priority of T1 to the
level of the blocked thread (T2). Thisis not done for normal Pthread mutexes, so user programs
may suffer from priority inversion. In POSIX, priority inheritance is an option during mutex
initialization and is probably useful only in realtime situations. Java, by contrast, is very
specifically not designed for realtime work, rendering the question of Pl mutexes moot. Y ou could
write them, but it's very doubtful that they would be useful.

Figure 7-3. Priority Inversion

90

lock(M1)

unlock{M1)
T T2 T3
Priority: 0 Priority: 2 Priority: 1
Runnable Sleeping Active
Mutex M1
Held? 1

Sleepers| @—+»{T2| @

FIFO Mutexes

Every now and then, you come upon a program where you want to ensure that the thread that is
blocked on a mutex will be the next owner of the mutex—something which is not in the definition
of smple POSIX mutexes. Typicaly, this situation occurs when two threads both need a mutex to
do their work: They hold the mutex for a significant length of time, they do their work
independently of each other, and they have very little to do when they don't hold it. Thus, what
happensisthat T1 grabs the mutex and does its work (see Figure 7-4), while T2 tries for the mutex,
and blocks. T1 then releases the mutex and wakes up T2. Before T2 manages to obtain the mutex,
T1reacquiresit. Thisisillustrated in case 2.

Figure 7-4. When FIFO Mutexes Are Valuable

— i M= it

1: The common case: Very little contention, normal mutexes work well.

T e e e b e e T
—ﬁ:l+(:|4—-+_+_-”'—— T2

2: The uncommon case: T1 keeps reacquiring the mutex,

3: The uncommon case: Using a FIFO mutex.

|] e m - -L

o : Slee Wakeu
Work Critical Section p P Unlock

{atte mpt)

91

Case 3 assumes that you have implemented FIFO mutexes, where the owner of the mutex
automatically hands ownership over to the first waiter when rel easing the mutex.

Thisisarare situation, and it merits reconsidering your algorithm before dealing with it. (If you
contrast case 2 and case 3 against case 1, you will notice that the two threads are spending alot of
time sleeping on the job. This might run better with fewer threads!) But should you find yourself
stuck with thiskind of problem, it is asimple programming effort for you to implement
guaranteed FIFO mutexes yourself. Once again, you almost certainly don't want FIFO mutexes.

Recursive Mutexes

Win32 mutexes are recursive—they can be locked multiple times from the same thread without
deadlocking. POSIX mutexes cannot. Building a recursive mutex with POSIX isnot at all difficult
(an excellent exercise!) and indeed recursive mutexes are part of UNIX98. The real question is not
if you can build them, but whether it's a good idea.

The chances are very high that if you have a situation where you want to use recursive mutexesin
C, you'd be better off redesigning your code so that you don't need them. Why are you locking this
mutex? To protect some shared data. Once you've done so, why would you ever want to lock it
again? Because your code is structured poorly. Fix your code.

Once you've locked arecursive mutex three times, you will need to unlock it three times before
any other thread can lock it. Y ou could write an "unlock_all" routine, but it would probably just
make your code even more confusing and very likely lead you to make mistakes.

In Java, synchronized sections are also recursive (Code Example 7-2). One synchronized method
may call another synchronized method of the same object from the same thread without
deadlocki ng.[ll A cdl towait() will release the lock and when wai t () returns, the lock will be
reacquired at the same depth. The usual programming Java style almost makes it a requirement to
have recursive mutexes. It would probably be a better thing if people wrote code such that they
had public methods which were synchronized, which in turn simply called internal methods to do
the real work, but thisis unlikely to happen. Indeed, if we had a perfect programming language,
thisissue would not even come up.

™ java does not actually specify that locks are recursive, merely that synchronized calls may be
made recursively. A sufficiently clever compiler could optimize most code so as to avoid actual
recursive mutexes. | don't know of any such compilers.

Example 7-2 Recursive Locking Calls in POSIX and Java

POSIX Java

void foo(){ public synchronized void foo() {
pthread_mutex_lock(&m);
bar(Q; bar(Q;
pthread_mutex_unlock(&m); S

}

void bar() { public synchronized void bar() {
pthread_mutex_lock(&m); // Deadlock
- wait(); // works finel
pthread_mutex_unlock(&m);

} }

Nonblocking Synchronization

92

All the POSIX synchronization variables have nonblocking calls associated with them. [For
POSIX, pthread_mutex _trylock() and sem_trywait().InWin32 there are timeouts
associated with each call.] These functions can be used for things such as spin locks and
complicated methods of coordinating threads while avoiding deadlock. It is very rare to ever use
these functions. Java doesn't have nonblocking synchronized sections; however, itisasimple
matter to write a nonblocking version of POSIX-style mutexes. But you probably don't want to do
that.

Spin Locks

Normally, you should hold alock for the shortest time possible, to alow other threads to run
without blocking. There will occasionally be times (few and far between) when you look at the
blocking time for a mutex (about 42 ps on an S$4, see Appendix C, Timings) and say to yourself
"42 us?! The other thread is only going to hold the mutex for 5 us. Why should | have to block
just ‘cause | stumbled into that tiny window of contention? It's not fair!"

Y ou don't. You can use aspin lock and try again. It'ssimple. Y ou initialize a counter to some
value and do apthread_mutex_trylock()—that takes about 2 us. If you don't get the lock,
decrement the counter and loop. Another 2 us. Repeat. When the counter hits zero, give up and

block. If you get the mutex, you've saved a bunch of time. If you don't, you've only wasted alittle
time.

In Code Example 7-3 we show the construction of a simple spin lock. Although thisis a good
description of aspin lock, it's actually a poor implementation. We will discuss the issues and show
a better implementation in Chapter 16.

Example 7-3 Simple Spin Lock

/* Don"t use this code! */

spin_lock(mutex_t *m) {
int i;
for (1 = 0; 1 < SPIN_COUNT; i++) {
iT (pthread_mutex_trylock(m) != EBUSY)

return; /* got the lock! */
}
pthread_mutex_lock(m); /* give up and block. */
return; /* got the lock after blocking! */

}

Spin locks can be effective in very restricted circumstances. The critical section must be short, you
must have significant contention for the lock, and you must be running on more than one CPU. If
you do decide you need a spin lock, test that assumption. Set the spin count to zero and time your
standardized, repeatable test case (you must have one!). Then set the spin count to aredlistic value,
and time the test again. If you don't see a significant improvement, go back to regular mutex locks.
Spin locks are almost aways the wrong answer, so be careful!

Adaptive Spin Locks

A refinement of spin locks, called adaptive spin locks, is used in many kernels. Y ou can't build
them yourself and they are not generally provided by the vendor, but you might be interested in
knowing what they are.

If you could find out whether the thread holding the desired mutex was in fact currently running
on a CPU, you could make a more reasoned judgment as to whether or not to spin. An adaptive

93

lock can do this. If the mutex owner is running, the requestor spins. If the owner isnt, the
requestor doesn't.

Unfortunately, in the user-level threads library, you generally cannot find out which thread holds a
mutex, and even if you could, the system call required to find out whether the thread in question
was on a CPU would be more expensive than just blocking. A clever trick in some operating
systems does make this possible.

A fair (and unanswered) question is: "Will the time saved by not spinning make up for the extra
time to use adaptive locks?" If you are using spin locks, you should know exactly how long a
critical section can be held. It may well prove faster to spin for the known time and ignore run
state entirely!

Java May Use Spin Locks

Asthe VM isbased on the underlying native threads library, it will use whatever type of mutex is
provided. For example, on Digital UNIX, and on Solaris 2.6 and above, al mutexes are actually
adaptive spin locks, 2 hence you will get them automatically. It is unlikely that you will ever
notice the difference.

211 we claim that spin locks are not very useful, why do the OSs make them the default? Because
a few programs will benefit a great deal and most programs don't really care.

Timeouts

Condition variables and wait/notify also alow you to limit the sleep time. By calling
pthread_cond_timedwait() [object.wait(timeout)], you can arrange to be awakened
after afixed amount of time, in case you're the impatient type. Should you know that the condition
ought to change within some time frame, you can wait for that amount of time and then figure out
what went wrong.

You can also use it simply as a thread-specific timer, although the standard timer functions
[sleep(), nanosleep(); Thread.sleep()] are more appropriate and easier to use. Be
aware that the system clock will limit the precision of the wakeup. A 10-ms resolution is typical.
If you want 100-us precision, you'll probably have to use something highly vendor specific, and
you may have trouble getting such precision at al.

Once the wait time expires, the sleeping thread will be moved off the leep queue and the wait will
return. For POSIX, pthread_cond_timedwait() will return avalue, ETIMEDOUT, so you
know that it has timed out. In Java, there is no such indication and you are forced to keep track of
the time yourself to determine that wai t () timed out as opposed to having been awakened
normally. (Thisisahit of ahassle, and awrapper function such as the one in Code Example 7-4 is
guite convenient.)

Indeed, in Javait isimpossible to know if you've actually timed out. Y ou can find out if the
current time is later than the timeout, but it's always possible that you received a spurious wakeup
before the timer expired but didn't see the wakeup until after expiration. This shouldn't be a
problem.

Elvis and the UFOs

94

In Code Example 7-4 we are faced with a serious situation. Evil space aiens are trying to kidnap
Elvisin order to breed him with other Earthlings. To save him, we must eliminate the aliens
quickly. If we fail to do so within a short time (10 seconds), they will escape with him and rock
and roll will belost.

Example 7-4 Recalculating Timeouts

public synchronized void saveElvis() throws InterruptedException {
long timeRemaining, time = 10000; // 10 seconds

while (TeliminatedAliens()) {
timeRemaining = timedWait(time);
ifT (timeRemaining == 0)
return false; // Too late. Elvis kidnapped.

time = timeRemaining;

}

return true; // Elvis lives!

public long timedWait(long waitTime) throws InterruptedException {
long now, timeSoFar, startTime;

startTime = System.currentTimeMillis();

wait(waitTime);

now = System.currentTimeMillis();

timeSoFar = now - startTime;

iT (timeSoFar > waitTime) {
return O;

}

waitTime = (waitTime - timeSoFar);
return waitTime;

}

Our main method [saveElvis()] will sitinawhi Ie loop, waiting for us to eliminate the aliens.
If we succeed, well return true from saveElvis(). If wetime out, we'll return false. If our
wait call returns before the time-out period and the aiens are not eliminated (perhaps some new
aliens hatched from evil alien pods, perhaps we just suffered a spurious wakeup), we will go back
and wait again. When this happens, we want to calculate the correct remaining time (instead of
starting over with anew 10 seconds). Our timedWait() method will do thisfor us by returning
the remaining time.

This method does the mgjority of the work. It records the starting time and callswai t() with the
appropriate timeout. When wa it () returns, it calculates how much time has elapsed. If it's more
than the original timeout period, timedWait() returnsa. If itisless, timedWait()

recal culates how much time is remaining and returns that, leaving it up to the caller to decide what
to do. If the caler callsit again, it will wait again for the appropriate amount of remaining time.
Thisisabit awkward, but it does give the desired results.

It doesn't make any difference should another thread wake up the sleeper 1 ms after it has timed
out. It also makes no difference should it subsequently take the ex-slegper 16 hours to become
active or acquire the lock. On the other hand, once the sleeper is awakened, it is taken off the sleep
gueue and the timer is turned off. If it takes another week before the wait function can get the
required lock and returns, too bad. Y ou will not get atimeout.

95

None of the wait functions will ever return without the lock being held—not on normal wakeups,
not on timeouts, not on spurious wakeups, not even on cancellation or interruption. It is possible
that right after waking up, athread must go back to sleep because the lock is held by another
thread!

Other Synchronization Variables
Join

Thejoin functions are similar to synchronization variables in that they allow you to synchronize
threads on the event of another thread exiting. Y ou almost never actually care when athread exits,
and almost everything you do with join, you can do with the other synchronization variables (see
Don't Wait for Threads, Don't Return Status).

Barriers

A barrier alows a set of threads to sync up at some point in their code. It isinitialized to the
number of threads using it, then it blocks all the threads calling it until it reaches zero, at which
point it unblocks them al. Theideais that you can now arrange for a set of threads to stop when
they get to some predefined point in their computation and wait for all the others to catch up. If
you have eight threads, you initialize the barrier to eight. Then, as each thread reaches that point, it
decrements the barrier and then goes to slegp. When the last thread arrives, it decrements the
barrier to zero, and they all unblock and proceed (Figure 7-5).

Figure 7-5. Barriers

—] i - T1
barrier.barrier\Wait(); .
| 'i : - | | T2
barrier barrierWait(): M
. | E—
barrier.barrierSet(4); barrier.barrierWait(); T
— T4

barrier.barrierWait();

Barriers are not part of any of the libraries, but they are easily implemented. They are also
implemented in our extensions package and are part of the proposed extensions to POSIX.

Single Barriers

A single barrier is similar to a barrier, except that one (possibly more) thread will be waiting for
the others (Figure 7-6). Thisis the synchronization technique we use in our programs to count
threads as they exit (instead of joining them all). Basically, each thread increments the single
barrier asit completes its work, while a single thread waits for them. When the last thread posts,
the sleeper is awakened.

Figure 7-6. Single Barriers

96

—] —T1

barrier.barrierPost();
— —T2
barrier.barrierPost();
— — T3
new SingleBarrier(3); barrier.barrierPost(); l
—] I | —T4

barrier.barrierWait();

It'sinteresting to look at the design of a single barrier (Code Example 7-5). Notice in particular
that the barrier must account for the situation where one waiter has been released but hasn't
finished. (It's been awakened but hasn't gotten the CPU yet.) If one of the posters hurries around
itsloop and tries to use the single barrier again (before the waiter is done), there could be trouble!
Thisis handled by counting both the number of posters and the number of waiters that have
completed the code. When you write your own synchronization variables, you should carefully
consider how those synchronization variables will work the second time around. Also notice how
interrupted exceptions are handled. (Well talk about thisin detail in Defined
Cancellation/Interruption Points.)

Example 7-5 Implementing Single Barriers in Java

// Extensions/SingleBarrier.java

/*
Unlike a Barrier, where all threads wait until all are ready, with
this Threads may indicate that they®"ve completed their job by doing

barrierPost() and then continue. Later, other threads (or the same)
may wait until everyone has done a barrierPost() by doing a
barrierWait().

By default, assume a single waiter. You must know the number of
threads that will be posting and the number that will be waiting.
*/
package Extensions;
import java.io.*;
public class SingleBarrier {

int currentPosters = 0, totalPosters = 0;
int passedWaiters = 0, totalWaiters = 1;

public SingleBarrier (int i) {
totalPosters = i;

}

public SingleBarrier (int i, int j) {
totalPosters = i;
totalWaiters = j;

}

97

public SingleBarrier () {
}

public synchronized void init(int i) {
totalPosters = i;
currentPosters = 0O;

public synchronized void barrierSet(int i) {
totalPosters = i;
currentPosters = 0O;

public synchronized void barrierWait() {
boolean interrupted = false;

while (currentPosters != totalPosters) {

try {
wait();
} catch (InterruptedException ie) {
interrupted=true;
}

}

passedWaiters++;

if (passedWaiters == totalWaiters) {
currentPosters = 0;
passedWaiters = 0;

notifyAll();
}

if (interrupted)
Thread.currentThread() - interrupt();

public synchronized void barrierPost() {
boolean interrupted = false;

// In case a poster thread beats barrierWait,
// keep count of posters.
while (currentPosters == totalPosters) {

try {
wait(Q);

} catch (InterruptedException ie) {
interrupted = true;

}

currentPosters++;

if (currentPosters == totalPosters)

notifyAll();

if (interrupted)

98

Thread.currentThread().interrupt(Q);

}
Win32 Event Objects

Win32 defines event objects, which are intended to handle the same things as condition variables.
Event objects have a"signaled" state associated with them, however, making them somewhat
problematic to use. There is an interesting paper showing the issues involved in constructing
POSIX-style condition variables from event objects (see Threads Research). This paper also
highlights the difficulties in using event objects correctly.

Win32 Critical Sections

In Win32 the term critical section is used to describe a simple mutex. The mgjor distinction
between Win32's mutexes and Win32's critical sectionsis that the former can be defined to be
cross-process, whereas the latter cannot. All Win32 synchronization variables other than critical
sections are kernel objects. Their handles must be closed before the kernel structures are released.
They are al'so much slower than critical sections by about two orders of magnitude (!).

Multiple Wait Semaphores

In Win32 it is possible to wait for (1) any one of a set of synchronization variables or (2) al of
that set. In POSIX and Java you would write the program differently and simply have a condition
variable (wait/notify) waiting on a complex condition.

Interlocked Instructions

In Win32, several special functions are defined: Interlockedlncrement(),
InterlockedDecrement(), and InterlockedExchange(). Asther names suggest, they
perform their tasks automatically without the need of an explicit lock. This makes them quite fast
but limits their usefulness greatly. (Sure, you've incremented the value, but you don't know if
someone else incremented it a microsecond later.) These are implemented by the Digital compiler
asintrinsics using LockedL oad/ StoreConditional instructions (see LoadL ocked/StoreConditional
and Compare and Swap.

The things you can do with them include reference counting, semaphores, and not much else.
These types of operations are not part of either POSIX or Java, and the requisite instructions are
not on all CPU architectures.

Message Queues

A question asked fairly often is how one can build message queues for threads—queues where one
thread can line up requests for another thread to process. If thisistruly what you need in your
program, the answer is quite simple: Build a producer/ consumer model with a queue as shown
earlier. This gives you both complete control over your program and a simple programming model.
What more could you ask for?

Win32 implements a kernel-level message queue that you can use for the same purpose. Asitis
part of the Win32 library, it makes sense to use it for cross-process communication, especially
when you don't have control over all the source code. Otherwise, in asingle process, it simply
imposes too heavy a burden, in both CPU time and code complexity.

99

The ability to interrupt athread and change what it's doing is a much different requirement and a
far more difficult one to achieve. If you are thinking along these lines, reconsider your objectives
very carefully! Why do you want to interrupt this particular thread? Could you get your work done
by (1) polling from this thread, (2) waiting for this thread to complete its present task and then
looking at a queue, or (3) simply creating a new thread to execute the task at hand? Thereis
probably a simpler means of doing what you want. Find it.

Win32 I/O Completion Ports

An /O completion port is Win32's answer to the producer/ consumer problem. Y ou create a
completion port with afile handle and then have a number of threads waiting on that completion
port. When a packet arrives on that handle, one of the waiting threads is awakened and given the
packet to work on. Upon completion, the thread sends any reply it needs to send and goes back to
wait on the port again. Windows NT hackers love these things.

Communicating via Streams

On occasion you will see discussions of communicating between threads via streams, pipes,
sockets, or some other higher level of communication. There are valid reasons for doing this, but
most of those reasons boil down to "to interface with existing code.” If you're working with an
interface that someone else defined, OK. Do it that way. Otherwise, forget it! What do you think
you're doing? How often do threads want to exchange bytes? Practically never. They want to
exchange objects. Even when they're using strings, what they want to communicate is the string,
not the characters that make it up. So pass a string object.

Consider what a stream does. It supplies charactersto athread. If there are no charactersin the
stream, the caller blocks. When another thread writes into the stream, the first thread wakes up,
removes the new characters, and starts over again. It's a producer/ consumer model restricting the
gueue to bytes. And which one do you think is faster?

So you can communicate via streams, but... Don't do that.

Volatile

This keyword in C is used to indicate to the compiler that the variable in question changes
independent of the local code. Hence, the compiler is not allowed to optimize away |oads or stores.
Indeed, loads must come from main memory, not be filled from cache. Stores should be expedited
around the store buffer. The idea here is that memory-mapped 1/0 uses memory addresses as 1/0
registers and every read or write is meaningful. Thisis completely orthogonal to threads. Do not
use volatile with threads, thinking that it will solve any threading problem. Y ou won't like the
results.

The Java spec says that volatile can be used instead of locking. It's right but misleading. Use
locking. (See Volatile: The Rest of the Story.)

Performance

Condition Variables vs. wait/notify

100

Aswe've noted, there are two disadvantages of wait sets vs. condition variables: With condition
variablesit is clear from the code what you're waking up, whereas noti fyAl 1 () will potentially
wake up alot of threads unnecessarily and waste alot of time.

The first point is unambiguous, but the second has that word potentially in it. What about the
realities? We certainly have no problem in producing cases where performance is indeed abysmal,
but how common are those cases?

Let's take atypical client/server program that has been optimized for a specific platform. Our
primary concern is going to be obtaining maximum throughput on a dedicated machine. Wed like
lower loads to be efficient also, but that is strictly secondary.

Let's assume that we have one producer thread listening to al clients. It will take 1 ms of CPU
time to receive arequest and enqueue it. Some number of consumer threads will degueue those
requests and process them as usual. We'll assume that all processing requires 4 ms of CPU and
also requires one disk access averaging 15 ms latency. Further, well assume a sufficient number
of disks and distribution of datato allow any number of overlapping requests to run completely
simultaneoudly (i.e., 15 ms). Finally, well choose a 10-CPU machine.

We can conclude that the system will be 100% CPU-bound and that each request/reply will
require 5 ms of CPU, allowing 200 requests/s on each CPU. Total latency will be 20 ms/request;
thus each thread will be able to process 50 requests/s. To obtain maximum throughput, we'll need
4 threads per CPU—thus atotal of 40 threads on our 10 CPUSs, processing 2000 requests/s.

If we conveniently assume a very steady |oad with negative feedback from the buffer (i.e., aclient
who iswaiting for areply will not issue any new requests), the buffer will remain partialy full at
all times and no consumer threads will ever be waiting on an empty buffer, nor will the producer
thread ever be waiting on afull one. The potential problem with excessive wakeups due to
notifyAll1 () will be completely moot.

Now let's assume an overload. The buffer will remain full at all times and the producer will be
blocking regularly, while the consumers will never block (thelist is never empty). Once again, no
excessive wakeup problem!

Finally, let'slook at the underloaded case. Instead of the peak load of 2000 requests/s, let's look at
1000 requests/s. The buffer will be empty almost al the time and an average of 20 consumer
threads will be sleeping. Each time the producer adds a request to the queue, it will wake up all 20.
One consumer will get the request and the other 19 will have to go back to sleep. Thisisclearly a
waste, but how much of one, and do we care?

On an S$4, a spurious wakeup costs about 100 us. With arate of 100 requests/s, thiswill cost us
about 100 ms, roughly 1% of available CPU power (on our 10 CPUs). Do we care about a 1%
waste on a hon-peak load? Not very much. The conclusion isthat on any similar program, the
excessive wakeup problem is not amajor performance problem at all!

By contrast, let's look at the extra CPU costs of using an explicit condition variable. A cal to
condWait()/condSignal () costs about 9 us on an S$4, whereas wait/notify costs 3 us. In our
maximum throughput example we never block on the condition variable anyway, so there's no
cost. In our overflow example, we'd be making 2000 calls/s, wasting 100 ms, 1% of CPU. In our
underloaded example, we'd be saving 100 ms. None of these numbersis very large and the entire
performance issue is completely moot for this kind of program (and indeed, probably for any
"normal" program!).

The one perversely funny aspect of this entire issue is that wait/notify isimplemented in terms on
condition variablesin the underlying POSIX library! If condition variables were included as part

101

of the VM, the performance numbers would turn around completely! Always use
wait()/notifyAll () unlessyou have avery specific need for condition variables.

Coarse vs. Fine Grain Locking

At what level do you put your locks? Y ou could have one big lock that covered everything, and
then any time any thread wanted to access any shared data, it would need that one lock. This
would be a good thing because you would not lock it very often. This would be bad because you'd
be holding it for along time.

Y ou could do exactly the opposite and use a different lock for every set of variables, locking and
unlocking them quite often. This would be a good thing because the locks would be free most of
the time and you could get lots of concurrent operations. It would be bad because you would
spend alot of timein locking and unlocking overhead.

In small programs this may not be an issue. In larger programsiit's quite likely that you'll choose
different levels of granularity for different sections. In Manipulating Lists we show a small search
and update program that demonstrates this trade-off.

What to Lock

Closely related to the question of granularity is the question of what you want to protect. In the
simple casg, it's pretty obvious. Y ou want to protect a queue? Y ou lock the queue object every
time you do anything with the queue. That's easy. Folks sometimes get confused when they're
changing several things concurrently. What if you wanted to add items to your queue and you also
wanted to change the pointer to the queue itself? In this scenario it is highly likely that your lock
on the queue object would be counterproductive, because it would make you think you were
protecting the queue (which of course you are), whereas what you really needed to do was to
protect the variable that pointed to the queue.

Let'slook at amore likely scenario. Let's assume that you have a queue of people and you want to
do very fine grained locking on that queue by locking each individual element of that queue
(instead of having one big lock protecting the entire queue). Thisis a perfectly reasonable thing to
do and in some cases is the most efficient method of locking a structure. (Well look at the
performance of this design in more detail in Manipulating Lists.)

The question we want to answer hereis "What should | lock?" We can point you to many
examples of programs where people have locked the wrong thing. In Figure 7-7 we see a queue of
people and their salaries. Each person object also contains alock. What does that lock protect? It
can protect pretty much anything you want it to (you're the programmer), except for itself or the
object that containsit.

Figure 7-7. Friends/Enemies with Only One Local Mutex Lock

102

list | @] i'"
; :\.. Jan $15000| @

Kim $99000 .—')
O g

Kari $80000| @

The most obvious things for the lock in Jan's object to protect are the data for Jan, along with Jan's
"next" pointer. A better choice isto have that lock protect the datain Kim's object along with Jan's
"next" pointer. What that lock cannot protect is the pointer 1ist, because the only way to find Jan
in the first placeisto follow list. So even though you may hold Jan's lock, ancther thread will still
be able to come in and take Jan off the queue by changing 1ist. Thisiswhy it's better to have
Jan'slock protect Kim's data. Y ou need to hold Jan's lock anyway in order to access Kim, so why
complicate matters?

What if you have another thread which has a pointer (ptr) to Kim? Y ou'd better not. Only the
thread that holds Jan's lock is allowed to access Kim's object, except for data that is constant or
data that might be out of date and you don't mind. Now if you remove Kim from the list, things
change. Jan's lock will no longer protect Kim (it will now protect Kari) and you will be able to do
anything you want with Kim's object because the thread that removes Kim from the list will be the
only thread that has access to Kim. If you then pass Kim to another thread, you will need to come
up with another method of protecting Kim.

The main point here is that when manipulating complex data structures you need to consider your
locking scheme carefully.

Double-Checked Locking

In asmall number of very restricted cases, it is reasonable and legal to look at shared data values
without holding any locks. Obviously, anything that's a constant may be used without alock. In
Javathisincludes objects that also contain shared variables and that may be moved onto or off of
shared lists. [Thisisadifferent situation than in C/C++, where you explicitly return unneeded
structuresto the heap via free (). In Java, the garbage collector will take care of that.]

The other situation where you may look at unprotected shared data is when you don't mind if that
datais out of date. A monitor that runs a periodic display of the current value of some variableis
always going to lag behind the actual value of that variable. Y ou could reasonably look at the
value in question without locking as long as that value is guaranteed to change atomically. So
values of type int, char, and float, along with pointers, are fine. Depending upon your
hardware, 64-bit values such as double and 1ong may also be legal. Of course, you will not
know how much the value of that variable changes while you're displaying it. If it has a sudden
peak to 10 timesits previous value, is that important? Y ou're the programmer.

103

Display of avalueisagood example because it's simple. It's a bad example because it doesn't gain
you anything. Displaying something is an expensive operation, requiring hundreds to thousands of
microseconds. Saving 1 us by skipping alock is not going to make a difference in performance,
but it will make your code alittle uglier.

A better example of this situation is what's come to be known as double-checked locking (Code
Example 7-6). Thisis useful in situations where avalue is going to beinitialized dynamically
exactly once. The naive way of doing thisisto have each thread lock alock and then check to see
if the data has been initialized yet, doing the initidlization if not. With double-checked locking you
can skip the lock and look directly at the value in question. If the valueis valid, you know it has
been initialized and that you can useit. If the valueisinvalid (presumably nul 1), you lock the
lock, recheck, and initialize. It is essential that you lock and recheck, asit is always possible for
another thread to be running the same code at the same time.

Example 7-6 Double-Checked Locking

void foo() {
ifT (Yobject.initialized) {
synchronized (object) {
iT (lobject.initialized) {
object.initialize();
object.initialized = true;

}

use object

}

Y ou will probably never have use of thistechnique, asits use is so limited. Dynamic initialization
likethisis generally avoidable as you normally do initialization statically at load time or possibly
directly frommain() before any threads are started. Be very careful when doing this, asit's easy
to do wrong.

Synchronization Problems

A number of things can go wrong when you try to coordinate the interactions of your threads. Not
using synchronization variables is the most obvious and most common. But even when you've
been careful to lock everything in sight, you still may encounter other problems. All of them have
solutions; none of them have perfect solutions.

Deadlocks

A deadlock isakind of catch-22 in which one thread needs another thread to do something before
it proceeds, and the other thread needs something from the first. So they both sit there, doing
nothing, waiting for each other, forever. Thisis abad thing.

A typical deadlock (Figure 7-8; Code Example 7-7) occurs when thread T1 obtainslock M1, and
thread T2 obtains lock M2. Then thread T1 triesto obtain lock M2, while thread T2 tries for lock
M1

Example 7-7 Deadlock in Java

104

Thread 1 Thread 2

public void frob() { public void tweek() {
synchronized (one) synchronized (two)
synchronized (two) {...} synchronized (one) {...}
}

Figure 7-8. Typical Deadlock

lock(M1) lock(M2)
lock({M2) - lock(M1) -
T1 T2
M1 M2
Held? 1 Held? 1

Sleepers| @—»{T2] ® | Sleepers| @—{®={T1] ® |

Although typically atwo-thread problem, deadlocks can involve dozens of threads in acircle, all
waiting for one another. They can involve a single thread that tries to obtain the same
(nonrecursive) mutex twice, and they can involve athread that holds alock dying while another
thread iswaiting for it.

Deadlocks can always be avoided simply by using careful programming practices. If you declare a
lock hierarchy and always acquire locks in the same order—A before B before C, etc.—then there
is no chance of a deadlock. When you want to do out-of-order locking, you can use the trylock
functions to see whether you can get al the locks you need, and if not, then release them al and
try again later (Code Example 7-8).

Example 7-8 Locking Mutexes Out of Order

pthread_mutex_lock(&m2);

if (EBUSY == pthread_mutex_trylock(&ml)) {
pthread_mutex_unlock(&m2);
pthread_mutex_lock(&ml);
pthread_mutex_lock(&m2);

}

do_real_work(); /* Got “"em both! */

A typical instance of this out-of-order locking is the Solaris virtual memory system, which must
lock access to pages. Thereis an official hierarchy which says that page 1 must be locked before
page 2, etc. Occasionally, the VM system will lock page 2 and then discover that it a'so wants
page 1. It will then execute atrylock on page 1. If that succeeds, all iswell and it proceeds. If it
fails, it releases the lock on page 2 and requests the locks in proper order 2! Thisisasimple
optimization that saves a bit of time in the normal case and is always correct.

B! Note that you must release lock m2. Just spinning, waiting for m1 to become available, will not
work.

105

Obviously, this kind of design is not possible using Java's synchronized sections. Y ou could
extend our Mutex class to behave like this, but the overhead is so large that it is very unlikely to
be worth the effort.

Race Conditions

Races are instances of indeterminacy in otherwise deterministic programs. The result a program
will give in arace condition depends upon the luck of the draw—uwhich thread happens to run first,
which LWP happens to get kicked off its processor by the page daemon, etc. Race conditions are
generally bad things, although there are times when they are acceptable. Certainly, one would be
upset if 1414.60/2.414 came out to be 586 on one run of a program and 586.001 on the next.

Most commonly, race conditions come around in programs in which the programmer forgot to
write proper locking protection around some shared data or when locks were taken out of order.
Still, it is certainly possible to write code that is perfectly correct, yet suffers from races. Consider
Code Example 7-9; if v starts with the value one, the result will either be one or zero, depending
upon which thread runsfirst.

Example 7-9 Simplistic Race Condition

Thread 1 Thread 2
synchronized (one) { synchronized (one) {
v=v-1; V= Vv * 2;
} }

It isworth noting that some instances of indeterminacy in a program are acceptable. If you write a
program that searches for a solution to a chess prablem by creating lots of threads to consider lots
of different possible moves, you may get different answers depending upon which thread
completesfirst. Aslong as you get one good answer ("Checkmate in three!"), you don't really care
if you move your pawn or your rook first.

Recovering from Deadlocks

A common question is, "What if athread that is holding alock dies? How can | recover from
this?' Thefirst answer is, "You can't." If athread was holding alock, it could legitimately have
changed portions of the data that the lock protected in ways impossible to repair. If it wasin the
midst of changing the balance of your bank account, there is no inherent way for you to know
whether or not it had credited the deposit it was working on. Thisis, of course, avery bad thing.

Pthreads makes no provision for this situation. Only the owner of a mutex can release it, and
should that owner die, the mutex will never be released. Period. Thisis not really a problem for
well-written programs. The only way for athread to die is for the programmer to write the code
that killsit. Thus, the proper answer hereis, "Fix your code!"

Y ou can, however, build arbitrarily complex "recoverable" locks from the primitivesin all the
libraries. Using them properly is the trick. Win32 and Ul robust mutexes do allow recovery should
the owner thread die. Thisis nice functionality if you need it, but it makes mutexes more
expensive to use when you don't.

In a single-process, multithreaded program, recovering from deadlocks is not too much of an issue.
Y ou have complete control over your threads, and if your process dies, all the threads die with it.

In a shared memory, multiple-process program, it is more problematic, asit is possible for one
process to die while leaving others running.

106

It is somewhat reasonable to consider recovering from a deadlock in the case of a process dying
unexpectedly. In other deadlock situations, where threads are waiting for each other, you really
shouldn't be looking at recovery techniques. Y ou should be looking at your coding techniques.

System V-shared semaphores do make provision for recovery, and they may prove to be the
solution to your problem. They provide room for a system-maintained "undo” structure, which
will be invoked should the owner process die, and they can be reset by any process with
permission. They are expensive to use, though, and add complexity to your code.

Both Win32 and Ul robust mutexes have built-in "death detection™” aso, so that your program can
find out that the mutex it was waiting for was held by a newly dead thread.

Still, just having to undo structures that can reset mutexes does not solve the real problem. The
data protected may be inconsistent, and thisis what you have to deal with. It is possible to build
arbitrarily complex undo structures for your code, but it is a significant task that should not be
undertaken lightly.

Database systems do this routinely via two-phase commit strategies, as they have severe
restrictions on crash recovery. Essentially, what they do is (1) build a time-stamped structure
containing what the database will ook like at the completion of the change; (2) save that structure
to disk and begin the change; (3) complete the change; (4) update the time stamp on the database;
and (5) delete the structure. A crash at any point in this sequence of events can be recovered from
reliably.

Java does not have anything similar to these recoverable mutexes, nor does it need them. Java
programs are either single process programs (in which case a deadlock is a programming bug) or
they use RMI or some other kind of remote method invocation (in which case the RMI packageis
responsible for dealing with dead processes).

Be very, very careful when dealing with this problem!

The Lost Wakeup

If you simply neglect to hold the lock while testing or changing the value of the condition, your
program will be subject to the fearsome lost wakeup problem. This condition occurs when one of
your threads misses awakeup signal because it had not yet gone to sleep. Of course, if you're not
protecting your shared data correctly, your program will be subject to numerous other bugs, so this
is nothing special. In Javait is not possible to suffer the lost wakeup problem just using
notify()/wait() directly because you must hold the lock before you can call notify ().
However, you can create constructs in Java that will have this problem. The Mutex and
ConditionVar classesthat wejust built are subject to lost wakeup.

In Code Example 7-10 (slightly modified from our StopQueue example), it is possible for the
stopper (which has failed to use the lock) to decide that it's time to stop and broadcast right at the
instant between when the consumer checks the condition and when it goes to sleep. This code will
promptly hang.

The probability that the stopper would get to run at exactly the right (er, wrong) instant is very
small. (In 1000 test runs of this code it did not occur once.) If weinsert aslight delay in the
consumer between the test and the call to condBroadcast(), we can get it to happen. (In the
example code on the Web, the program LostWakeup allows you to vary the sleep time (de lay)
to see how often it occurs on your machine.)

Example 7-10 The Lost Wakeup Problem

107

Thread 1 (The Consumer) Thread 2 (The Stopper)

while (true) {

mutex. lock(); Thread.sleep(delay);
while (empty() & !stop) { System.out.printIn(*'Stopping™)
Thread.sleep(delay); // mutex. lock();

stop = true;

// mutex.unlock();
consumerCV.condBroadcast();
producerCV.condBroadcast();

consumerCV.condWait(mutex) ;

}

it (stop)

break;
item = remove();
mutex.unlock();
producerCV._condSignal();
server .process(item);

}
InterruptedException

Exceptions are awonderful mechanism to handle unusua situations. They allow you to write your
code in asimple, straightforward fashion and still be able to have specia code for those special
situations. Moreover, should those special situations occur in many diverse locations in your code,
you are able to place a single exception handler at an appropriate location in your code, obviating
the need for large amounts of repeated code. Finally, because you can allow an exception to
propagate up through the call stack, it also provides you with a convenient method of executing
"indirect jumps" [by means of C's longjmp() or Lisp's catch/throw blocks].

Thisisfine when you intend to handle these exceptions, but what if you don't intend to handle
them? What about when you know there won't be any exceptions? What about
InterruptedException when you know you are never going to call interrupt()?Or
when you know you're simply going to ignore it?

So far, our code has been sprinkled with bits that ook as shown in Code Example 7-11.

Example 7-11 Ignoring InterruptedException

try {

wait(Q);
} catch (InterruptedException ie) {
}

The obvious alternative, propagating the InterruptedException up thecal chain, isviable,
but a hassle. Just about every major method in your program will be propagating
InterruptedException, and should you be making lots of changesto your code, you'll be
inserting and removing "throws InterruptedException” regularly (Code Example 7-12).
What a pain for something that you won't be using.

Example 7-12 Propagating InterruptedException

public void foo() throws InterruptedException {
wait() or sleep() or read() etc.

}

108

We solved this dilemmain our code for sleep() by writing a method
InterruptibleThread.sleep() which simply caught InterruptedException and then
interrupted the thread again as it exited. The same generd technique can be used for wait() or
any other method that throws InterruptedException (Code Example 7-13).

Example 7-13 Ignoring InterruptedException

public static void sleep(long time) {
boolean interrupted = false;

try {
Thread.sleep(time);

} catch (InterruptedException ie) {
interrupted = true; // Forget timeout
}

if (interrupted)
Thread.currentThread() - interrupt();
}

This technique is nice when you don't want to handle interrupts at al the places they can occur. It
is perfectly reasonable to have an interruptible program that pays attention to these interrupts only
at certain points. Well go into greater detail in Implementing enablel nterrupts().

APIs Used in This Chapter

The Class Extensions.RWLock

Thisisone of our classes. It implements POSIX-style readers/ writer locks. RWL ocks are useful
only in very limited circumstances. Time your program carefully first!

readLock writelLock
public void readlLock()
public void writeLock()

Thislocks the RWLaock in either reader or writer mode. If aread lock is held by a different thread,
this thread will be able to get another read lock directly. If awrite lock is requested, the current
thread must go to sleep, waiting for it to become available.

Reference: (Chapter 7.

unlock
public void unlock()

This unlocks the RWLock (both for readers and for writers). If thisis the last reader, it will wake
up one writer thread (if any are deeping). If thisisawriter, it will wake up one writer thread (if
any are sleeping); otherwise, it will wake up al the sleeping threads with reader requests.

\Reference: \Chagter 7.

The Class Extensions.Barrier

109

Thisisone of our classes. It implements barriers.

Comment:

You won't use these very often, but if you're implementing something like a
simulation, these might come in useful.

Barrier

public Barrier (int i)

This creates a barrier object with acount of i.

Reference:

(Chapter 7.

barrierSet
public synchronized void barrierSet(int i)

This resets the barrier count to i.

Reference:

(Chapter 7.

barrierWait
public synchronized void barrierWait() {

This causes the calling thread to block until count threads have called barrierWait().

\Reference:

\Chagter 7.

The Class Extensions.SingleBarrier

Thisisone of our classes. It implements barriers with a divided set of waiters and posters.

/Comment:

\You won't use these very often, perhaps only for example programs.

SingleBarrier
public SingleBarrier (int i)

This creates a single-barrier object with acount of i.

Reference:

Chapter 7.

barrierSet
public synchronized void barrierSet(int i)

Thisresets the single barrier count to i.

\Reference:

\Chagter 7.

barrierWait
public synchronized void barrierWait() {

This causes the calling thread to block until barrierPost() hasbeen called count times.

Reference:

(Chapter 7.

110

barrierPost
public synchronized void barrierPost() {

This increments the counter for how many timesbarrierPost() has been called.

Reference: Chapter 7.

Summary

A wide variety of more complex synchronization is possible, but probably not useful. Building
your own synchronization variablesis not terribly difficult, but it can be quite subtle. Deadlocks
can aways be avoided; race conditions are more problematical. Trying to recover from deadlocks
isvery, very tricky. Interruptions are areal pain.

111

Chapter 8. TSD

Thread-Specific Data

JavaTSD

APIsUsed in this Chapter

The Class javalang.Threadl ocal

In which explanations of thread-specific data, their use, and some implementation details are
provided.

Thread-Specific Data

Sometimes it is useful to have data that is globally accessible to any function, yet still unique to
the thread. Two threads that are printing out data, one in French and the other in Danish, would
find it most convenient to have a private global variable, which they could set to the desired
language. Any function at any depth could then access this variable without the hassle of passing
it at every call.

TSD providesthiskind of global data by means of a set of function calls. The techniques used by
POSIX and Java provide the same functionality with one major distinction.

In POSIX, TSD isimplemented by creating an array of key offsetsto value cells, attached to each
thread structure (Figure 8-1). To useit, you first create a new key, which is then added to the TSD
arrays for all threads!¥! Keys are just variables of type pthread_key t (which are opague data
types, most commonly integers), and key creation (initialization is a more descriptive term)
consists of setting the value of the key to the next location. Once the key has been created, you can
access or change the value associated with the key viacallsto pthread_getspecific() and
pthread_setspecific().

. Adding the two element to the array need not be done at creation time. It can be more effective
to add the element first at first access time for each threat.

Figure . Thread-Specific Data in POSIX

112

TSD Keys 8 et

foo key ¥}

bar key 1

house key 2

k

(1 .-""""_'_F
Destructors ﬁ

] - O HULL
1, funo () 1| 13 1| 13
1 NULL 2 10 N 5

2 funz (]

TSD istypically used to declare al the keys globally, initialize (er, "create”) them in main(),
then create threads and start the program for real. If you are creating some TSD in alibrary, you
must arrange for that library to do theinitiaization before use. In Code Example 8-1, bar () in

thefirst thread will see ‘V@ ,m.and in the second thread will see

2l One of my best friends, a math wizz, purchased a small farm in rural Minnesota. His address was
1414, rural route 2

Example 8-1 Use of POSIX TSD

pthread_key t house_ key;

foo((void *) arg) {
pthread_setspecific(house_key, arg);

bar();
bar() {
float n;
n = (float) pthread_getspecific(house_key);
}
main() {
pthread_keycreate(&house_key, NULL);
pthread _create(&tid, NULL, foo, (void *) 1.414);
pthread create(&tid, NULL, foo, (void *) 3.141592653589);
}

In Win32 there is a different version of TSD. Win32 callsit dynamic thread local storage and its
useisvirtualy identical to TSD in POSIX (Code Example 8-2). Other than the lack of destructors,
you may use it in the same fashion as TSD.

Example 8-2 Dynamic TLS in Win32

113

key = TlIsAlloc(Q);
TiIsSetValue(key, data);
data = TIsGetValue(key);

The actual implementation of TSD is different from vendor to vendor, but in general they're al the
same. When accessing a TSD item, we first need to know which thread we're running on. Think
about this for a moment. How does a thread find out who it is? How doesiit find its own thread
structure? On SPARC machines, there is one register (g7) reserved for special use. Compiler
writers are instructed not to use it. Here the threads library places a pointer to the thread structure
of the running thread. The thread first dereferences g7 to find the structure [thisis what
pthread_self() and Thread.currentThread() do], then it dereferences an element of
the structure to find the TSD array. Finaly, it looks up the appropriate element in the array.

Java TSD

Javadid not provide for TSD directly until Java 2. Thiswas not a problem, however, as the ability
to extend the thread class meant that you could simply add an instance variable to a subclassif you
werein control of thread creation (Code Example 8-3).

Thistechniqueisfairly straightforward, efficient, and gives you most of the functionality that
POSIX TSD does. It does require you to declare the TSD as part of the thread, versus the more
dynamic nature of POSIX TSD, but thisis unlikely to be a problem. (In this simple example we do
not provide any protection to ensure that only the current thread can access the TSD, but clearly
no other thread should.)

Example 8-3 Implementing TSD by Subclassing Thread

public MyThread extends Thread {
float transcendental;
}

public MyRunnable implements Runnable {
public run() {
((MyThread)Thread.currentThread()) -transcendental =
3.1415926535;

bar():

public bar () {
meditateOn(((MyThread)Thread.currentThread()) -transcendental);
}

}

Thread t = new MyThread(new Myrunnable());
t.start();

Nonetheless, in Java 2, aTSD class (actually called TLS— thread local storage) is provided that
will give you a more dynamic, POSIX-like functionality (Code Example 8-4). In this version you
create an instance of the ThreadLocal class, then when you call the set () and get() methods,
you will be manipulating a thread-specific value. Thisis essentially just a hash table indexed on
the current thread. The values stored by ThreadLocal do need to be of typeObject, so
primitive types must be contained in the appropriate wrapper type (e.g., Integer for int).

114

Example 8-4 Using ThreadLocal in Java

public MyObject {
static ThreadLocal transcendental = new ThreadLocal();
}

public MyRunnable implements Runnable {
public void run() {
MyObject.transcendental .set(new Float(3.1415926535));
barQ);
}

public void bar () {
meditateOn((Float) MyObject.transcendental.get());

}
}

Thread t = new Thread(new Myrunnable());
t.start();

You still have the problem of figuring out how to pass the ThreadLocal object around. Here, we
have chosen to make it a static instance variable of MyObject. When you are creating all the
threads yourself, you can use the first method, subclassing Thread, but when you are using
threads that someone el se created, you will need to use thread local storage. Clearly, any kind of
TSD isgoing to be slower than accessing simple global variables. Note that the current
performance of ThreadLocal is significantly worse than using our home-built thread-local
variables! (See Timings.)

The other missing piece of functionality isthe lack of a specific TSD destructor. The primary use
of aTSD destructor in POSIX isto reclaim dynamically allocated data, something the Java
garbage collector will do automatically. The other, more general use of a destructor isto return a
specific resource (e.g., to replace an object onto alist of free objects, close a file descriptor, socket,
etc.). Thereisno direct parallel for thisin Java. If you find yourself with thiskind of problem

(very unlikely!), you will need to write an ad hoc method to take care of it at thread exit time.

Should you wish to know what Runnab I e your thread is, you can use athread local variable or
thread local storage to record that information (Code Examples 8-5 and 8-6).

Example 8-5 Recording the Runnable in the Thread

public class MyThread extends Thread {
Runnable runnable;

public MyThread(Runnable r) {

super(r);
runnable = r;

}
Example 8-6 Recording the Runnable in Thread Local Storage

public class MyThread extends Thread {
static ThreadLocal runnable = new ThreadLocal();

public MyThread(Runnable r) {
super(r);

115

MyThread.runnable.set(r);

APIs Used in This Chapter

The Class java.lang.ThreadLocal

This class implements thread local storage by defining an object that can hold different values for
different threads.

ThreadLocal
public ThreadLocal ()

This creates a new thread local object.

\Reference \Chagter 8.

get set
public Object get()
public void set(Object 0)

These functions set/get a thread-local value for this object.

\Reference: \Chagter 8.

Summary

We described the basic design of thread-specific data storage, its use, and some of the
implementation details.

116

Chapter 9. Cancellation

What Cancellation Is
INTERRUPT()

A Cancellation Example

Using Cancellation

Cleanup

I mplementing Enabl el nterrupts()

A Cancellation Example (Improved)
Simple Polling

APIsUsed in this Chapter

The Classjavalang.Thread

The Class Extensions.InterruptibleThread

In which we describe the acrimonious nature of some programs and how unwanted threads may be
disposed of. The highly complex issues surrounding bounded time termination and program
correctness are also covered. A simple conclusion is drawn.

What Cancellation Is

Sometimes you have reason to get rid of athread before it has completed its work. Perhaps the
user changed her mind about what she was doing. Perhaps the program had many threads doing a
heuristic search, and one of them found the answer. Perhapsiit's time to shut down a server. In
such cases you want to be able to have one thread kill the other threads. Thisis known as
cancellation (a POSIX term; see Figure 9-1).

Figure 9-1. Thread Cancellation

(thread exit)

— |

SIGCANCEL (maybe) /_KJT

Tl.zstop()

= —

No matter how you choose to deal with the issues of cancellation, be it in Java, Win32, or POSIX
threads, the primary issues remain the same. Y ou must ensure that any thread that you are going to
cancel releases any locks it might hold, frees any memory it may have allocated for its own use,
and leaves the world in a consistent state (Code Example 9-1).

Example 9-1 Asynchronous Thread Cancellation

POSIX Java Win32
Tl.stop() pthread_cancel (T1) TerminateThread(T1)

117

The fundamental operation is quite simple: Y ou call the cancellation function with the target
thread, and the target thread dies sometime "soon." The ramifications of doing this are, however,
quite complex, making cancellation one of the most difficult operations to execute correctly.

Polling for Cancellation

There are three basic techniques of cancelling threads. The simplest isto do it ad hoc. You set a
flag and let al the target threads continue to run until they seeit. Thisiswhat we did in our
StopQueue example. Thisis great unless one of your threads is blocked waiting for 1/0, in which
case it may never notice that the flag has been set.

Asynchronous Cancellation

The second method is known as asynchronous cancellation. Thisis what most people think of first.
You call the cancel function and the target thread dies "soon."™! I the thread is sleeping or
blocked on 1/O, it will be awakened in order to die.

™ The actual delivery time of a stop request is not specified. The most obvious implementation for a
truly asynchronous stop is to use UNIX signals or NT's equivalent. Signals in UNIX are indeed
asynchronous, but not as immediate as you might imagine. The usual implementation of signals is
for the caller to mark a bit in the target's process structure, and for the caller to look at that bit only
when context switching on the system clock. Thus delivery of signals, hence stop notifications,
occurs only at clock ticks. Perfectly legal but not intuitive.

Thisisthe only type of cancellation that Win32 provides. You call TerminateThread() and
the target thread dies. Unfortunately, should that thread own some resource, hold some lock, or
have malloced some memory, your program will bein trouble. This type of cancellation is known
as unrestricted asynchronous cancellation, and it is the responsibility of the killer to know that the
victim can be safely eliminated at the time of cancellation—a difficult task at best, impossible at
worst.

In POSIX you get this behavior by calling pthread_cancel () with the cancellation type set to
asynchronous. In Java, the method thread.stop() behaves similarly, save that any
synchronized sections will be released and any final Iy clauses will be executed.

Deferred Cancellation

Thethird type of cancellation is known as deferred cancellation. In this type of cancellation, a
thread exits only when it polls the library explicitly to find out if it should exit. When the thread
blocksin alibrary call which isacancellation point [e.g., sem_wait()], the thread will be
awakened in order to exit. POSIX defines a set of standard library functions that must call it (see
Defined Cancellation/Interruption Points).

In POSIX, there's afunction pthread_testcancel (), which checksto seeif abit has been
set. If the bit is set, it exits the thread; otherwise, it returns, and the thread continues normally.

Using interrupt() for Deferred Cancellation

In Java, InterruptedException and InterruptedlOException are used in much the
same fashion as POSIX deferred cancellation. One thread may call interrupt() on ancther
thread, and when that thread hits an interruptible point (the Java analogue to POSIX cancellation
points), that method will then throw an InterruptedException or
InterruptedlOException, and you may then handle that exception as you seefit. If your
objectiveisto kill the thread, you may simply have the exception handler exit the thread. If you

118

merely wanted the thread to quit what it was doing and start doing something else, you can do that.
(Thisisrather nicer than POSIX cancellation, as you may choose to do other things upon
interruption.)

Progressive Shutdown

There are those who suggest that a progressive shutdown scheme is more appropriate than
cancellation. By progressive, they mean first set aflag and wait. If that doesn't do the trick, reduce
the scheduling priority. If that's not enough, restrict permissions and hope the target thread hits a
security violation. Thentry interrupt(), thentry stop(), thentry destroy(). Thisjust
doesn't seem like aterribly great idea.

interrupt()

Basically, acall to interrupt() setsaflag and looksto seeif the target thread is blocked. If it
is blocked, it isforcibly awakened. When it sees the flag, it throws an exception. Y ou may aso
test to see if athread has been interrupted via Thread . interrupted() (for the current thread,
this also resets the interrupted flag) or thread. isInterrupted() (for an arbitrary thread, this
does not reset the flag). Once the flag is cleared, no method will throw
InterruptedException until interrupt() iscalled again (Code Example 9-2). Catching
the exception will also reset the flag.2

) This "interrupt flag" was not part of the Java 1.1 specification per se, nor was its behavior with
respect to being cleared well defined. But it is defined in Java 2 and this is how it works in both 1.1
and 2.

Example 9-2 Using thread.interrupt()

Thread 1 Thread 2
try { tl_interrupt()
.. lots of work ... if (tl.isinterrupted()) {
while (Iready()) {waitQ;} System.printIn(tl + "int"d")
. more work ...

i% (Thread. interrupted() {
exit threaAd or whatever

3
} catch (InterruptedException e)
{

exit thread or whatever
3

In POSIX deferred cancellation and in Javainterruption, athread may run for an arbitrary amount
of time after a cancellation (interruption) has been issued, thus alowing critical sectionsto
execute without having to disable/enable cancellation. Thisis good because you know that the
thread will exit synchronoudly. Thisis bad because you must do extrawork if you wish to ensure
bounded cancellation times. An interrupted thread could go off and run in aloop for hours before
hitting an interruption point. Of course, this might be OK.

There is no pat answer to these issues, and you, as the responsible programmer, must resolve them
on a program-by-program basis. In POSIX you may select asynchronous for one program,
deferred for a second, and a mixture of both for athird. Java does not officially give you this
option because the method stop () has been officially deprecated in JDK 1.2. But asstop()

119

will continue to be supported for some amount of time into the future, you could continue to useit.
Don't.

Don't Call stopQ)

So what was the problem with the stop () method? Why has it been deprecated in JDK 1.2?
Basically, it has proven just too difficult to use correctly. Just like POSIX's asynchronous
cancellation, stop () will interrupt athread in the middle of whatever it's doing and leave no
options for proper recovery of system state.

Yes, you can write a Final Iy section to reestablish invariants, but you need to know which
invariants to reestablish (perhaps your code is complex and only half of it ran). Y ou also haveto
deal with the fact that the stop message can arrive in the middle of the final Iy section, in which
case that will be stopped. In other words, final Iy sections don't help.

About the only thing you can do isto write a stop protocol (similar to Code Example 9-6) yourself
in which the killer thread and the target threads agree on exactly when a stop request may be
issued. Basically, you would write a new class of threads StoppableThread, which would
have two new methods: enableStop() and disableStop(). You would then write a method,
myStop (), which would check the stoppable state of the target thread and call stop() only if it
were enabled. All threads that you intend to stop would have to be of class StoppableThread.
(We show this technique for interruption in InterruptibleThread.)

So it's possible to use stop () for cancellation. It'sjust very difficult and you probably don't want
to do this. (And of coursg, it's deprecated in JDK 1.2.) On top of al that, thereis no clear
statement of exactly when athread that has been stopped will actualy exit. If it's sleeping, will it
be awakened? Maybe. Can it be forced to pop out of a NI call? Maybe.

ThreadDeath

Theway stop() worksisthat it throws an unchecked runtime exception, ThreadDeath. This
exception then propagates up the call stack, running all final Iy sections and unlocking all locks
that it encounters. When it getsto the initial run() method, it pops out of that, too, and the thread
exits.

When Java was being designed, ThreadDeath was not supposed to be an exposed interface; you
weren't supposed to know about it. But it did become public and is now officially supported.
That's very interesting, but now forget it.

It is possible for you to throw ThreadDeath yourself. It is possible for you to catch
ThreadDeath and deal with it yourself. Y ou will even find books that give you snippets of code
that do so. But they never give you enough to create arobust program. Yes, it is possible to use
ThreadDeath. Don't do that.

Using stop() to Implement Thread.exit()

Thereisasecond use for stop(). You can useit asthe Java equivalent to pthread_exit()
(Code Example 9-3). This use of stop() does not have any deadlock or data corruption problems
noted above because you call it synchronously and you can ensure that it is called only when
everything is consistent and safe. Unfortunately, even this use of stop() is deprecated. What to
do?

Example 9-3 Implementing exit()

120

public class InterruptibleThread extends Thread {
public static void exit() {
Thread.currentThread() -stop();
¥

For along timein our programs we simply put alittle syntactic sugar over it and included it in our
InterruptibleThread class as below. You will find examples of code like thisin many of
our older example programs. We have subsequently been convinced that thisis the wrong way to
do things. Indeed, we have been convinced that even pthread_exit() isthewrong way to do
things!

Never Exit a Thread!

More accurately, never try to exit athread explicitly. The argument goes like this: A runnable
should be viewed as a package of work to be done. As such, you never know for sure just who is
going to do that work. It could be a new thread, it could be an old thread, it could be the current
thread. As such, neither the run() method nor any of the methods it calls (most certainly not any
library objects you bought from Joe's Object Factory) should cause athread to exit. They don't
know anything about the thread that's running them.

If thereis a problem, they should either deal with it directly or throw an exception to be handled
by a higher-level method. The run method itself has no idea which thread is running it, so at most
it should ssimply return. If returning happens to exit the thread running it, that's OK. Thisway,
runnable objects are free to be used by any thread in any fashion it chooses.

In our ThreadedSwing example (Code Example 9-4; see also Threads and Windows), we do
exactly this. In the snippet below, when we run the program with threads turned off, the work is
performed by the current thread in-line. When we turn threads on, the work is farmed out to a new
thread.

Don't Call destroy()

There is another method, destroy () which stops athread but doesn't unlock locks or run
final ly sections. It was intended as a thread killer of last resort (in case you werein an
unstoppable loop or if there were abug in the IV M). If you use this method to kill athread, you
should expect the rest of your program to either crash or hang sooner or later. This method is not
deprecated in Java 2, but neither isit implemented in any of the JVMs.

Example 9-4 From ThreadedSwing Example: NumericButtonListener.java

public void actionPerformed(ActionEvent event) {
ThreadedJButton currentButton =
(ThreadedJButton)event.getSource();

System.out.printIn(*Pressed " + currentButton);
currentButton.setEnabled(false);
System.out.printIn(currentButton + " disabled.™);
DoWorker w = new DoWorker(currentButton);

if (ThreadedSwing.useThreads)
new Thread(w).start();
else
w.run(Q);

121

Defined Cancellation/Interruption Points

POSIX requiresthat a set of 25 library functions be cancellation points and that they must be
interruptible should they be blocked at cancellation time. They are required to test for cancellation
even if they don't block. These are functions such as (pthread_cond_wait,
pthread_testcancel, read, sem wait, write). Italowsabout 60 more, but leavesit
to the vendor's discretion.

Javafaces the same set of issues for its interruptible points, and in JDK 1.2, a set of methods are
defined to throw InterruptedlOException. (They must throw the exception if they have
received an interrupt.) Unfortunately, Java does not specify exactly which functions these are, nor
doesit actually require that they throw the exception from the middle of a blocked system call.
Among the callsthat do throw InterruptedlOException are read() and accept(),
which weillustratein A Robust, Interruptible Server . Unlike catching
InterruptedException, catching InterruptedlOException doesnot clear the interrupt

flag.

The Problem with 1/0O

This problem is even more insidious than it appears at first glance. Not only are the interruption
points not specified, not only are they not required to wake up from blocking calls to throw the
exception, it is not even well defined what happens when they do! In particular, if athread is
blocked, waiting on a read () from a socket, it islegal for it to read in an unspecified number of
bytes from the socket and then throw InterruptedlOException. Thiswould leave the socket
stream in an undefined state. The only thing that you could do would be to close the socket.

Writes to sockets can a so block for an unbounded time if the socket buffer in the kernel fills up.
Typically, this buffer is around 64k, so it's unlikely to fill unlessthe client is asleep.

Not Cancelling upon Interruption

Interruptionsin Java are just exceptions and nothing says that you have to exit a thread simply
because it's been interrupted. For example, you may have athread running Dungeon Of Doom '99,
which iswaiting for the user to vaporize an evil space Daique (Code Example 9-5). If the user
failsto do so, you may interrupt that thread after 2 seconds and declare him "eliminated,” but only
if he'salready injured. If you want to use interruption for more than one purpose, you'll need to set
a (protected!) variable to indicate what the interrupted thread should do.

Handling Interrupts

In writing your own libraries, it would be nice to have al of your functions interruption safe. Y ou
can ensure this by never calling any interruptible functions, or by properly handling interruptions
when you do call some. There are a variety of methods for handling this.

Disabling Interrupts

Y ou might simply ensure that no interruptions will be sent while your function runs. This requires
abit of coordination between your libraries and the user of your library to establish a"disabled"
protocol such as that used in Code Example 9-6. Y ou probably don't want to do this, asit binds
your library too close to the application. In Code Example 9-6, the interruptible thread states a
request that no interruptions be sent by setting inCriticalSection to true. That variable
must be protected, of course, and it must be tested at each entry to any code that is either
interruptible or that issues interrupts.2! (Ugly, eh? Compare to |mplementing enablel nterrupts(),
where this technique is cleaned up a bit.

122

[mAsamnmwroHam,amntMscmmisnmfmwbssbymedemmmnoﬂnmnummnwﬂs
theoretically possible for the interrupter thread to get the lock, send an interrupt to the target thread,
and release the lock; the target thread could then lock the lock and Thread. interrupted()
could still return False. It's difficult to imagine an implementation of the JVM for which this could
happen, but it is possible according to the official definition.

Example 9-5 Testing a Variable from an Exception Handler

public synchronized boolean justlnjured() {
it (health > 1)
return true;
else
return false;

}

public void attack() throws LiquidatedException {

try {
vaporizeDalique();

} catch (InterruptedException ie) {
if (Justinjured())
synchronized (this) {
health--;
}

else {

// Eliminate Eliminate Eliminate
throw new LiquidatedException();

}

Ignore Interrupts

Y ou could install interruption handlers that do nothing and assume that either the programmer will
never cal interrupt or that she will keep caling it until the thread disappears. Most sample code
you see in other books and articles does this. Thisistoo much for alibrary to assume. Don't do
that.

Example 9-6 Inventing an InterruptDisabled Protocol

// The Interruptible Thread

public void doDatabaseThing() throws InterruptedException {
InterruptibleThread t = InterruptibleThread.self();

synchronized (t) {
if (Thread.interrupted()) {
throw new InterruptedException();

}
t.inCriticalSection = true; // Don"t cancel in critical
section!
}
try {
incrementDatabase(l);
Thread.sleep(10); // Or some other interruptible
method

123

incrementDatabase(-1);

} catch (InterruptedException ie) {
// Impossible

¥

synchronized (t) {
t.inCriticalSection = false; // Now it"s OK to cancel

t.notify(Q);

// The Interrupter Thread

synchronized (t) {
while (t.inCriticalSection) {

try {
t.wait(Q);

} catch (InterruptedException ie) {
// Impossible
}

}

t.interrupt(Q);
}

Exit on interrupt()

You could install interruption handlers that will exit the thread right there and then, assuming that
the programmer always intends interruption to be cancellation and that all datais consistent
anytime your library is called. Thisis also too much for alibrary to assume. Don't do that.

Propagate InterruptedException

Y ou could propagate the exception. By propagating, you shift the burden of dealing with the
exception to the callers, who must then treat your libraries as throwing
InterruptedException. Propagating the exception is certainly the right thing to do for many
library functions.

The value of thisisthat if your library makes unbounded blocking calls, anyone who used it
would want to be able to interrupt it. If you make bounded-time blocking calls, it's not so vital. It's
generally OK if your library call takes 40 ms and you don't interrupt it.

Reinterrupt

Y ou may wish to avoid dealing with InterruptedException at al. In such cases you can set
aflag, reenter whatever code you were running, wait until that code returns normally, and then
call interrupt on yourself before leaving.

The point hereisthat (1) you don't want your code to do anything with interrupts at all, (2) you
don't want the caller to have to deal with InterruptedException being thrown from your
code, and (3) you really wish that you could have called a method that didn't throw that exception
at all, but there was no alternative. Thisisacommon thing to do.

The mutex class shown in Code Example 9-7 (thisis the actual code we use) exemplifies this
situation. In this code we don't want to be bothered with interrupts and we don't want the caller of
mutex. lock() to beforced to caich InterruptedException al thetime. So we simply call

124

interrupt() on the current thread again, trusting that it will be seen in the caller's code
somewhere else®! Thisway, the exception will never be lost.

41t the programmer doesn't deal with InterruptedException, what the heck is he doing
calling interrupt()?

Example 9-7 Calling interrupt() upon Return

public synchronized void lock() {
boolean interrupted = false;

while (owner = null) {

try {
wait();

} catch (InterruptedException ie) {
interrupted = true;

¥

}

owner = Thread.currentThread();
if (interrupted)
owner.interrupt();

}

Of course, this code could block forever and that could be a problem. Thisis what the designer of
the program needs to deal with. He needs to guarantee that another thread will do whatever is
necessary to make this method return. (For a mutex or synchronized section, he must guarantee
that the owner releasesiit.)

So thisis agood thing. We're not dropping interrupts. But we're still not out of the woods. What if
you have a method which calls one of these methods and that method doesn't know about you
reinterrupting? It could get nasty. Consider the naive code (shown in Code Example 9-8) for
condition variables and RwWlocks.

What happens if we're blocked waiting to get aread lock and we get interrupted? Well, our
condition variable class doesn't want to throw InterruptedException, soitjust schedulesa
reinterrupt and returns as if from a spurious wakeup. Unfortunately, our lock code views the return
as spurious and just calls condWait() again. Which promptly sees the new interrupt and throws
InterruptedException again, etc. (Code Example 9-9). Don't do that.

So if we wanted to use that design for condition variables, we would need to keep that in mind and
play the same tricks in the readers/writer lock. Ugh!

Now, what we really want isfor InterruptedException to work correctly and smply and
any synchronization variables we build on top of Javato be equally simple to use. By sticking
with our original version of condWait(), which doesn't treat InterruptedException asa
spurious wakeup, we get the best of both worlds (Code Example 9-10). Thisis also almost
certainly what you want to do in any of your code. If you want to get fancy, be careful!

Example 9-8 Naive Condition Variable and Readers/Writer Lock

public void condWait(Mutex mutex) {
boolean interrupted = false;

try {
synchronized (this) {

125

mutex.unlock();
wait(Q);
}
} catch (InterruptedException ie) {
// NB: There is no "while® loop
interrupted = true;

}

mutex. lock();
if (interrupted)
Thread.currentThread().interrupt(Q);

}

public void readLock() {
m.lock(Q);
nWaitingReaders++;

while ((owner != null) || (nWaitingWriters > 0)) {
readersCV.condWait(m);

3
nWaitingReaders--;
nCurrentReaders++;

m.unlock(Q);

}
Example 9-9 Handling Interruptions from condWait() the Hard Way

public void readLock() {
booleaninterrupted=false;
m.lock(Q);
nWaitingReaders++;
while ((owner '= null) || (nWaitingWriters > 0)) {
if (Thread.interrupted())
interrupted = true;

readersCV.condWait(m);

3
nWaitingReaders--;
nCurrentReaders++;

m.unlock(Q);
if (interrupted)
Thread.currentThread().interrupt(Q);
}

Example 9-10 The Right Way of Implementing condWait()

public void condWait(Mutex mutex, long timeout) {
boolean interrupted = false;

while (true) {

try {
synchronized (this) {
mutex.unlock();
wait(timeout);
break;

} catch (InterruptedException ie) {

126

interrupted = true;

}

mutex. lock();
ifT (interrupted)
Thread.currentThread().interrupt(Q);
3

The vast mgjority of programs don't deal with interrupts at al. Computational programs don't care.
Interactive programs usually are fine doing "dirty" shutdowns [*"Who cares if there are open file
descriptors, sockets, etc.? System.exit() will close them and any clients can deal with it on
their end.”] It's the more serious server and database programs that need to do clean shutdowns.

Cancellation State

POSIX has a more elaborate version of cancellation. It defines a cancellation state for each thread
that will enable or disable cancellation for that thread. Thus you can disable cancellation during
critical sections and reenable it afterward. Neither Win32 nor Java defines this state, although it
would not be too difficult for you to write it yourself [Implementing enabl el nterrupts()].
Cancellation state makes it (just barely) feasible to use asynchronous cancellation safely, although
there are still significant problems to be dealt with.

A Cancellation Example

Code Example 9-11 uses cancellation viainterruption to get rid of unneeded search threads. This
program has the objective of finding a certain number by using a heuristic. The desired number is
the process ID, and the heuristic isto generate random numbers, checking to seeif they happen to
be the PID (Figure 9-2). Admittedly, thisis not a very clever heuristic, but the concept is solid.

Y ou can reasonably replace the problem and heuristic with more meaningful ones, such as a chess
position and an alpha-beta search. The cancellation issues won't change.

Figure 9-2. Cancellation Example Program

if (find pid())
-t thread.interrupt ()

if (find_pid(})

if (find_pid(})
¥> E..-_ e

thread. interrupt ()

if (find pdid())
E" thread. interrupt ()

127

The main thread gets the PID and creates 10 threads to search for it. Each of the searcher threads
proceeds to generate a random number, checking to see if that happens to be the PID. When one
thread finds the number, it interrupts all the other threads, then returnsitself. The main thread will
do ajoin on al the searcher threads, printing out the answer when all have exited.

Example 9-11 Using interrupt() to Cancel Searcher Threads

// Cancellationlnterrupt/Cancellation.java

/*
A very simple example to run which illustrate cancellation.
Choose a target number, then create a bunch of threads to search
for using a heuristic [call rand(Q!]- The first to find it
cancels
the others.

A database is included to illustrate typical problems. The
database
should always by 0 at the end of every transaction. Observe how
much effort that takes.
*/

import java.io.*;
import Extensions.*;

public class Cancellation {

int answer = 0;

int target = 9;

boolean found = fTalse;

int nSearchers = 10;

TSDThread threads[] = new TSDThread[nSearchers];
Object databaseBalancedLock = new Object();
int databaseBalanced = 0;

Object nGuesseslLock = new Object();

int nGuesses = 0;

static boolean DEBUG = false;

public static void main(String argv[]) throws
InterruptedException {
Cancellation ¢ = new Cancellation();

if (System.getProperty("'DEBUG™) != null)
DEBUG = true;

for (int i = 0; i < 2; i++) {
c.runQ;

public void incrementGuesses() {
synchronized(nGuessesLock) {
nGuesses++;
3} // Cannot synchronize on cancel. Why?

public void incrementDatabase(int i) {
it (DEBUG) {
System.out.printIn(Thread.currentThread() .getName()

128

+ " incrementing "
+ databaseBalanced + "™ by " + 1);

}

synchronized(databaseBalancedLock) {
databaseBalanced += 1i;
} // Cannot synchronize on cancel. Why?

public void run() throws InterruptedException {
Thread t;
nGuesses = 0;
found = false;

synchronized(this) {
for (int i = 0; 1 < nSearchers; i1++) {
threads[i] = new TSDThread(new Searcher(this, i));
threads[i]-start();

}

for (int i = 0; i < nSearchers; i++) {
threads[i]-join();
System.out.printIn(threads[i].getName() + " joined.™);

}

System.out.printIn(*'The answer is: " + answer +
', It took: " + nGuesses +
" guesses, and the database is...");

if (databaseBalanced == 0)
System.out.printIn(*'Consistant.");

else
System.out.printIn(*'Inconsistant!");

// Cancellationlinterrupt/Searcher. java
import java.io.*;

import java.util.*;

import Extensions.™;

public class Searcher implements Runnable {

int target;
Cancellation cancel;
int seed;

public void run() {
TSDThread self = (TSDThread) Thread.currentThread();
Random r = new Random(seed);
int guess;

System.out.printlIn(self.getName() + is searching..."™);

for (int i = 0; true; i++) {
try {

129

doDatabaseThing();

} catch (InterruptedException ie) {
return;

}

guess = r.nextIntQ% 10;
cancel . incrementGuesses();

if (guess == target) {
synchronized(cancel) {
System.out.printin(self.getName() +
" got the answer: " + guess);

if (cancel._found) {
System.out.printin(self.getName() +
' too late! Exiting™);
return; // 1T someone else already found

1t. .
}
cancel .found = true;
for (int j = 0; j < cancel.nSearchers; j++) {
TSDThread t1 = (TSDThread) cancel.threads[j];
if (1tl.equals(self)) { // Don"t kill
yourself
synchronized (tl1) {
while (tl.inCriticalSection) {
try {
tl.wait();
} catch (InterruptedException ie)
{
// Impossible
}
¥
tl.interrupt();
if (Cancellation.DEBUG) {
System.out.printin(self.getName()
+

' cancelling " +
tl.getName());

}

cancel .answer = guess;
System.out.printlIn(self.getName() + " done.");

return;

// Cancellationlinterrupt/TSDThread. java

/*

130

Add a bit of Thread-Specific Data.
*/

import java.io.*;
import java.util.*;
import Extensions.*;

public class TSDThread extends Thread {
boolean inCriticalSection = true;

public TSDThread(Searcher o) {
super(0);

}

The method doDatabaseThing() uses the technique described in Code Example 9-7 to ensure
that it runs atomically. In addition, you will notice that when the answer is found, the finder locks
a synchronized section for the cancel object. In case some other thread already found the answer,
our thread will enter this critical section, seethat cancel . found istrue, and exit by itself. [It
is perfectly possible for two threads to find the answer independently and the interruption which
the first sends to the second not to be seen by the second thread until later. So we need to check
thisvariable. Alternatively, we could reasonably have called Thread. interrupted().]

Each of the searcher threads calls doDatabaseThing() during the loop, so you don't have to
worry about them never seeing the interruption. The main thread looks for the result in the global
variable answer. It prints out success, noting the number of attempts required, then waits for al
the searchers to exit. When they have all exited, it repeats the process® Simple? Well...

B This is pretty ugly code. We'll fix it up in a bit.

Using Cancellation

Y ou've seen the definition of cancellation. Now how can you use it effectively? The answer is,
"not easily!"

First, let us consider your objectivesin using cancellation. Y ou created some threads to
accomplish atask, and now you don't need them to work on it any longer. Perhaps the task has
already been accomplished, or perhaps the user has changed her mind. Normally, we use
cancellation to stop threads because we don't want them to waste time on something unnecessary.
Thisisthe best case. Sometimes we want to use cancellation to prevent threads from doing
something that we no longer desire. Thisis harder.

In cancelling athread, what do you want? Do you want to:

Kill it instantly?

Kill it in bounded CPU time?

Prevent it from making any more global changes?
Prevent it from wasting CPU time?

Eal N\

Presumably you want goal 4, generally implying goal 2. After all, if you don't care whether the
CPU time is bounded, why bother cancelling the thread at all?

131

If you think you need goal 1, you'd best do some rethinking. First, it isn't possible; second, it isn't
even well defined.®! So, instead of goal 1, what isit that you really want?

(61 ¢ nothing else, special relativity denies the concept of objective synchronisity. Practically
speaking, it will take at least 1 ps to send an interrupt anyway.

If it was goal 3 you were thinking of, you're in much the same boat. It really isn't possible and not
very meaningful. Now if you're satisfied with "not very many more global changes," we can put
that in with goal 4 and proceed.

Ensuring Bounded CPU Time

The exact time of cancellation (interruption) is not guaranteed by POSIX, Java, or Win32. The
target thread will become aware of a pending cancellation request some time after the function has
been called. If you are using asynchronous cancellation [i.e., stop ()], the thread should indeed
spend very little extra time processing. No assurances here, but you can reasonably expect that it
will be gone within afew milliseconds of CPU time (who knows how long it might sleep for if it
needs alock!). With deferred cancellation, the timing situation is more complex. The main point
to remember is that you cannot rely upon the target thread exiting at any specific time. If you need
to know when it has exited (you usually do!), you must use some sort of synchronization (either
call join or use abarrier).

As an example of along wall-clock delay in cancellation, consider the case of alow-priority target
thread and a high-priority killer on one LWP. The cancellation will be sent, but as the high-
priority thread continues to run, the target thread will not get a chance to exit any time soon. If the
killer is running in realtime mode, the target might never exit! (Of course, in that case, you have
lots of other problemsto deal with.)

Deferred cancellation is a polling scheme when athread is running, and more like asynchronous
cancellation when the thread is blocked. For running threads, the polling is essentially as shownin
Code Example 9-12. Thread T2 cancels T1 by calling interrupt(), whichinturn setsa
variable in the thread structure. When T1 enters a cancellation point such as read () , that
function then checks to see if the thread has been cancelled, and exitsif so.

To ensure bounded cancellation time with interruptions, it is up to you, the programmer, to insert
callsto interruption points within every unbounded code path. In other words, for every loop that
might run longer than your declared time limit, you must make sure that there is an interruption
point in that loop. The obvious method is simply to include in the loop a call to

Thread. interrupted().

Example 9-12 Deferred Cancellation as Polling

interrupt(Q) read()
void interrupt(){ read(...) {
Tl.interrupted = true; S
if (self.interrupted)
throw new
InterruptedlOException();

} }

Interrupting Computational Loops

In atight loop, the overhead of Thread . interrupted() may prove excessive, even though it
isvery fast (about 3uson a110-Mhz SS4). Y ou can test only once every 1000 iterations, or
something similar (Code Example 9-13).

132

Example 9-13 Testing Once Every 1000 lterations

for (i = 0; 1 < N; i++) {
ali] = b[i];

if (i % 1000 == 0) {
if (Thread.interrupted()) {

throw new InterruptedException();
}

}

So how long alatency can you afford for cancellation? That's a decision for you to make. Most
likely the answer is going to be something like, "I want the target thread gone within 10 ms of
CPU time after the call to cancel, with a probability of 99.999%."™ with any sort of normal
program, you'll have no problems. Analyze your program carefully, then test it.

M \What if you want 100% probability? Forget it. There is no such beast. When the probability of
program failure drops below the probability of the computer being hit by a meteorite (about 1E-11
per year), you can relax.

What if you want bounded wall-clock time? Things get a bit stickier. We are now talking about
realtime processing and an entirely different set of issues. The basic answer is, "Don't do that!" If
you are going to do it, you'll need to know more than we do about realtime.

Interrupting Blocked Threads

Now that we've taken care of the CPU-bound programs, what about the I/O-bound programs?
We've already stated that all blocking methods are intended to be interruptible. Is that enough? Or
isit too much?

The thing we want here is the same as above—we want atime bound for when our thread will see
the interruption. Moreover, we can generally be fairly generous about that time bound. In
particular, the amount of time it takes to read a block from disk (about 20 ms) is not going to be a
problem. We are not going to be concerned with interrupting local disk I/O. Unfortunately, if we
are reading remote files via NFS, we don't have that assurance. What do we want to do if NFS
fails? Can we treat that differently from waiting for clients? Perhaps.

Interrupting Sockets

Still, the most common issue is sockets, because we have no idea when a client might send the
next request. Taking the canonical case of wanting to shut down a server, we are concerned
primarily with forcing threads that are blocked, waiting on aread from a socket to pop out of that
read and see the shutdown request. In some systemsiit is actually possible for us to write into that
socket from the local program. This would make things much easier, but thisis not generally the
case; certainly it is not the case with Java. With Javawe need to use interruption.

What Should Throw InterruptedException?

That part is fine. Waiting for a socket? Throw an interruption and exit. The problem that occursis
that many other methods may receive that interruption instead. If our thread iscalingwait()
somewhere, that wait() will be the one to receive the interruption and we'll be forced to deal
with it there. We don't really want that. We can control thewait() code more directly and more
easily by using flags as in our StopQueue example. We would really prefer to use the
StopQueue technique everywhere except when blocking on the socket.

133

The point is that we don't want to have to catch InterruptionException al thetime, and we
particularly don't want to have to write exception handlers that clean up the world all over the
place. Aslong as we know we have atime bound on our code, we don't want to deal with these
exceptions at all. Unfortunately, thisis the way that Java works and we have to deal with them

anyway.

Obviously, there are many options here and the issues are quite complex. We have yet to see a
sufficiently complete solution to them. Our opinion is that simplicity is best. Maximal simplicity.
If we could, we would usethe InterruptibleThread to disable InterruptedException
everywhere except in unbounded blocking reads. If we didn't have control over the threads, we
would use the reinterrupt technique in our libraries and require the program to unblock our waits
explicitly, aswith StopQueue.

So, should our explicit Mutex classthrow InterruptedException or should it catch it and
reinterrupt later? We chose the latter for exactly the same reason that POSIX and Java choseit.
With hundreds of locks scattered throughout our code, it would be a nightmare to catch exceptions
at every cal. (Consider the extreme example of requiring every call to new to catch an
OutOfMemoryException!)

Thisiswhy none of our synchronization variables throw InterruptedException. The
programmer can always ensure that they don't block forever and is thus freed to deal with
InterruptedException infewer placesin the code. Fewer is better. If you realy wanted to,
of course, you could write your own versions of Mutex, etc., that did throw
InterruptedException.

When should you write a method that throws InterruptedException? Probably never

) This is bound to be a topic of debate, and we don't claim any special knowledge. We just haven't
seen any better suggestions.

Interrupting Sleeping Threads

A thread that is waiting for a synchronized section lock to be released is not at an interruptible
point, and it will continue to sleep until that lock is released. Once it acquires the lock, it must
proceed until it hits an interruptible point (ditto for POSIX mutexes). This can be a serious
sticking point when you are concerned about elapsed wall-clock time. Just be sure that you don't
hold any locks that the interrupted threads might need.

Interruption in wait()

Whilewait() isan interruption point,! there is an additional issue that must be addressed. Upon
anormal return, it always re-locks the synchronized section. Upon interruption, it must also re-
lock said synchronized section! Any exception handlers will be run with the lock held as
appropriate. This means that if you're interrupting a thread to kill it quickly, you'd best be sure that
no oneis holding that lock for along time.

® should wait() be an interruption point? A strong case can be made for it not being one, but in
as much as we don't have any say on the matter, we'll just accept it as is. [If a thread is blocked on
wait(), the programmer has complete control over it and can wake it up and have it see that it's
exit time, the way we did in the StopQueue example. It's only when a thread is blocked on
something that we don't have control over (e.g., I/0) that we need to be able to interrupt it.]

In Code Example 9-14 both the exception handler and the final Iy section will run with the lock
held. If the synchronization had been inside the try clause, the exception handler and the

134

final ly section would have run without the lock being held. The throw fromwait() still
would have had to relock, even though the lock would be released promptly.

Example 9-14 Interrupting await()

synchronized(this) {

try {
wait(Q);

} catch (interuptedException ie) {
cleanUpAndExit();

} Finally {
doWhatEver();

}

}

doWhatEverElse();

The Morning After
Weéll, now that we've done all that, we're ready to get back to some useful work, right? Not quite.

Threads are rather particular about how they're treated after cancellation. They want to be
pampered. They want to be joined or at least waited for after they clean up.

The point here is that you don't want to be starting up new threads until the old ones are truly gone.
What if you have global variables that you need properly initialized? What if there is shared data
that you don't want old and new threads sharing? If nothing else, it's nice to clean up memory
before making new demands. (We're assuming that you'll run the same code again in your

program. If you really only ran it once, you wouldn't need to be so careful.)

In the searcher example (Code Example 9-15) we have one global array of threads. It would not
do to start creating in new threads while the successful searcher was till busy killing off the old
losers. Instead, we must wait for all the threads to exit before we reinitialize and start over again.

Example 9-15 From the main() Method for Searcher Example

synchronized(this) { // Protect threads[]
for (int i = 0; 1 < nSearchers; i++) {
threads[i] = new Thread(new Searcher(this, i));
threads[i]-start(Q);

}

for (int 1 = 0; 1 < nSearchers; i++) {
synchronized(this) {
t = threads[i]; // Searcher may use threads[]
}

t.joinQ);

We don't actually need the threads to exit. We merely need the threads to reach a point where they
will never change any shared data and we will never use them again. Instead of using join(),
the same effect could be accomplished by using aSingleBarrier.

135

Ancther detail to note in this code is the joining code. We first lock the lock, get the next thread
object, then unlock it again before calling join(). Why? Well try it! Just move the join()
inside the synchronized section. Deadlock again! (The main thread is holding the lock, blocking
on ajoin, while the successful searcher needs to lock the lock before it can cancel the other
searchers.)

Thisisactualy avery interesting bit of code. As soon as the main thread has created the last
searcher thread and released the lock, the array can be treated as a constant—no other changes will
be madeto it until all searcher threads exit. This means that the main thread, which knows that the
array is aconstant, could dispense with locking the array in the join code. The searcher threads,
which don't know when the array becomes a constant, must synchronize on that state somehow.
(What if one of the searchers found the PID before the main thread had finished creating the rest?
It might execute the cancellation loop and miss the not-yet-created threads.)

Cleanup

When athread is cancelled, POSIX provides away to clean up the thread's state through a set of
cleanup handlers that are called upon the exiting of athread. These are functions of one argument,
which you define and then push onto a thread's cleanup stack. Should the thread exit [either via
cancellation or acall to pthread_exit()], the functions on the stack will be run on the
argument supplied. Should the thread not be cancelled, you may pop the functions off when they
are no longer required (Code Example 9-16).

Example 9-16 How POSIX Cleanup Handlers Are Used

pointer = malloc(100);
pthread_cleanup_push(free, pointer);
use(pointer);

free(pointer);

pthread _cleanup_pop(0);

The general ideafor cancellation isthat programmers will write their programs such that sections
of code that allocate resources, obtain locks, etc., are preceded (or followed) immediately by
cleanup handler pushes. The cleanup handlers will be responsible for freeing resources,
reestablishing datainvariants, and freeing locks.

Java provides a neater solution to this problem. First, because Java has a garbage collector, thereis
no need to free memory, asin C/C++. Second, in those instances where you do need to release
specific resources (close file descriptors, remove entries from lists, etc.), you can use the existing
Java constructs of exception handlers and final Iy sectionsto ensure that the exit codeis
executed (Code Example 9-17).

Example 9-17 How InterruptedException Handlers Clean Up

try {
open_fFile();

try {
do_stuff();
} catch (InterruptedException ie) {

clean_up_stuff(Q);

}
} Finally {
close _file();
}

136

Implementing enablelnterrupts()

Thus far we've been dealing with these issues by writing snippets of ad hoc code—sufficient to the
immediate problem but not easily reused. In Code Example 9-18 we show a subclass of Thread
that deals with these problems more neatly. Because the methods are synchronized, there are no
race conditions. If athread has not disabled interrupts, interrupt() will call the method for the
superclass [the normal interrupt()]. That interrupt will remain pending until either the
programmer’'s code clearsit [viacalling interrupted() or catching
InterruptedException] or disablelnterrupts() iscaled |f
disablelnterrupts() getscaled, the flag will be cleared and our interruptPending flag
will be set. This ensures that a subsequent call to enablelnterrupts() will reinterrupt the
thread so that the interruption does not get lost.

1% These are static methods (as it only makes sense to call them from the current thread), but they
must be called from an InterruptibleThread. You will get a runtime error otherwise.

Example 9-18 Implementing enablelnterrupts()

public class InterruptibleThread extends Thread {
private boolean interruptsEnabled = false;
private boolean interruptPending = false;

public static void enablelnterrupts() {
InterruptibleThread self =
InterruptibleThread.currentThread();

synchronized (self) {
self.interruptsEnabled = true;
if (self.interruptPending)
self_interrupt();

self._interruptPending = false;

public static void disablelnterrupts() {
InterruptibleThread self =
InterruptibleThread.currentThread();

synchronized (self) {
if (interrupted())
self.interruptPending = true;
self_interruptsEnabled = false;

public synchronized void interrupt() {
if (interruptskEnabled)
super.interrupt();
else
interruptPending = true;

137

}

The most interesting piece of this code is where it deals with arace condition for interrupt().
Imagine that t1 hascaled t2. interrupt(). Soon afterward, t2 calls
disablelnterrupts() with nointervening interruptible calls. That could leave the interrupt
flag set after disablelnterrupts() returned. To prevent this, disablelnterrupts()
checks for that condition, clearsthe flag [interrupted () doesthisautomatically] and setsthe
interruptPending flag so that a subsequent call to enablelnterrupts() will noticethis
and reissue the interrupt. Thus, the code following disablelnterrupts() will never seean
interrupt and any interruptsissued previously to disablelnterrupts() will not belost.

A similar design could be used to disable thread.stop(), and indeed we do so in our
extensions package, but only as an illustration. It has been degradated — don't use it.

A Cancellation Example (Improved)

Using the InterruptibleThread from above, we can now write a cleaner version of our
search program (Code Example 9-19). The two ugly portions of the program were
doDatabaseThing() and the cancellation code in searcher.run(). Using the
disable/enable code, the first function becomes simpler and the latter gets to eliminate al of its
checking code and simply call the interrupt() method with no further concerns.

Example 9-19 Cleaner Version of doDatabaseThing()

public void doDatabaseThing() {

try {
InterruptibleThread.disablelnterrupts();

cancel . incrementDatabase(l);
Thread.sleep(10);
cancel . incrementDatabase(-1);
InterruptibleThread.enablelnterrupts();
} catch (InterruptedException ie) {
InterruptibleThread. impossible(ie);
}

Simple Polling

In aprogram of any complexity, using cancellation is very difficult. A program that will be ported
to other languages will be even harder to write correctly. A strict polling scheme would be vastly
superior in amost every respect, as long as we don't have to worry about blocked threads. In the
code for Cancel lationNot (Code Example 9-20), we see the same searcher program written
using polling. (Note that where we test for cancell . found we could use double-checked
locking.)

Example 9-20 1iImplementing the Searcher with Polling

public void run() {

138

Random r = new Random(seed);
int guess;

System.out.printIn(t.getName() + "™ is searching...");

for (int i = 0; 1 < 1000000; i++) {// Better never hit 1000000!
doDatabaseThing();
synchronized(cancel) {
if (cancel _found)
break;

}

guess = r.nextint() % 1000;
cancel . incrementGuesses();

if (guess == target) {
System.out.printIn(t.getName() + " got the answer:" +
cancel .answer);

synchronized(cancel) {
ifT (cancel.found)
break;

cancel .answer = guess;
cancel .found = true;

break;
}
}
}
cancel .barrier.barrierPost();
return;

}

This polling example sure looks alot simpler compared to the complexity of the previous
examples, and itis. But it is also much less generally useful because many interesting programs
involve unbounded blocking calls. Thus any kind of server program will invariably be calling
read() on asocket, and thereis no guarantee if or when that call will return. So use polling if
you can, but you'll probably be stuck with using interruption.

APIs Used in This Chapter

The Class java.lang.Thread

interrupt
public void interrupt()

This sets the interrupt flag and causes the target thread to throw an InterruptedException if
it is blocked on (or as soon as it executes) an interruptible method or
InterruptedlOException if itisblocked on I/O.

Reference: (Chapter 9.

interrupted
public static boolean interrupted()

139

This returns the value of theinterrupt flag for the current thread and clearsiit.

Reference: (Chapter 9.

isinterrupted
public boolean islnterrupted()

This returns the value of theinterrupt flag for the thread.

Reference: |Chapter 9.
\Comment: |You will probably never use this.

The Class Extensions.InterruptibleThread

Thisisone of the classes that we defined for this book to provide a consistent interface for dealing
with certain problems. Some of those problems are artificial, a product of trying to write uniform
example code in both POSIX and Java.

exit
public void exit()

This causes the current thread to exit. Thisisjust syntactic sugar for:
Thread.currentThread() -stop().

\Reference: \Chagter 4.

Comments: |This is not the right way to do things. Don't exit from threads; return from the
run() method, instead.

interrupt
public void interrupt()

This causes the target thread to throw an InterruptedException assoon asit executes an
interruptible method when interrupts are enabled. If disabled at the time, the actua interrupt will
be issued as soon as the interrupts are reenabl ed.

Reference: (Chapter 9.

disablelnterrupts
public void disablelnterrupts()

This causes the current thread to set aflag indicating that it is not interruptible. The method
interrupt() will look at this.

Reference: (Chapter 9.

enablelnterrupts
public void enablelnterrupts()

This causes the current thread to set aflag indicating that it is interruptible. The method
interrupt() will look at this. If the flag indicates a pending interrupt, that interrupt will be
reissued at thistime.

\Reference: \Chagter 9.

140

Summary

Cancellation is the method by which one thread can kill another. Because of issues surrounding
shared resources, held locks, and dynamically allocated storage, cancellation is extremely difficult
to use correctly.™! Cancellation can be avoided completely by implementing a polling scheme in
any of thelibraries, as long as we don't have to worry about blocked threads. In Java,
interrupt() with exception handlers makes it merely difficult to use cancellation.

[t gust spelling cancellation is an issue! Webster's allows it to be spelled with either one "I" or two.

Avoid cancellation if at all possible.

141

Chapter 10. Details

Thread Groups

Thread Security

Daemon Threads

Daemon Thread Groups
Calling Native Code

A Few Assorted Methods
Deprecated Methods

The Effect of UsingaJIT
APIsUsed in this Chapter
The Classjavalang.Thread
The Class javalang. ThreadGroup

In which a number of minor details are covered.

Thread Groups

A thread group is agroup of threads, or more precisely, a group of threads (possibly empty) and
other thread groups (also possibly empty). The raison d'étre for thread groups is security. Java
needs some method of alowing you to download untrusted foreign code and run it without it
being able to affect the rest of your program.

The idea was that you run the foreign code in its own thread group and tell that thread group that it
is not allowed to start, stop, suspend, etc., any threads outside that group. This way, your threads
are safe from the foreign code, but the foreign code is still able to create new threads of its own.
Clever, eh?

Unfortunately, they changed the security model for Java, and thread groups no longer provide this
kind of protection; rather, security is handled in a different fashion. So of what use are thread
groups now? Y ou could use thread groups as a general container to keep track of your own threads,
but you'll probably find it easier simply to keep alist or an array of thread objects and manipulate
your threads with those. Because of the way M T programs are written, about the only thing you'll
ever do with alist of threads is to wait for them to exit, or to interrupt them. Thread groups don't
help you with this.

When you create athread, it is placed in athread group. Y ou can specify a particular thread group
if you wish. That thread group can now restrict the new thread to creating threads only in that
group or subgroups. Y ou can place asmall number of restrictions on threads in a particular thread
group (set a maximum priority level), and you can call stop(), suspend(), resume(), or
interrupt() onall threadsin agroup, but none of these are particularly useful. Y ou can also
do the usual set operations to find the parent of a group, the children, etc.

Y ou will probably never use thread groups.

Thread Security

142

Thread security in Javaisreally rather simple—at least it was until Java 2 came aong. First we
will explain how security worked prior to Java 2 and then go into some of the details of the new
security features of Java 2.

Prior to Java 2 the primary focus of security was the SecurityManager class. The
SecurityManager classis used to enforce a security policy for Java programs and in most
cases is never modified by programmers. The SecurityManager classisusually defined and
activated when a JavaVM starts. When a Java method tries to access a vulnerable resource in the
JavaVM, one of the check methods in the SecurityManager classis called. If the check
method permits the requested action, the check method will return silently. However, if the check
method does not permit the requested action, the method throws a security exception. Using the
Thread class as an example, when the checkAccess () method is called from the Thread class,
it callsinto the SecurityManager class and executes the checkAccess () method. If the
calling thread is allowed access, the checkAccess () method simply returns. If the calling
thread is not permitted, the checkAccess() method throws a SecurityException. Code
Example 10-1 shows how the code would look in the calling thread.

Example 10-1 Checking for Security Violations
Thread A;

try {
A_.checkAccess();

} catch (SecurityException se) {
System.out.printIn(*'Thread access error: " +
se.getMessage());

}

This may seem rather trivial; well, it is. The SecurityManager class defines the security to be
implemented for the entire Java VM. In most cases the SecurityManager class has been
defined for you. For example, when you are using the Netscape browser to execute Java code, the
developers at Netscape have defined the Secur ityManager for you. In this case, you can't
modify or remove the SecurityManager. In most cases the SecurityManager will be
defined and installed for you; thisis the case when the Java VM is started for you. For example,
the Java VM is started for you when you run code via a browser or appletviewer. If you start the
JavaVM yoursdlf, for example from a command line, you are responsible for defining and
installing aSecurityManager.

By default, aSecurityManager isnot instaled in the Java VM. Depending on how you

execute Java code, you may have to install your own SecurityManager. If some other program
controls the Java VM, in most cases that program will install a Secur i tyManager. Thisisthe
case with browsers; since the browser controls the Java VM, it will probably install a
SecurityManager. If the Java VM is not controlled by another program, in most cases you will
haveto ingtall a SecurityManager. Thisisthe case when you write your own Java applications.
If you don't define a SecurityManager in your application, your program will have full reign

of the Java VM.

The main problem with the security mechanism in previous versions of Javais that you do not
have fine-grained control over the security of your program. The other side of thisisthat users
could not define what level of security they were willing to accept. For example, if a Java
application was executed on your machine, it had full access to the machine just as atraditional C
application would. The security mechanisms in Java 2 have solved these problems.

Now that we have a bit of history, let's talk about how security worksin Java 2. Java 2 exploits the
concept of protection domains. Java has always had the concept of protection domains. That is,
different code in the JavaVM can have different levels of security. The simple case of thisisthe

143

fact that Java applications have access to the entire Java VM, whereas Java applets do not. The
major difference with protection domainsin Java 2 is the flexibility and control you have over
how security isimplemented. Although complete coverage of Java security is beyond the scope of
this book, we will give you a general idea how security worksin Java asit relates to threads.

First we should mention that the Secur i tyManager class till existsin Java2 and isaso
backward compatible with previous versions of the JDK. The SecurityManager inJavaZ2is
just awrapper for compatibility where all security actions are forwarded on to the new protection
domain infrastructure. This means that you could continue to use the Secur i tyManager classin
away that you may be familiar with, but itsinternal workings are far different. In fact, the
interface for security is the same for both the Thread and ThreadGroup classes, but the
implementation of security has changed.

The new security mechanism is based on the concept of having a set of permissions. A
Permission object in Javais really just an object that represents access to a protected resource.
All permissions in Java have a name as well as semantics that define access to aresource. Y ou can
define your own permissions or you can use the predefined permissions in Java. For example, Java
has a SocketPermission object that can control access to networking resources. The
advantage of the Java 2 security mechanism is that a system administrator can define a set of
restrictions to place on Java programs. The administrator has fine-grained control of all actions
that can possibly be performed in the Java VM. Our focusis not on what al the permissions are or
how they are defined, but rather, that a set of permissions have been defined and that we must
adhere to these restrictions. For more information about Java security and permissions, see the
Java documentation or one of the books recommended in Appendix B.

So how do permissions relate to threads? The simple answer is, "in three ways." Java 2 has
defined three permissions that al threads use. They aremodi fyThread, stopThread, and
modifyThreadGroup, al of which are defined in the RuntimePermission class. Each of
these permissionsis used to protect Thread resources when certain methods are called.

Thefollowing lists the RuntimePermission target names that are used in conjunction with
Java threads:

e modifyThread: Thispermission is accessed when a calling thread wants to access or
modify an unrelated thread in the Java VM.

e stopThread: Thispermission is accessed when a calling thread wants to stop another
thread running in the Java VM.

e modifyThreadGroup: Thispermission is accessed when a calling thread wants to
access or modify a ThreadGroup.

So how does al this work? When a thread resource needs protection, it can make acall into the
security mechanism to verify if the requested action should take place. If the security mechanism
does not object to the action, the call simply returns. If it does not permit the action, a security
exception isthrown. Let's take alook at a simple example (Code Example 10-2). The example
simply creates anew Secur ityManager and then callsafew Thread and ThreadGroup
methods. If you execute this program from a command line, you should get a security exception.
We say "should" because if you have defined your security permissions to include the
"modifyThreadGroup" permission, the program will execute without a problem. Also, if you
remove the line that sets the Secur i tyManager, the program will a'so complete without any
errors.

Example 10-2 A Simple Security Exception

public class Simple {
static public void main(String s[]) {

144

System.setSecurityManager(new SecurityManager());
ThreadGroup group = Thread.currentThread() .getThreadGroup();

// This line could generate a security exception
group.getParent();

}

The reason that this example throws a security exception is due to the
ThreadGroup.getParent() method. This method calls the ThreadGroup . checkAccess()
method, which in turn callsinto the Secur i tyManager, which in turn calls into the new Java 2
security mechanism with the "modi fyThreadGroup” permission request. If you have not given
the security mechanism permission for "modifyThreadGroup," it throws an exception. You
might wonder why an exception is thrown just for calling the getParent() method. The reason
isthat by calling the getParent() method in the example, you are trying to gain areference a
thread group that your program does not control.

In most cases, thread security is controlled by the checkAccess () methodsin the Thread and
ThreadGroup classes. The checkAccess() method in the Thread class actually callsinto the
security mechanism with the "mod i fyThread" permission, and the checkAccess() method in
the ThreadGroup class callsin to the security mechanism with the "modi fyThreadGroup”
permission. Both of the checkAccess () methods are most often called by other methods in the
Thread and ThreadGroup classes.

So how does al of this affect your programs? Well, if you are simply creating and operating with
threads and thread groups in your program, you should never have to deal with security in your
program. If, however, you are trying to access or modify threads or thread groups that are not
under your control, you may run into the security system. If you are not sure if acall you are
making is going to run into the security system, the safe thing to do is enclose the section of code
you are unsure of with atry/catch block. Thiswill alow you to catch the security exception and
then perform some sort of correction to the problem.

To help you understand what methods perform security checks, Table 10-1 liststhe Thread class
methods that may cause a security check to be performed.

Table 10-1. Thread Class Methods That May Cause a Security Check
\Thread class method |RuntimePermission target
getContextClassLoader() "'getClassLoader™
setContextClassLoader() "setContextClasslLoader"
checkAccess() "modifyThread"
interrupt() "modifyThread"
suspend() "modifyThread"
resume() "modifyThread"
lsetPriority() ["modifyThread"
setName() "modifyThread"
setDaemon() "modifyThread"
lenumerate () |*modifyThreadGroup™
stop() "modifyThread', "stopThread"
Thread() "modifyThreadGroup™

Table 10-2 liststhe ThreadGroup class methods that may cause a security check.

145

In addition to the security permissions provided in Java 2, you could define your own permissions
and then add the checkPermission() calsin your code. This would force the user or
administrator to define your permission in the security file in order for your program to execute.
The system security policy file (java.policy) islocated inthe (jre)/lib/security
directory, where (j re) isthe path to the location of Java. Take alook at thisfile and try adding
permissions for "modifyThreadGroup" and then try running the simple program above. Y ou

should find that it now runs without any security exceptions.

Table 10-2. ThreadGroup Class Methods That May Cause a Security Check

ThreadGroup class RuntimePermission type

method

ThreadGroup() "modifyThreadGroup™

checkAccess() "modifyThreadGroup™

enumerate() "modifyThreadGroup"

getParent() "modifyThreadGroup™

setDaemon() "modifyThreadGroup"

setMaxPriority() "modifyThreadGroup"

Isuspend() "modifyThreadGroup™

resume() "modifyThreadGroup™

destroy() "modifyThreadGroup™

]interrupt() "modifyThreadGroup™, "modifyThread"

stop() "modifyThreadGroup™, "modifyThread"
"stopThread"

Defining your own permission and using it in a program is beyond the scope of this book, but we
wanted to point out that you could do thisif you really wanted to. For more information on how to
do this, aswell as other security-related topics, read the Java 2 security documentation.

Real-World Examples
1. The garbage collector thread and the Final 1ze() method

A common problem we have seen is when the garbage collector thread becomes deadlocked trying
to free up memory. Consider this situation: Y ou have alegacy C-code application that is not
thread-safe and you want to call into the C functions from a Java program. This scenario is not all
that uncommon. An easy solution would have you synchronize methods that would access the C
functions. Defining the methods as synchronized would allow only one Java thread to access the C
functions at any given time. This seemslike alogical assumption; however, since you are calling
into C code, you may aso want to define a Final ize () method to do some cleanup inthe C
functions|[i.e., caling free() to clean up memory used by the C code].

The problem that can result from a situation like this is a system deadlock. The reason why this
can happen is rather smple. Since access to al the non-thread-safe C functionsis controlled via
synchronized Java methods, only one Java thread can access the C code at any given time. If an
object that was using these Java methods goes out of scope, it is eligible for garbage collection.
This makes sense, of course; however, when the fFinal ize() method is called in the Java class,
it will try to call into the C code to perform some cleanup tasks. If a Javathread is already in one
of the C functions at the time of garbage collection, the entire system will hang. Why? Well when
the garbage collection thread kicks in (begins garbage collection), it suspends all the other threads
running in the Java VM. Now when the garbage collection thread callsinto the fFinalize()
method, it will block waiting for access to the C code. Since the garbage collection thread has
suspended al other threads, the thread that isin the C code at the time of garbage collection will

146

never return to free the lock; therefore, the garbage collection thread will block forever and hang
the JavaVM.

Keep this situation in mind when overriding the final i ze () method. When finalize() is
called by the garbage collection thread, al other threads running in the VM become suspended.

2. Performance: Access to synchronized objects

We have seen many situations where the performance of Java code is diminished when accessing
synchronized methods or objects. This should not be a surprise, as calling synchronized methods
involved locking a monitor before accessing the method. We can't stress this point enough. It
seems simple enough, but programmers often fall into it. In one customer situation, aHashtable
object was being used to cache results obtained from a database. Using aHashtable for this
purposeis not wrong, in fact it is a common technique. However, if the program isto scale up to
several concurrent database accesses at any given time, the Hashtab e becomes a bottleneck to
the program'’s performance. Since access to aHashtable object is synchronized, only one thread
is alowed to modify the object at any given time.

A simple solution to a situation like thisis to use multiple Hashtabl e objects and then distribute
access to the objects so that you can have some level of concurrency. In the case we have outlined,
when multiple Hashtab I e objects were used to cache the database data, a hundredfold increase
in performance was gained.

3. More problems with the garbage collection thread

Usually, the garbage collector works exactly the way intended and you, the programmer can
ignore it completely. In certain cases under certain system requirements, you may wish to change
some details of its behavior. Don't even think about this unless you see specific problems.

We have run into a number of issues with the garbage collection thread in the Java VM. Most of
the problems revolve around the fact that when the garbage collection thread runs, it suspends all
of the other threads in the Java VM. The fact that al the threadsin the VM are suspended can be a
cause of concern when programming multithreaded programs in Java, but the ssimple act of
garbage collection can also cause some annoying problems. For example, say you have a Java
program that needs alot of memory for alocal cache that you wrote. If the memory heap
requirements are large, say 500 MB or more, the simple act of garbage collection can take quite a
bit of time to complete. In this example, since the heap requirements are large and system garbage
collection does not usually kick in until 75% of the heap is used, it can cause the entire JavaVM
to halt for quite a bit of time while it cleans up the heap.

A simple solution to a problem like thisis to perform garbage collection more often or to define
your own garbage collection class. For example, you could have athread that eepsfor agiven
amount of time and then wakes up and calls for garbage collection. Y ou may think that this would
cause even further program delays, but the simple fact that garbage collection is performed more
often means that the amount of heap it needsto clean up is smaller. This means that the delay
caused during garbage collection is smaller. In the example where the heap is huge, it is better to
have very small delays introduced during program execution than to have a single large halt while
the entire heap is collected.

4. Make synchronized code sections as small as possible

A synchronized method invocation is one of the most time- consuming operationsin Java.
Therefore, you want to avoid its use as much as possible. We realize that when writing threaded
programs in Java, you will need to use synchronized code. The synchronized keyword is most
commonly used in method signatures. Thisisavalid use of the keyword, but in many cases the

147

entire method does not have to be synchronized. Why lock an entire method when only afew lines
of code in the method have to be locked? A better ideaisto synchronize the smallest section of
code possible in a method that needs to be protected.

Y ou can do this by using the synchronized keyword in the method code (see Code Example 10-3).
Notice that the synchronized keyword is used to protect only the section of code in the method
that needs to be protected. Thiswill allow for more concurrency and will also help with the
performance of programs.

Example 10-3 Synchronizing Part of a Method>

public void aMethod() {
if (some_condition)
synchronize (this) {
// Do synchronized work here
}

else {
// Do unsynchronized work here
}

5. Threaded class downloads

A problem we often see with large Java programs is the time it takes to download all of the class
files needed for execution. This problem can be solved by creating a custom class loader, which
downloads only theinitial classfiles needed for the program to begin its execution. Then while the
program begins its execution, thread(s) can be created to continue the download of other classfiles
in the background. Cyrus InterSoft offers a commercia solution to problems like this. Cyrus offers
anumber of Javaresources that aid in the download and execution of Java programs. For example,
they are able to begin the execution of a Java program even before all of it is downloaded, as well
as run multiple Java programs inside the same Java VM. Improvements like these can have a
dramatic effect on the performance of Java programs.

General Tips and Hints

1. Itisvery helpful in athread dump analysis to give the thread a meaningful name. If you
spawn many threads without meaningful names, it becomes next to impossible to figure
out what isreally going on.

2. I'd say the biggest issue I've run into at customer sites is the mismatch between the ease of
Javathread syntax and semantics. Everybody talks about how easy threads areto do in
Java, and what these people are always referring to is the ease with which someone can
write some threaded code, the syntax. What often is overlooked until too late is how
complex the thread semantics can be and how difficult these portions of the code will be
to debug. Thus, one often ends up with a situation where some fairly novice developers
have created code that istoo complex for them to debug.

3. Many customers running on Solaris (JDK 1.1) do not realize that by default they are using
green threads. They then wonder why their quad processor E4000 runs no better (or worse)
than asingle-processor NT box, or why the load is not distributed across processors.

Daemon Threads

148

A daemont!! thread is normal in every respect save one. When it is time for the VM to decide if
it's time to exit (based on whether there are any active threads), daemons are ignored. Thus if you
have ten daemon threads running and your last normal thread exits, the VM will exit the entire
process.

A few years ago, one very conservative (and not very savvy) religious group called for a
nationwide prayer meeting to cast out the "demons" that were in UNIX.

Daemons are used for background tasks that make sense only when there are other threads that are
doing the real work. The garbage collector is an excellent example of a proper use of daemons.

Y ou can set the daemon flag on or off as your program requires with thread . setDaemon(),
but you can only do this before you call start(). You cannot change the status of a running
thread. Y ou can aso check the status of athread with isDaemon().

Y ou will probably never use daemons.

Daemon Thread Groups

A daemon thread group is normal in every respect save one. When it becomes empty, it may
automatically be destroyed and removed from its parent. There is no relationship between daemon
threads and daemon thread groups. Y ou can change the daemon status of a thread group at any
time.

Calling Native Code

From Java you can use the INI (Java Native Interface) library to call C, C++, etc., code from your
Java program, or to call Java code from your C, C++, etc., code. If your Java programis
multithreaded, calling native code from multiple threads does not change the issues of thread
safety at al. If the native code uses data that is shared by multiple threads, that data must be
properly protected. By far the ssmplest and most reliable method of doing thisis to have your Java
code take care of the locking.

If a Java method calls a native function, which in turn uses some shared data, synchronizing the
method properly will ensure that said datais protected properly. Don't worry, be happy!

If for some reason thisis not an option (perhaps the native code accesses different bits of data
under different circumstances which Java cannot know about, and you want those different bits of
data to be accessible concurrently), you have a challengein front of you. The JNI spec specifies
how native threads and locks will interact with Java code. If you're using a native threads library
underneath Java, you'll probably be OK using the native locks. If you're using green threads, on
the other hand, you're in trouble. Green threads will not interact with native locksin any viable
fashion.

If you are running Java with the native threads library, most things work as you would expect,
even though they are not necessarily clearly specified. A native method can be declared
synchronized just like a non-native method. In addition, within the native method the C code can
invoke explicit MonitorEnter () and MonitorExit() operations (Code Example 10-4). [To
cal wait(), notify(), etc,, it is necessary to make explicit INI calls back into Java. They are
not supported directly as with monitors.] Moreover, MonitorEnter () isrecursive (asyou

149

should expect). However, given that native code (outside the system classes) is usually used for
speed or to access system-specific APIs, there is usually little need to do this.

Example 10-4 Locking Monitors from C Code

(*env)->MonitorEnter(env, obj);
// Critical Section
(*env)->MonitorExit(env, obj);

Native methods can also use native synchronization objects to coordinate their actions with other
native threads. All of thiswill operate correctly with Java.

Threads originally created outside Java can attach to the VM using JNI
[AttachCurrentThread()]. Once athread is attached to the VM, it will receive a Java
wrapper and appear to the VM as a normal Java thread, including being entered into a thread
group. It will be able to access Java objects and invoke methods on them, including the usual
synchronization methods. Any thread, whether originally Java or native, can create additional
native threads in the native method. However, any such thread must attach itself to the VM

before it can interact with any Java objects. A native thread that callsin to the VM can also create
and start Java threads.

In Figure 10-1 you can see the basic Java threading design when using the native thread libraries.
The Java thread objects are built by and controlled by the VM, but the threads themselves are
actually native threads that are created and controlled by the native library. The actual context
switching, locking, etc., are done by the native threads library, which is why things work together.

Figure 10-1. Java Thread Objects Use Native Threads

Thread Obj #1 JVM Thread Obj #2
java_code ()

"?%’??ﬂﬁé‘?ﬁ?‘g RITTy

@
A
z

| NI

code ()

(fﬁthread lock {L
pthread unloc ”
pthread create

s % =

Native C Code

Within native code all exceptions are synchronous, including those caused by stop ().
Exceptions are detected either by explicit polling using ExceptionOccurred() or in some
cases by checking return values. Once an exception israised it must be dealt with (by clearing or
by returning and thus propagating to Java code). It is not safe to call further INI methods (other
than those for dealing with exceptions) until the exception has been dealt with.

Y ou cannot share local Java objects from one native thread to another, nor should you hold on to
references across multiple NI callsto C code, even from the same thread. Javawill pass C an
interface pointer (JNIEnv *) which isvalid only for that thread on that call. If you wish to share

150

or retain references across cals or threads, you will need to convert those local referencesinto
global ones. (By making them global, you are adding a root reference to the objectsin question so
they won't get garbage collected or moved.)

In short, if your JVM uses the system'’s native threads library, every combination of threads and
synchronization should work correctly. If your VM uses green threads, you should expect things
not to work together.

Thisisvery tricky stuff. Be careful!

A Few Assorted Methods

There are a small number of other methods that provide minor functionality that you probably
won't use. Y ou can ask the VM how many threads there are currently running in athread's thread
group [Thread.activeCount()] and which of themis"aive" [Thread. isAlive()]. You
can get alist of them, too [Thread . enumerate ()].2 Unfortunately, by the time you get around
to using any of thisinformation, it may have changed. If you need to keep track of the threadsin
your application, you will need to design an ad hoc mechanism to do so. Just like thread groups,
thisisnot abig deal and is easily accomplished.

2] All three of these methods are officially deprecated in Java 1.1 and replaced with the thread
group methods threadsCount(), groupCount(), and allThreads().

Do you need to know how many threads are running? Have them increment a counter upon
starting. Need to know if athread has completed its work? Use a semaphore or await/notify. Y ou
can also change the print string for athread [setName ()].

Stack Size

The default stack size for Javais implementation dependent. On Solaris the default stack is 500k,
which is big enough for 10,000 recursive calls to a method of no arguments and no local variables.
Thisis probably big enough for any program. Y ou can change the stack size by passing a
command line argument. Thisinvocation will give you a 1-MB stack for al threads:

%java -oss 1000000 Test

If athread overflows its stack, it will hit aguard page that is mapped in nonreadable. Thisway
you will get an immediate SEGV so you can go back and fix your program.

Y ou can find out how deep the current stack is[Thread . countStackFrames()] and even
print it out [Thread .dumpStack()].

Deprecated Methods

When a method becomes deprecated (wonderful term, eh?), for how much longer will it be
supported? If you have a program written for JDK 1.1 that uses stop (), do you need to worry
about running it on JDK 1.2?

151

There's no official answer here. Certainly in other Sun products the guarantee was that a
discontinued interface would continue to be supported for five years past the announcement date.
So, if you're using any of the deprecated methods, you're probably OK for some time to come, but
change your code next time you do amajor release.

The Effect of Using a JIT

To maintain complete hardware independence, Java is always compiled to a byte code which is
then interpreted. (Y es, we know that there are some companies that write full, native compilers,
but that's not "proper" according to the rules for Java. We'll subsume thosein the JIT discussion.)
Although the performance of the byte interpreters is quite impressive and is sufficient for many
I/O-bound programs, it till doesn't hold a candle to native code for computing.

A Just In Time Compiler loads the byte code and then compiles that down to native code (possibly
at load time, possibly at runtime). The CPU-intensive portions of your program will now run
much faster (afactor of 5 or s0). The I/O portions won't improve at al (they're either running
kernel code or they're blocked, waiting for I/O!). How does this affect your MT programming?
Probably not at al. The threads functions already run almost entirely in the VM; hence, aJIT
will not speed them up at all.

Adaptive Compilers

In the HotSpot compiler only selected portions of code are compiled to native format. Asthe
program runs, HotSpot continues to monitor its progress, compiling other methods as it seesfit.
HotSpot has one enormous advantage over JIT compilers: It can compile many thingsin-line
which JIT compilers cannot. To maintain full Java semantics, al programs must allow new
subclasses to be loaded at any point during computation. This dynamic loading may invalidate
some of the in-line calls that you would like the compiler to make for you. JI'T compilers handle
this by not compiling in-line. HotSpot gets around this problem by recompiling those sections of
code affected by the new classes.

HotSpot (or rather the ExactVM, whichiit is based on) also has a number of optimizations to
improve the speed and reduce the memory required for locks. Basically, instead of allocating locks
in permanent hashtables or the like, locks are allocated on the stack when first used, and popped
from the stack when the owner rel eases them. Only when another thread blocks on it will the lock
be copied off the stack and placed into permanent memory.

The threads functions are mostly in the JVM itself and will not benefit much from the JIT. You
should expect the percentage of time that thread overhead takes to increase by a factor of 10 or so
(because everything else is getting faster). Aslong as that can be held to a small percentage of
total processing time, you should have no problems.

APIs Used in This Chapter

The Class java.lang.Thread

Thread
public Thread(ThreadGroup group, String name)
public Thread(ThreadGroup group, Runnable run)
public Thread(ThreadGroup group, Runnable run,

152

String name)
throws SecurityException,
I1legal ThreadStateException

These create a new thread object in the thread group stated.

References: \Chapters 4 and 10.

getThreadGroup
public final ThreadGroup getThreadGroup()

This returns the thread group for this thread object.

\Reference: \Chagter 10.

checkAccess
public void checkAccess() throws SecurityException

If there is a security manager, its checkAccess () method is called with the Thread asan
argument.

\Reference: \Chagter 10.

isDaemon setDaemon
public boolean isDaemon()
public void setDaemon(boolean on)
throws SecurityException,
I1legal ThreadStateException

This gets/sets this thread to be a daemon. Y ou cannot change the status of a running thread.

Reference: (Chapter 10.

countStackFrames
public int countStackFrames()

This returns the depth of the stack.

Reference: Chapter 10.
Comments: Deprecated in Java 2. Not well defined in any case.
dumpStack

public static void dumpStack()

This prints out the stack.

Reference: (Chapter 10.

activeCount
public static int activeCount()

This returns the number of active threadsin the current thread's thread group.

\Reference: |Cha9ter 10.

153

Comments: |Deprecated in Java 1.1. See ThreadGroup.al IThreadsCount()

enumerate
public static int enumerate(Thread tarray[])

Thisfills tarray with as many currently active threads asfit, returning that number.

Reference: Chapter 10.

Comments: |Deprecated in Java 1.1. See ThreadGroup.allIThreads().

The Class java.lang.ThreadGroup

ThreadGroup
public ThreadGroup(String name) throws SecurityException

public ThreadGroup(ThreadGroup parent, String name)
throwsSecurityException, Null Pointer Exception

These create a new thread group.
\Reference:]Chagter 10.
toString

public String toString(Q)

Thisreturns a printable string.

Reference: (Chapter 10.

checkAccess
public final void checkAccess() throws SecurityException

If there is a security manager, its checkAccess () method is called with the ThreadGroup as
an argument.

Reference: (Chapter 10.

getName
public final String getName()

This returns the name that you gave to the group.

\Reference:]Chagter 10.

getParent
public final ThreadGroup getParent()

This returns the parent of this group.

\Reference:]Chagter 10.

parentOf
public final boolean parentOf(ThreadGroup g)

154

Thisreturnstrueif thisisthe parent.

Reference: (Chapter 10.

stop
public final void stop() throws SecurityException

Thiscals stop() on every thread and thread group in this group.

Reference: Chapter 10.
Comments: Deprecated in Java 2.
suspend

public final void suspend()
throws SecurityException

This cals suspend() on every thread and thread group in this group.

Reference: Chapter 10.
Comments: Deprecated in Java 2.
resume

public final void resume()
throws SecurityException

Thiscals resume () on every thread and thread group in this group.

Reference: Chapter 10.
Comments: Deprecated in Java 2.
interrupt

public final void interrupt()
throws SecurityException

Thiscdls interrupt() on every thread and thread group in this group.

Reference: \Chapter 10.

destroy
public final void destroy()
throws SecurityException,
I1legal ThreadStateException

Thisremoves the group if it is empty. If the thread group has subgroups, destroy () iscalled on
each of those first. Finally, the newly destroyed thread group is removed from its parent.

\Reference: \Chagter 10.

getMaxPriority setMaxPriority
public final void getMaxPriority()
public final void setMaxPriority(int newMaxPrio)throws
SecurityException, IllegalArgumentException

This gets/sets the maximum priority allowed for any thread in this group.

155

Reference:]Chagter 10.

isDaemon setDaemon
public final void isDaemon()
public final void setDaemon(boolean daemon) throws
SecurityException

This gets/sets this group to be a daemon.

\Reference:]Chagter 10.

threadsCount
public int threadsCount()

This counts the threads in this group.

Reference: (Chapter 10.

allThreadsCount
public int allThreadsCount()

This counts the threads in this group and subgroups.

Reference: (Chapter 10.

groupsCount
public int groupsCount()

This counts the groups in this group.

\Reference:]Chagter 10.

allGroupsCount
public int allGroupsCount()

This counts the groups in this group and subgroups.

Reference: (Chapter 10.

threads
public Thread[] threads()

Thisreturns an array of al the threads in this group.

\Reference:]Chagter 10.

allThreads
public Thread[] allThreads()

Thisreturns an array of al the threads in this group and subgroups.

\Reference:]Chagter 10.

groups

156

public ThreadGroup[] groups(Q

Thisreturns an array of all the groupsin this group.

\Reference: \Chagter 10.

allGroups
public ThreadGroup[] allGroups(Q)

Thisreturns an array of al the groups in this group and subgroups.

\Reference: \Chagter 10.

activeCount
public int activeCount()

This returns the number of groups in this group.

Reference: Chapter 10.
Comments: Deprecated in Java 1.1. Use al IThreadsCount() .
activeGroupCount

public int activeGroupCount()

This returns the number of groups in this group.

Reference: Chapter 10.
Comments: Deprecated in Java 1.1. Use al IGroupsCount()
enumerate

public int enumerate(ThreadGroup list[])
public final void enumerate(ThreadGroup list[], boolean
recurse)

Thisis deprecated. Useal IThreads().

Reference: |Chapter 10.

Comments: |Deprecated in Java 1.1. Use al IThreads Count() or threads(),
allGroups(), orgroups()-

list
public final void list(Q)

Thisis adebugging utility that prints out a detailed description of this thread group.

Reference: (Chapter 10.

uncaughtException
public final void uncaughtException(Thread t, Throwable e)

Thisis called whenever athread in this group dies via an uncaught exception.

\Reference: \Chagter 10.

157

Summary

We described some of the details of areas of minor interest. Y ou'll probably never use anything in
this section.

158

Chapter 11. Libraries

The Native Threads Libraries
Multithreaded Kernels

Are Libraries Safe?

Javas Multithreaded Garbage Collector

In which we explore a variety of operating systems issues that bear heavily upon the usability of
threads in actual programs. We examine the status of library functions and the programming
issues facing them. We look at some design alternatives for library functions.

Multithreading is a fine and wonderful programming paradigm as we have described it thus far.
However, it's not worth too much if it doesn't have the operating system support to make it viable.
Most of the major operating systems are in a state of significant flux, so it would be difficult for us
to say much about al of them. Instead, we will stick with the issues that need to be considered and
describe where the major systems are with respect to them.

The Native Threads Libraries

The native threads library is an integral, bundled part of the operating system for most (Solaris,
IRIX, AlX, Digital UNIX, SCO, HP-UX, Win95, NT, OS/2) but not al OSs (Linux). Whenitis
bundled, you can write your program and not worry about whether the dynamic library will be
there when you need it. Aslong as you write your C programs legally, you will be able to move
them across different machines and across different versions of the operating system without any
problems at all.

JVMsthat use green threads are independent of the native threads libraries, so there's no issue here
for them. JVMsthat do use the native threads library will obviously need that native library in
place.

Multithreaded Kernels

Many of the kernels are implemented using threads (Solaris, NT, OS/2, AlX, IRIX, Digital UNIX,
HP-UX). The kernels generally use the same C API that you have access to (Solaris kernel threads
are very similar, Mach kernel threads are much lower level). Thereis no inherent connection
between the kernel being multithreaded and the existence of auser-level MT library. Kernel
programmers could have written the user-level library without the kernel being threaded, and they
could have threaded the kernel without supplying a user-level library. They even could have built
LWPs, made them realtime, SMP, and preemptable without the use of threads. Theoretically.

In practice, the same things that make M T so attractive to you also make it attractive to the kernel
hackers. Because the kernel implements all internal schedulable entities as threads, it is much
easier to implement SMP support and realtime scheduling, and make the kernel preemptable. So
LWPs are built on top of kernel threads. Interrupts are built with kernel threads. Creation,
scheduling, synchronization, etc., of kernel threads work much the same way as for user-level
threads.

159

The OS can be viewed as one gigantic program with many library callsinto it [read (), write(),
time(), etc.]. Kernels are unusual in that they have always been designed for atype of
concurrency. DOS is simple and allows no concurrent calls. If your program blocks while reading
from disk, everything waits. Multitasking systems, on the other hand, have always allowed
blocking system calls to execute concurrently. The calls would get to a certain point [say, when
read() actualy issues the disk request], save their own state, and then go to sleep on their own.
This technique was nonpreemptive, and it did not allow for parallelism. Code paths between
context switching points could be very long, so few systems claimed any time of realtime behavior.

In thefirst casein Figure 11-1 (whichislike SunOS 4.1.3 and most early operating systems), only
one process can be executing a system call at any one time. Many processes may be blocked in the
middle of a system call, but only one may be running. In the second case, locks are put around
each mgjor section of code in the kernel, so several processes can be executing system calls, as
long as the calls are to different portions of the kernel. In the third case (like most current systems),
the granularity of the locks has been reduced to the point that many threads can be executing the
same system calls, aslong as they don't use exactly the same structures.

Figure 11-1. Concurrency within the Kernel

No Concurrency Partial Concurrency Maore Cancurrency
Processes
QIOPNG
(P9 Q)
waiting waiting “[{
(s S

Kernel Kernel J Kernel
| 4

Davice Driver Device Driver

| Device Driver

1o o ¥

o

Now, if you take these diagrams and substitute processor for process, you will get adightly
different picture, but the results will be largely the same. If you can execute several things
concurrently, with preemptive context switching, you can execute themin parallel. A dightly
different but perfectly valid way of looking at thisisto consider it in terms of critical sections. In
the "no concurrency” case, the critical section isvery large—it's the whole kerndl. In the "more
concurrency" case, there arelots of little critical sections.

Symmetric Multiprocessing

SMP merely means that al processors are created equal and endowed by their designers with
certain inalienable functionalities. Among these functionalities are shared memory, the ability to
run kernel code, and the processing of interrupts. The ability of more than one CPU to run kernel
code simultaneously is merely an issue of concurrency—an important issue, of course, but not a
defining one.

160

All of the OSs discussed here were designed to run on uniprocessor systems and tightly coupled,
shared memory multiprocessors. The kernel assumes that all processors are equivalent. Processors
run kernel threads from the queue of runnable kernel threads (just asin user code). If a particular
multiprocessor implementation places an asymmetric load on the processors (e.g., if interrupts are
all directed to asingle CPU), the kernel will nonethel ess schedule threads to processors asiif they
were equivalent, not taking this asymmetry into account.

Are Libraries Safe?

Just because you write perfectly safe code that will run in a multithreaded environment with no
problems doesn't mean that everyone else can. What would happen if you wrote awonderful MT
program, but then called alibrary routine that used a bunch of global data and didn't lock it? Y ou'd
lose. So you must be certain that if you call aroutine from multiple threads, it's MT-safe, which
means that a function must lock any shared data it uses and it in turn must only call other MT-safe
functions.

WEell, even programmers with the best of intentions find themsel ves with conflicting goals. "Make
it fast" and "Make it MT-safe" don't always agree. Some routines in some libraries will not be
MT-safe. It'safact of life, and you have to deal with it. The documentation for each library call
should indicate its level of "MT safeness.” It is often quite unclear from the Java spec just which
methods are or are not thread-safe.

Libraries and classes themselves are not safe or unsafe, per se. The methods in them are (or aren't).
Just to confuse things, there are libraries that contain some methods that are safe and some
methods that aren't safe. Every time you use a method, you must make sure that it's M T-safe.

Thecalsread() andwrite() aretechnically MT-safe, inasmuch as you can call them from
multiple threads and get correct results. Unfortunately, they both move a pointer associated with
the file descriptor. In practice, if you perform concurrent operations from different threads on the
same file descriptor, you're likely to get very confused. For this reason, in UNIX98 there is a pair
of calls (Figure 11-2): pread() and pwrite (), which operate exactly the sasme way as read ()
and write(), except that you have to pass an explicit file position pointer along with them.

Figure 11-2. Using pread() and pwrite() to Keep Track of the File Pointer

fd.seek (fileOffset) ; (UNIX98)
err=fd.read(k, 0, 1};

s‘_ 1 () pread(fd, fp} E—d—
PRT++ —r »

E_,-_ (T27)) pread (£d, fp) E-l-

fd.seek{fileCffset) ;

err=fd.read(b, 0, 1); file.txt

No such calls exist in Java, so you are forced to open file descriptors for afileif that isthe
behavior you want. [In our disk performance example (see Disk Performance with Java), thisis
what we do.]

161

Window Systems

All modern window toolkits are designed around the concept of having an event loop waiting for
window events. Xview, SunView, X11, MS Windows, Motif, CDE, AWT, Swing, etc., are all
based on an event loop. Basically, the thread in question will sit in acall to read(), waiting for
input. The user may push a button or move the mouse, or a socket or pipe may signal data ready.
All of these are encoded as events. (In the different toolkits, different events may be registered
with the event loop. Java allows only mouse events and keyboard input eventsin the AWT and
Swing.)

When that event is read by the event loop, the event |oop then dispatches the event to the
appropriate method. In X11, CDE, etc., the programmer will register specific functionsto run
when specific events occur. In both Swing and the AWT, events are aways dispatched to one of a
small number of known methods. If you subclass App I et and create a button, pushing that button
will call the Button method actionPerformed(). You (presumably) have specialized that
method for your subclass to do what you want.

In a Swing program, the main thread runsmain() (asusua) and it typically lays out the
components for awindow and makes them appear by calling either show() or setVisible().
As soon asthe first Swing window is shown, an event dispatch thread is also created to handle
events. All event callbacks run in this thread.

The AWT is not thread-safe. Thiswill come as a great surprise to many people (the authors
included). There were plenty of indications that it was, and plenty of sample programs in books
and manuals that assumed it was, but it isn't.

In awindow system that is thread-safe, any method may be called on any object in the toolkit in
one thread while any other method is running on any other object (or the same method and object).
The results might not always make sense, but it would be legal and would produce the same
results as if you had called the methods from the same thread. Thisis a good thing, because you
can call methods from any thread at any time. Thisis also abad thing because it will slow down
the window system quite a bit.

The future of Javais not in the AWT, so we won't spend much time on it. (A sample AWT
program that mimics our Swing example is on the Web.) Swing is the new toolkit that you'll be
using to do al of your Javawindows work and Swing is most specifically not thread-safe! Thisis
bad because you can't call methods from any thread at random. Thisis good because you're less
likely to make the silly mistakes noted above.

Its one drawback is largely mitigated by the inclusion of two methods, invokeAndWait() and
invokelLater (). These two methods place any operation you want onto a queue that the
window thread will run from its read/execute loop. The first function, invokeAndwait(),
places the event onto the event queue and waits until it completes. The second, invokeLater (),
places the event onto the queue and returns immediately (Figure 11-3). The event will then get
processed some unknown time later. Y ou will probably not use invokeAndwait() very often,
and obviously you would never cal it from the event dispatch thread.

Figure 11-3. Threads Using invokelLater() with the Swing Toolkit

162

rumni)
{calculatel(}
invokeLater {redraw)

callbackz ()
Mouse {longCalcThread.start ()}
Read Execute callbackl ()}
{draw results()}

File /V(

callback3 ()
{read text()}

Several other methods are also thread-safe and may be called from any thread, including
JTextComponent.setText(), JTextArea. insert(), JTextArea.append(),
JTextArea.replaceRange(), JComponent.repaint(), ad
JComponent.revalidate(). Youmay aso add and remove event listeners from any thread.
The listener methods will, of course, run in the event dispatch thread. Y ou may also create
components, set their properties, and add them to containers as long as they are not yet realized.
Onceredized [viashow(), setVisible(), or pack()] you cannot manipulate them any
longer. Y ou will probably never use any of the latter thread-safe methods, asit is normally
possible to do everything from either the main thread or via invokeLater ().

Theresult of this design is that the window thread (the one running the event loop) spends the vast
majority of its time blocked in read, waiting for an event. Thisis good. Y ou want to do your main
computing in another thread. The problem that arises is that some button might invoke along-
running method, freezing the GUI until it compl etes.

So you can have the callback function spawn a new thread to handle the calculation and the
callback can return immediately. Thisway, the GUI is till active and the calculation is performed
in the new thread. When the calculation is complete, the thread can then request updates to the
windows to be done by calling invokeLater () (Figure 11-4).

Figure 11-4. ThreadedSwing Window Example

invokeLater (DidWorker) ;

\

Threa edﬁwmg

‘| Threaded | 2 3

sleep(6000)
sleep(6000) -—4{ invokeLater {(DidWorker) ;

This is the same technique that is used in the native window toolkitsin UNIX. As Motif has no
"invokeLater ()"-style function, C programmers simply send an event directly from the thread
to the event loop using XCreateEvent(), causing the event loop to run the callback for that
event.

Code Example 11-1 is from the program ThreadedSwing (see the complete code in Threads and
Windows) and shows the callbacks, the function that runs when you push a button (which just

163

creates athread and returns), the work function [which does its work, then calls invokeLater ()]
and the display function [which isrun by invokeLater()].

Example 11-1 Using Threads in Swing

public class NumericButtonListener implements ActionListener {
public void actionPerformed(ActionEvent event) {
ThreadedJButton currentButton =
(ThreadedJButton)event.getSource();

System.out.printIn(*'Pressed " + currentButton);
currentButton.setEnabled(false);

System.out.printIn(currentButton + " disabled.™);
DoWorker w = new DoWorker(currentButton);

if (ThreadedSwing.useThreads)
new Thread(w).start();
else
w.run(Q);

class DoWorker implements Runnable {
ThreadedJButton button;

public void run() {
Thread selfName = Thread.currentThread();

System.out.printin(button + " sleeping... " + selfName);
InterruptibleThread.sleep(6000);
System.out.printin(button + " done.

+ selfName);

// This will run workComplete() in Swing main thread.
// This is the main point of the whole example.
SwingUtilities. invokeLater(new DidWorker(button));

class DidWorker implements Runnable {
ThreadedJButton button;

public void run() { // Run only in Swing main thread.
Thread selfName = Thread.currentThread();

button.setEnabled(true);
System.out.printin(button +

reenabled. + selfName);

}
Working with Unsafe Libraries

What do you do if you want to use aclass library that contains unsafe methods? Y ou could use it
in locations where it is already protected (Code Example 11-2). (HashMap isnot MT-safe, but in
this codeit is used only by methods that are already safely protected.) Y ou could subclassit and
synchronize the methods (Code Example 11-3). Y ou could use it from only a single thread.

164

Example 11-2 Protecting a HashMap

public synchronized Object tweek(Object arg) {
HashMap .put(arg);
}

Example 11-3 Subclassing an Unsafe Object

public class MyFoo extends Foo {

public synchronized Object frob(Object arg) {
return foo.super(arg);
}

}
When Should a Class Be Synchronized?

There is atendency when writing a threaded program to declare all methods synchronized. This
would seem a good thing to do, as then they could all be safely called from any thread. But it's not.
The vast mgjority of objects that a program uses are called from code that aready contains proper
protection. In our producer/ consumer examples, there was no need to make workpi le.add()
and workpi le.remove() synchronized because they were only called from producer and
consumer.

Synchronized Collections in Java 2

In Java 2 several classes that previously had synchronized methods have gotten replacement
classes that don't [e.g., HashTabl e has synchronized methods, HashMap (new in Java 2) doesn't].
Thisisagood thing because HashMap runsfaster. It is a good thing becauseit isfairly unlikely
that you need it to be synchronized anyway. But sometimes you do.

Java 2 has a clever method of dealing with this situation. Instead of making subclasses of the
various collection classes and synchronizing them, Java 2 provides a static factory method for
each collection class which will return a synchronized version of the collection. Thisis known to
design pattern folks as a decorator pattern.

So theideais that you create a class, then call the factory method on it to get back a synchronized
version of that same class. Obviously, you must now use only the synchronized version of the
class. Each of the core collections has such a factory method:

public static Collection synchronizedCollection(Collection c¢)
public static Set synchronizedSet(Set c¢)

public static Map synchronizedMap(Map c¢)

public static List synchronizedList(List c¢)

public static SortedSet synchronizedSortedSet(SortedSet c¢)
public static SortedMap synchronizedSortedMap(SortedMap c)

So you use these methods to obtain synchronized collections (Code Example 11-4):

Example 11-4 Making Synchronized Collections

List syncdList = Collections.synchronizedList(list);

165

If you use an iterator, you must use it entirely within a synchronized block or else another thread
might change the collection while the iterator is using it (Code Example 11-5)

Example 11-5 Protecting an Iterator

synchronized (syncdList) {
Iterator i = syncdList.iterator();
while (i.hasNext())
foo(i.-next());

Java's Multithreaded Garbage Collector

Obviously, Java's garbage collector must work in a threaded environment. There are a number of
different algorithms that will do this. They range from simple stop-and-copy garbage collectors to
realtime, dynamic, generational collectors. As Javais very specifically not arealtime language,
stop-and-copy is perfectly acceptable. The actual algorithm used is not specified by Java, and
different implementations use different collectors.

By the very nature of garbage collection, a multithreaded garbage collector is significantly more
complex than a single-threaded collector. In a single-threaded collector, the system is able to run
freely until it runs out of heap, in which case it can then run a GC directly. Asthereisonly one
thread, that thread is clearly in a known safe state and the GC can proceed immediately. Ina
multithreaded collector, things are not so simple.

Inan MT environment, when a thread discovers that it needs to start a GC, it cannot just begin
immediately. There are more threads out there and they must not be allowed to interfere. First,
they must not be allowed to use the heap while our GC thread is changing it. Second, they must
not be allowed to change any pointers while the GC thread is running. Third, the entire state of the
system must be consistent and all internal invariants correct.

Thisis accomplished by requiring all other threads to arrive at a known safe placein the VM and
stay there. How to get all the threads to do this is another matter, and there are plenty of clever
schemes used to ensure all threads arrive at one of the GC points as quickly as possible.

Now, can your GC also compact the heap? And do you want it to? Y es, the GC can compact the
heap. It's alittle bit tricky if you hash on an address, but possible. In some set of programs,
compacting will allow you to run in a smaller memory machine. But outside of intentionally
mistuned programs, this probably isn't an issue anyway. Memory is plentiful and cheap.

Locks during Finalization

Aswith all finalization, you never know if or when it is going to happen. Trying to lock locks
during finalization can easily get a naively written program into a deadlock. What do you want to
use finalization for anyway? There is amost certainly a better way to do whatever you're thinking
about.

Summary

166

Many library functions are not MT-safe, and several different techniques are used in dealing with
this, some by the JVM, some by individual vendors. In most cases you will find that you want MT
safety at ahigher level than Java base classes anyway. It is often unclear from the documentation
exactly how some of the Java classes have been defined.

167

Chapter 12. Design

Making Libraries Safe and Hot
Manipulating Lists

Program Design

Design Patterns

In which we explore some designs for programs and library functions. Making both programs and
individual functions more concurrent isamajor issue in the design of these functions. We look at
avariety of code examples and the trade-offs between them.

Making Libraries Safe and Hot

Now that we've discussed the grand generalities of what is possible, let's move to the other
extreme and take alook at some of the specific programming issues that MT programs come up
against and how they can be dealt with. We'll 1ook at the issues of designing and working with
libraries—the vendor's libraries, third-party libraries, and your own libraries—how they can be
written to be both correct and efficient. By far the most important design issue is simplicity.
Debugging multithreaded programs is difficult and the current tools are not that good (because
none of us have figured out how to build better tools!), so thisis amajor issue.

Often, there are simple, obvious methods of making functions M T-safe. Someti mes these methods
work perfectly, but sometimes they introduce contention between different threads calling those
functions. The job of the library writer is to analyze those situations and make things fast.

We're going to look first at some functionsin C because (1) these are good examples of the issues
involved, (2) they are real examples from productions systems, and (3) we had this section left
over from the last book and wanted to use it. We can divide functions into a number of categories.

Trivial Library Functions

Many functions are trivially safe. Functions like sin() have no need to write any shared data and
can be used exactly as first implemented thirty years ago.

Ancther set of functions has very little shared state and can be made thread-safe simply by
surrounding the use of globa data with alock. The pseudo-random number generator, rand (), is
avery small, fast function that takes about 1 ps on an SS10/40. It uses a seed value that it changes
on each call. By protecting that seed, the function can be made safe (Code Example 12-1). This
new version of rand() is safe and now runs about 1 ps sower due to the mutex. For most
programs, thisisfine.

Example 12-1 Simple MT-Safe Implementation of rand(), Version 1

rand 10 {
static unsigned int seed;
static pthread mutex_t m = PTHREAD MUTEX_ INITIALIZER;
int value;

pthread mutex_lock(&m);

value = _rand(&seed); /* Calculate new value, update seed */
pthread_mutex_unlock(&m);

168

return(value);

3
Functions That Maintain State across Invocations

There are cases where you might wish to use a function to set valuesin one invocation and use
those same values in another invocation but don't want those values shared by different threads.
When you call strtok(), for example, you first passit a string to be parsed, and it returns the
pointer to the start of the first token in that string. When you call it a second time (with aNULL
argument), it returns a pointer to the start of the second token, etc. It is highly unlikely that you
would want thread 1 to get the first token in a string and thread 2 to get the second, although thisis
exactly what strtok() will do.

There are two possible solutions. One isto write anew function, strtok_r(), which takes an
extraargument that the programmer uses to maintain state explicitly. (Thisis what POSIX does.)
Thisisagood technique because the programmer can explicitly choose how to use the arguments
to the best advantage. But at the sametime, it puts an additional burden on the programmer, who
must keep track of those arguments, passing them from function to function as required.

The second solution is to use thread-specific data and have strtok() maintain separate state for
each thread (thisis what Win32 does). The advantages to this solution are consistency (no code
changes required) and simplicity at the cost of some efficiency.

WEell use rand () again to illustrate these points (Code Example 12-2). Normally, afunction like
rand() will be used only occasionally in a program , and there will be very little contention for
its critical section (which isvery short anyway). However, should your program happen to call
rand() agreat deal, such asin a Monte Carlo simulation, you may experience extensive
contention. By keeping the seed as thread-specific data, this limitation can be avoided.

Example 12-2 Implementing rand() with TSD, Version 2

int rand 20 {
unsigned int *seedp;
int value;

seedp = (int *) pthread_getspecific(rand_key);
value = _rand(seedp); /* Calculate new value, update seed */
return(value);

}

With the rand_2 () definition, there is no contention for a critical section (as there is none).
However, even rand_2() istwo times dower than rand(). One advantage of rand_1() and
rand_2() isthat they don't change the interface of rand (), and existing libraries that use
rand() don't need to be changed.™!

M The semantics of rand_2() are different than those of rand (), inasmuch as pseudo-random
number generators are deterministic, and their results are repeatable when a known seed value is
used. Both rand() and rand_1() would be nondeterministic, as thread scheduling is
nondeterministic. This is unlikely ever to be a problem.

WEell, that's interesting, but isit really relevant to Java? Most of the issues above are subsumed by
the use of abjects. In Javathe object Random contains its own state and is (potentially) just as fast
as rand() in POSIX. So no, these are not terribly relevant to Java, but it's good to know how the
lower-level libraries deal with these issues.

169

Making malloc() More Concurrent

The implementation of mal loc() on Solaris 2.5 is quite ssimple (Figure 12-1). There's one global
lock that protects the entire heap. When athread calls either mal loc () or free(), it must hold
that lock before doing the work. It's asimple, effective design that works fine in most programs.
When you have numerous threads calling mal loc () often, you can get into a performance
problem. These two functions take some time to execute and you can experience contention for
that one lock. Let's consider other possible designs. Keep in mind that we are not going to be
changing the definition of mal loc (), nor will we change the API. We are only going to change
the implementation underneath.

Figure 12-1. Current Solaris Implementation of malloc()

Held? 1

p —

Sleep | @1 T14 |@®

p1 —

free(p2) —

Using Thread-Specific Data to Make mal loc() More Concurrent

When used sparingly, a simple mutex works fine. But when called very often, this can suffer from
excessive contention. The TSD solution is a possibility, but it introduces some problems of its
own.

What if T2 mallocs some storage and T1 freesit? How does T1 arrange to return that memory to
the correct free list? [Because free () will glue adjacent pieces of freed memory together into a
single large piece, the free () must be called with the original malloc area; see Figure 12-2.] If
T2 exits, who takes care of its malloc area? If an application creates large numbers of threads but
seldom uses mal loc (), it will be creating excessive numbers of malloc areas.

Figure 12-2. Threads with Individual TSD mal loc() areas

170

[| [
12 12

So thisis possible, but not very attractive. One of the fellowsin our group actually implemented
this for a customer with avery specific problem. It worked well, but it was not at all generalizable.

Using Other Methods to Make mal loc() More Concurrent

It is possible to assign a mutex to protect each piece of free storage and have threads skip over
those areas when locked. Although possible, this technique suffers from excessive complexity. It
also suffers from excessively fine-grained locking. [If mal loc () hasto lock a mutex for every
single node in the freeligt, it could easily spend more time doing the locking than looking for the
memory. We do exactly thisin One Local Lock.]

A different approach to this problem isto build a static array of malloc areas to be shared by all
threads (Figure 12-3). Now athread calling mal loc () can check for an unlocked malloc area by
caling pthread_mutex_trylock() onthe areas mutex. If held, the thread will simply check
the next area. The probability of more than afew malloc areas being locked is vanishingly small
for any vaguely normal program. Thisversion of mal loc() would be safe, fairly fast, and
relatively simple.

Figure 12-3. Threads Using an Array of mal loc() Areas.

E..-. Mutexes //——.'
i b

P
==)
p
2

LIE¢

e @

o,
/")
@
N

'

171

Storage being freed must still be replaced into its area of origin, but thisis a manageable problem.
The freeing thread could simply block. It could place the pointer to be freed onto alist for that
area and let the thread holding the lock take care of doing the freeing on its way out. We could
dedicate a special thread to the task of returning freed storage to its proper location. A variation on
atheme for this design involves using a small hashtable that maps the TID to a specific malloc
area, reducing the amount of searching involved.

These are afew of the most common problems that we have seen. There are two points worthy of
note: (1) There are many viable solutions to every problem; and (2) no one solution is optimal for
all aspects of a problem. Each of the three versions of mal loc () isfastest in some situation.

Although Java does not have trylock methods, virtually the same effect may be accomplished
by locking the array of pointers and including an "in use" bit. As of the writing of this book,
several people were working on different variations of thislast solution. We will probably see
them in later operating system releases by the different vendors.

Manipulating Lists

Now we are going to take alook at some designs for a program that adds, removes, and searches
for entrieson asingly linked list (Figure 12-4). The program creates a list of people with their
salaries. One set of threads is going to search down that list looking for friends of Bil's, and give
those people raises. Another set of threads is going to search down the list looking for people
whom Dan detests and remove those people from the list. There may be some overlap of Bil's
friends and Dan's enemies.

Figure 12-4. Friends/Enemies: Basic Design

Eﬂ' Main Thread

Initialization;
makel istOfPeople ()
new GiveFriendsRaise (makelistOfFriends()) .starc()
new LiquidateEnemies (makelistOfEnemies()) .start()

Friend Threads Enemy Threads
giveFriendsRaise() liquidateEnemies ()
{f = findPerson(name) {e = findPerson(name)
%1’ veFriendRaise () liquidateEnemy (e)
t

To make the program a bit more interesting (and emphasi ze certain issues), we will associate a
delay time with each raise and liquidation. These delays may represent the time to write to disk or
to do additional computation. For this purpose well make acal to sleep(). On Solaris, the
minimum sleep time is 10 ms (it's based on the system clock), which istypical for most OSs. The
main question we'll be asking is: "For a given configuration of CPUs, delay times, list length, and
number of threads giving raises and performing deletions, which design is best?' For different
configurations well get different answers.

Basic Design

172

The complete code for al examples is available on the Web (see Code Examples).

A few notes about the program. The function findPerson(name) isto be used by both the
friends and enemies threads; hence, it will return a pointer to the previous element of the people
list (the liquidate function needs access to the previous person to remove a person from the list).
The appropriate element of the list must remain locked when findPerson() returns, and which
lock is appropriate will change with the different designs. It is possible to search for someone who
has been liquidated, so null I isapossible return value. We'll have to be careful.

Single, Global Mutex

Single, global mutex is by far the simplest design (Code Example 12-3). All that is necessary isto
lock the mutex before starting a search and release it after the thread is finished with liquidation or
giving raises (Figure 12-5). Thisisthe extreme case of coarse grain locking. It has very little
overhead and has the best performance when there is only one thread or when the delay times are
zero. Once the delay times go up and more threads are added, the wall-clock performance of this
design goes to pot. It will not get any advantage from using multiple CPUs either.

Figure 12-5. Friends/Enemies: Global Mutex Lock

list |@

Jan $15000| @

mutex| 0

sleep o C
Kim | $18000| @

NO!
ptr |@- (
Mari | $64000| @

There are a couple of things worth noting. The mutex protects the entire list—every element on it,
all the pointers, and the datainside (name and salary). It isnot legal for athread to use a pointer to
any element of thelist if it does not hold the mutex.

One other thing that you may notice if you run this codeis an odd tendency for one thread to get
the mutex and then keep it. Typically, one thread will get the lock and execute a dozen or more
iterations of itsloop before another thread ever runsitsloop at all. Often, one thread will run to
completion before any other thread even starts! Why? Because there is no work being done
outside the synchronized loop and as soon as the running thread rel eases the synchronized section,
the very next thing it doesisreacquireit. A call to Thread.yield() inthe code forcesit to
behave more the way we'd expect. In a“rea" program, this would not be an issue because it would
be doing real work outside the loop.

In Code Example 12-3 we see the central function that runs down alist of friends, looking them
up and giving them raises. It locks the mutex, does al its work, then unlocks the mutex. It gets the
next friend off the list of friends and starts @l over again. There are no more than afew dozen
instructions between the time it unlocks the mutex and locks it again! The probability of another

173

thread getting in there fast enough to get the mutex is quite low. Using a FIFO mutex in this code
would make it much fairer. And sightly slower.

Example 12-3 Giving Friends Raises (from FriendThread.java)

public void run() {
while (friends = null) {
synchronized(test.people) {
Person p = Person.findPerson(friends, test.people);

if (p !'= null) {
p-next.giveRaise();
}

friends = friends.next;

}
Thread.yield();// 1T running Green Threads

}
Global RWLock with Global Mutex to Protect Salaries

Version two of the program uses a readers/writer lock to protect the list and a mutex to protect the
salaries. Thisway, any number of threads can run down the list, at the same time searching for
people to receive raises. Once found, we need to protect the salary data while we update it. We
add the SalaryLock for this purpose. Clearly, we could not update the salary if we only held a
read lock. When a thread wishes to remove one of Dan's enemies from the list, that thread must
hold awriter lock while it searches down the list and removes the offending element (see Figure
12-6).

Figure 12-6. Friends/Enemies: Global RWlock and Salary Lock

list | @ * SalaryLock
readers | 3 Jan mutex| 1
writer

$15000| @
5) sleep |@
w_sleep | @ (
P Kim

r_sleep 5180009
NO!
ptr |@- C
Mari | $64000| @

It'simportant for us to think very carefully about what each lock is protecting. The RWlock
protects the list structures and the pointers. It does not protect the salaries. Surprisingly, the
performance of this code is not much better than that of the previous code! Inspecting the code
closely, you should realize that very little timeis spent actually searching down the list (about 1 us
per element). It is the contention for the salary lock when the delay is non-zero that takes al the
time.

Once again, no thread may hold a pointer to any portion of the list unlessit owns one of the locks.

174

Code Example 12-4 is the code that updates the salary of Bil's friends. The delay isinside the
critical section; thus, while one thread is sleeping here, all the other threads must wait outside.
Moving the delay outside would vastly increase the performance of the program. It wouldn't be
terribly realistic to do so. Asthe delay represents awrite to disk or some other operation on the
salary, it really must be inside the critical section.

Example 12-4 : giveRaise() (listGlobaRW.java)

public synchronized void giveRaise() {
rwlock.unlock();
salary++;
delay(raiseDelay);

}

Note that we release the RWlock as soon as we obtain the salary lock, alowing liquidator threads
to begin their searches. The liquidator threads are allowed to run while we're updating the salary!
To make thiswork correctly, the function IiquidatePerson() must also lock the salary lock
before it changes anything in the object (Code Example 12-5). Also notice how we are mixing our
RWIlocks with Java's synchronized sections.

Example 12-5 Removing an Element from the List (ListGlobalRW2. java)

public synchronized void liquidate() {
next = next.next;
rwlock.unlock();
delay(liquidateDelay);

}
Global RWLock with Local Mutex to Protect Salaries

Version three of the program (Figure 12-7) uses a readers/writer lock to protect the list and alocal
mutex to protect individual salaries. Thisway, any number of threads can run down the list
searching for people to give raisesto at the same time. Once found, we need to protect the
individual salary data while we update it. Now we have overcome the major bottleneck of this
program. Many threads may now update different salaries at the same time.

Figure 12-7. Friends/Enemies: Global RWlock and Local Salary Lock

list | @ ="
\. Jan | $15000| @~

readers | 3
writer 0
w_sleep | @
rsleep @ Kim [$99000 | @1
NO!
ptr |.- Q s
Kari | $80000 | @

175

Once again, no thread may hold a pointer to any portion of the list unlessit owns one of the locks.
If it only holds alocal salary lock, it may not do anything except access that one dataitem. As
soon as the element is removed from the list (see Code Example 12-5), we can release the RWlock
(no one else will ever be able to access our item).

In this code, the only points of contention are:

e Only oneliquidator at atime may search.
e Only onethread at atime may give araise to agiven individual.

Something that you might consider at this point is: Why not allow multiple liquidators to search at
the same time, then once they've found the object, convert the read lock into awrite lock? We
could maodify the definition of RWIlocksto alow this possibility; however, it wouldn't work. We
would have to ensure that only one thread ever wanted to make the conversion at atime, and as
soon as it made that request, every other thread with aread lock would eventually have to release
that lock without making a conversion request. In other words, it's possible to do, but it's so
limited in functionality asto be nearly worthless.

For pretty much any program of this nature, design 3 will turn out to be the best. However, there
are other possibilities.

One Local Lock

What if we allocated one mutex per element to protect only one element? In Figure 12-8, each
mutex protects a pointer and the structure to which the pointer points. (The global mutex protects
only the global pointer and first structure.) With this design, multiple threads may search down the
list at the same time, either to update a salary or to remove an element. Now, multiple liquidator
threads may search and destroy simultaneously! Unfortunately, as soon as one thread finds the
element it is searching for, it will continue to hold the lock while it finishes its work. Other threads
will quickly pile up behind it,2 waiting to acquire that mutex. This design yields abysmal results
for every combination of CPUSs, threads, list length, delay times, etc.

(2] Ever drive 101 at rush hour?

Figure 12-8. Friends/Enemies with Only One Local Mutex Lock

list | @] i""
, :\.' Jan $15000| @

OK Kim | $99000 .—>

Kari $80000| @

176

Itisillegal for athread to hold a pointer to an element unless it holds the appropriate mutex. In
this case, the appropriate mutex islocal, so numerous threads may hold pointers to different
elements. Note that the mutex in Jan's structure protects the "next" pointer and the following
structure (Kim's).

To update Kim's salary, athread will need to hold the mutex in Jan's structure, not the onein
Kim's. To remove Kim from the list, once again the thread must hold the mutex in Jan's structure.
As soon asit has been removed from the list, Jan's mutex may be released. It will be impossible
for any other thread to get a pointer to Kim.

Let's look at the searching routine (used by both liquidators and raisers; Code Example 12-6). The
basic loop is simple: Look at each element, compare the name strings, return the previous pointer
if found. What is interesting about this function is the order in which locks are acquired and
released.

Example 12-6 Searching Code (ListLocallLock. java)

public static Person findPerson(Person p, Person people) {
Person previous;

people.mutex.lock();

while (people.next = null) {
it (p-name.equals(people.next.name))

return people; // Previous person (holding
lock!)
people._next_mutex.lock();
previous = people;
people = people.next;
previous.mutex.unlock();
}

people_mutex.unlock();
return null;

}

First we lock the global lock and compare our name to the first element (Jan). If thisisn't it, we
lock Jan's lock, release the global lock, and compare again. The locking/unlocking is being donein
an overlapping fashion! (It's often called chain locking.) This makes it somewhat challenging to
ensure that the correct locks are locked and unlocked in the correct order in all the different
functions.

Two Local Locks

A superior version of the local lock design may be had by providing two local locks, one to
protect the element and one to protect the salary. Now we have the advantage of allowing multiple
liquidator threads to search down the list while not causing bottlenecks. The only points of
contention occur when two threads wish to operate on the same element. There's nothing we can
do about that.

That's the good news. The bad news is that it takes time to lock mutexes. It may well take more
time to lock and unlock each mutex than it takes to do the comparison! In this code, it does. This
version of the program, shown in Figure 12-9, is significantly slower than the RWlock version.
Only if the list were short and the time to execute a comparison were long would this design give
superior results.

Figure 12-9. Friends/Enemies: Two Local Locks

177

list | @ 3 [
: :—\' Jan $15000| @

==
OK Kim | $99000 :b
ptr |@- —

- =

Kari | $80000| @

Local RWLock with Local Mutex to Protect Salaries

Just for the sake of completeness, we'll consider one more design (Figure 12-10). By making the
local lock an RWlock, we can allow multiple threads to do comparisons on the same element at
the same time. If comparisons took significant amounts of time, this could be a viable design. For
our program, which does a simple string compare, this design proves to be the worst yet. It takes
up much more space, adds more complexity, and is slower by avery significant amount.

Figure 12-10. Friends/Enemies: Local Lock and RWlock

17
list ."\' =]
readers | 3 Jan $15000
writer 0
w_sleep | @
r_sleep | @ =" E
Kim $99000 [=
ptr |@- _v ____.D

oK O —

Kari $80000 | @

We've now completed the journey from very coarse-grained locking to very fine-grained locking
and come to the obvious conclusion. The best results are usually found in the middle, but the only
way to know isto try.

Program Design

178

A small number of high-level design strategies have been discussed in several books (see The
Authors on the Net). These names are not used completely uniformly. They are:

e Master/Slave: One thread does the main work of the program, creating other threads to
help in some portion of the work.

e Client/Server (Thread per Request): One thread listens for requests, then creates a new
thread to handle each request.

e Producer/Consumer (a.k.a. Work Queue or Workpile or Thread Pool): Some threads
create work requests and put them on a queue. Other threads take the work requests off
the queue and execute them.

e Pipeline: Each thread does some work on atask, then passes the partially completed task
to the next thread.

e Client/Server (Thread per Client): One thread listens for new clients to attach, then
creates a new thread to handle each client. The thread is dedicated to its client, doing
work only for that client.

In the discussion below we will elaborate on each of the designs and include some sample code.
All the code will be based on a client/server program that takes in requests from a socket,
processes them, and sends replies back out over the same socket file descriptor. The complete
code for three versions of the program (thread per request, producer/consumer, and nonthreaded)
ison the Web site.

Master/Slave

The master/slave design is the most obvious for many kinds of tasks. In its most elemental form, it
will be implemented by alibrary, and the programmer will not even be aware of there being

multiple threads. A matrix multiply routine may well spawn a set of threads to do the work, but all
the programmer knows isthat she called matrix_multiply().

Client/Server (Thread per Request)

Thisisredly just a master/slave design for client/server programs. The master thread will do the
listening. In the fragment of the socket program shown in Code Example 12-7, each time a new
request comesin from a client, the main thread spawns off a thread to handle that request. The
main thread then returnsto its accept () loop while the thread works on the request
independently, exiting when it's done.

Example 12-7 Master/Slave Socket Design

public void runServer() throws Exception { // Executes in main thread
for (int i = 1; true; i++) {
socket = serverSocket.accept();
Thread t = new Thread(new ProcessRequest(socket));

t.start();
}
public void process() {
int n = csocket.is.read(request); // request = "Request ..."
reply = getReply(request);
csocket.os.write(reply); // reply = "Reply ..."
}

Although this design has some positive aspects (e.g., simplicity and directness), it also admitsto
some drawbacks. The cost of thread creation is not going to be significant unless the task itself is
very short (< 10 ms). Of more significance is that the programmer has no simple control over the

179

number of threads running at any one time. Should there be a sudden spike in the number of
requests, there will be an equal spike in the number of threads, causing performance degradation
due to the excessive number of threads competing for the same locks, CPUs, virtual memory, and
other resources. (Running this program on afast 32-bit machine will crash the program when it
runs out of virtual memory.)

Rewriting the program to limit the number of threads would be somewhat ugly, and there are
better ways of handling the problem. Thisis probably not a good design for any program!

Producer/Consumer

In the producer/consumer model (Code Example 12-8), the programmer can exert full control over
the number of threads with very little effort. The threads may be created at startup time and then
be left to wait for work to appear on the queue. Should some of the threads never run at all, there
will be no great cost— probably immeasurable. Should there be too many incoming requests, they
can be placed on the queue and handled when convenient.

Example 12-8 Producer/Consumer Socket Design

public void startUp() throws Exception { // Executes in main thread
for (int 1 = 1; 1 < nConsumers; i++) {
Thread t = new Thread(new Consumer(workpile));
t.start();

socket = serverSocket.accept();
Thread t = new Thread(new Producer(workpile, socket));

t.start();
System.out.printIn(*'Server[" + t.getName() +
"J\tStarted new socket server: " + socket);

}

public static Request read(Socket socket) {
int n = csocket.is.read(b);
return new Request(csocket, b);

}

An important aspect of the work queue is that you can allow the queue to grow to any length you
deem appropriate. If your clients block, waiting for the results of query 1 before issuing query 2,
then allowing the length of the queue to grow to the number of clients will assure you that requests
will never be lost, and you can maintain peak efficiency.

If clients are able to issue unlimited overlapping requests, you have no choice. At some point you
must begin rejecting requests. However, as long as the average rate of incoming requests is below
what your server can handle, then by allowing the queue to grow up to some modest limit, you can
effectively buffer burst traffic while retaining peak efficiency. Thisis a popular design and isthe
general design of NFS.

Pipeline

The pipeline model is based directly on the same work model that is used in CPUs and on factory
floors. Each processing element will do a certain amount of the job and then pass the partially
completed task on to the next element (Code Example 12-9). Here the processing elements are
threads, of course, and each thread is going to do a portion of the task, then pass the partia results
on to the next thread.

180

Example 12-9 Pipeline Design

processRequest_AQ) {

while(true) {
is.read(data, LENGTH);
resultA = processDataA(data);
addQueueA(resultA);

processRequest B() {

while(true) {
resultA = getFromQueueA();
resultB = processDataB(resultA);
os.write(resultB, LENGTH);

}

We can certainly see that this model would be valuable for simulations in which what you're
simulating is a pipeline. For other situations, it's not so clear. In silicon and on factory floors,
specidization isimportant. One section of a chip can execute only a single task (the instruction
fetch unit can only fetch instructions, never decode them), and it takes time for aworker to put
down awrench and pick up a paintbrush.

Thisisnot so for threads. It is actually easier and faster and the programming simpler for one

thread to execute an entire operation than to do alittle work, package up the partial result, and
gueue it for another thread. Although a number of programs that use this paradigm have been

suggested, it is not clear to us that any of them are superior to using one of the other designs.

Client/Server (Thread per Client)

The final model is also somewhat questionable to us. In this model, each client will have a thread
devoted to it, and that thread will remain inactive the vast mgjority of the time (Code Example 12-
10). The advantage of having a thread devoted to an individual client is that the thread can
maintain state for that client implicitly by what's on the stack and in thread-specific data. Although
this does save the programmer the effort of encapsulating that data, it's unclear that it's worth it
because of the large number of threads required. In POSIX we avoid doing this by having one
producer thread call sellect() on hundreds of sockets. In Java, thisis not an option [thereis
nothing similar to select() in Java; see Dealing with Many Open Sockets], so you are pretty
much forced to use this design.

Example 12-10 Thread per Client Design

public void startUp() throws Exception { // Executes in main thread
for (int 1 = 1; 1 < nConsumers; i++) {
Thread t = new Thread(new Consumer(workpile));
t.start();

}

for (int i 1; true; i++) {
socket = serverSocket.accept();
Thread t = new Thread(new Producer(workpile, socket));
t.start();
System.out._printIn(*'Server[" + t.getName() +

181

"J\tStarted new socket server: " + socket);
¥

WEe'll consider these last two as interesting possible designs that need some practical fleshing out.

Design Patterns

Design patterns are an excellent tool for conceiving of and constructing programs. Thisis
especially relevant to threaded programs, where the interactions between the threads may become
complex. A pattern describes a design form consisting of the interfaces, classes, and objects that
make up a program and their interactions. As such, they are a more formal way of stating what we
have just described.

There are a series of well-thought-out patterns that are used in multithreaded programs. The use of
design patterns lies just above the focus of this book, so we will not attempt to cover it at al. Doug
Led's excellent book Concurrent Programming in Java is devoted to describing how such patterns
are designed and used (see Threads Books). We recommend it highly.

Summary

Numerous trade-offs exist in the creation of MT-safe and M T-hot libraries. No single locking
design works best for al programs. How different threads will interact and how they will be
created and exit are open questions. We offer afew insights and some examples. The most
important design issue is simplicity.

182

Chapter 13. RMI

e Remote Method Invocation

In which we examine RMI and see what it providesin terms of a distributed object programming
model. We look at how threading interacts with it and how it uses threads.

RMI is not athread topic per se, but it does often play a significant role in threaded programs
because of its use by threaded programs. The prototypical MT program is a client/server system
where the server is threaded to provide greater throughput. In our previous examples, we
implemented client/server programs using simple byte streams to communicate across raw Sockets.
This was good because it was simple and fast, but it was bad because encoding any level of
complexity (integers, symbols, objects, etc.) into the byte stream required complicated, ad hoc
byte stream formats for those more complex objects.

RMI provides us a ssmple method of encoding and transmitting arbitrarily complex objects,
making it a natural replacement for our raw socket code. Thus we expect agreat deal of threaded
code to use RMI and therefore include a section on it.

Remote Method Invocation

The basic idea of remote objectsis very ssimple. A server program creates an object and makes a
reference to that object remotely available. Client programs find that reference and use it remotely
to perform work. The client code treats that reference asif it were anormal, local object, calling
methods on it and getting results back. For the most part, the client is unaware that thereis
anything specia about the object. The underlying RMI system takes care of packaging up method
invocations and arguments, transmitting them across the wire and returning results. Thisis a good
thing.

In Figure 13-1 we see atypical, simple RMI application. The rmiregistry is started first. (The
registry isa"poor man's' name server. It can be started directly from the command line or it can
be started by the server when that first starts up. Well use the command line method.) Next the
server program is started. At (1) the server program instantiates anew Server Impl object (this
isjust aregular classthat implements java. rmi .Remote; we'll subclass
UnicastRemoteObject). At (2) it callsthe RMI bind () method, which first finds the registry
(by default it looks on port 1099 on the current host), then tells the registry to associate the string
supplied ("fFrobber") with the object (). Now the main thread is done, exporting that object.
WEell let it exit, although you could keep it around if you wanted. The server startup code has done
itswork and is done. Behind the scenes, RMI has started up a new thread of its own [while
executing the bind () call] which will now handle all requests for the object T. (Lots of details
here; we'll discuss them in abit.)

Figure 13-1. A Simple RMI Call Sending and Receiving a String

183

Server

“frobber” Serverlmpl
4: ro = lookup(“frobber”) *masher”
| [frob()

- - -

- -

Client rmiregistry

1:f= new Serverimpl()
2: bind(“frobber”,);
3 exit main()!

5: 5 = ro.frob("Request")
~ T s frob(){...} L

s R

rmi thread

Next the client is started up. It calls the RMI function Iookup () to ask the registry for any object
associated with the supplied string. The registry returns the reference to the server object f. This
object is returned as a remote object, meaning that the client basically has a"fake" local copy (a
stub) of that object which it can use normally. When the client calls one of the remotely callable
methods [e.g., frob ()], the arguments are passed to the stub, which uses RMI to "package up"
the arguments (known as serializing an object) and send them across the wire to the actual object
in the server along with the method being invoked. That method runs in the server (6), doing
whatever it wants, and returns the result, which RM1 serializes and ships back across the wire to
the client. We can now implement the same client/server program as before without bothering
with the details of working with raw sockets. Thisis agood thing.

Sending Remote References

It isalso possible for the client to ship remote references to objects over to the server. In Figure
13-2 we expand upon the previous example by declaring a class in the client which subclasses
UnicastRemoteObject. In (5) we create an instance of that object and in (6) we cause RMI to
send areferenceto it over the wire by passing it as an argument to frob (). Now the server hasa
remote reference to an object in the client, and the client has one to an object in the server. The
server can call remote methods on this object and get arbitrary data from the client.

Figure 13-2. A More Complex RMI Call Sending a Remote Object Reference

184

Server

Client

rmiregistry

“frobber” # Serverlmpl
4:ro = lookup(“frobber”) "masher
r ==
r---1 1 —_ » |frob()
L frob() |
f I]
main thread .- - - . 1:f = new Serverlmpl()
v — " _ 2: bind(*frobber”, f);
5. ¢ = new Clientimpl() e .)
- - =| V' . 3: exit main()!
24 request #1 ~. rem
foets " . P -
N | lrgesl
rmi threa I I
-‘_H_H“‘-H-..H_‘_ o= o= = d
' 5 = ro.fr
6: s = ro.frob(c) — .
_ ____,-"’,i “‘m_‘\ 7. frob(c)f...}
“reply #1° \\ -
rmi thread

Note that as soon as a remote reference is exported from the client, the client starts up an RMI
thread of its own to handle remote calls on any exported object. Thus when the server callsthe
remote method fgetS() on c at (7), that remote call will run in the client's new RMI thread, not
the main thread which made the initia call to frob().

The basic ideaisthat an object can (a) implement Remote, in which case passing it asan
argument will cause RMI to ship aremote object reference to the server. An object can (b)
implement the Serializable interface instead (or subclass Remote-Stub), in which case
passing it as an argument will cause RMI to ship a complete copy of that object to the server.
(Strings are seriaizable.) Finally, (c) an object can do neither, in which case passing it as an
argument is not legal and the compiler will complain.

In the code for this program (Code Example 13-1), we see the declaration of the interface for the
ServerImpl object (ServerOp), where the remote method frob () is declared. Next we see
the Server Impl object itself X! where the actual method frob () is defined. The ClientOp
interfaceand ClientImpl classlook very similar.

™ The use of the postfixes "Op" for the interface and "Impl" for the object are a general RMI naming
convention that we use for convenience and uniformity. You may choose any names you like, but
we recommend sticking with the convention.

Example 13-1 Simple RMI Server and Client

// ServerRMI/Server.java

/*
A simple RMI server program. It sets up a registry name for the
client program to connect to. It creates an unknown number of
threads
FOR you, exiting them when it feels like it.
*/

import java.rmi.™;
import java.rmi.server.>;

185

import Extensions.™;

public class Server {
static int serverDelay = 0;
static boolean DEBUG = false;
static boolean KILL = false;

public static void main(String[] argv) throws Exception {

Thread t;

if (System.getSecurityManager() == null)

System.setSecurityManager(new RMISecurityManager());

if (argv.length > 0)
serverDelay = Integer.parselnt(argv[0]);

if (System.getProperty("'DEBUG') != null)
DEBUG = true;

if (System.getProperty(""KILL™) != null)
KILL = true;

System.out.printIn(*'Server(serverDelay:

")M;

it (KILL)
new Thread(new Killer(120)).start(Q);

Naming.rebind(*'Frobber™, new Serverimpl());

+ serverDelay +

System.out.printIn(*'Server: "Frobber®™ now registered with

rmiregistry.");

}

// ServerRMI/Client.java
import Extensions.™;
import java.rmi.*;

import java.rmi.server.>;

public class Client implements Runnable {

static boolean DEBUG = false;
String name;

static int nCalls = 100;
static iInt nThreads = 2;
static int clientDelay = 10;
static SingleBarrier barrier;

static boolean KILL = false;

public static void main(String[] argv) {
if (System.getSecurityManager() == null)

System.setSecurityManager(new RMISecurityManager());

if (argv.length > 0)
nCalls = Integer.parselnt(argv[0]);

if (argv.length > 1)
nThreads = Integer.parselnt(argv[1l]);

186

if (argv.length > 2)
clientDelay = Integer.parselnt(argv[2]);

if (System.getProperty("'DEBUG') 1= null)
DEBUG = true;

if (System.getProperty("KILL™) I!= null)

KILL = true;

System.out.printIn("'Client(nCalls: " + nCalls + " nThreads: "
+ nThreads + " clientDelay: " + clientDelay
+ II)II);

barrier = new SingleBarrier(nThreads);
for (int i=0; i<nThreads; i++) {

Thread t = new Thread(new Client());
t.start();

it (KILL)
new Thread(new Killer(120)).start();

barrier.barrierWVait();
System.exit(0);

public void run(Q) {
String selfName = Thread.currentThread().getName();

try {
System.out._printIn("'Client[" +

selfName + "J\tStarted new thread.™);
ServerOp ro = (ServerOp)Naming. lookup("'Frobber'™);

for (int 1 = 0; 1 < nCalls; i++) {

String msg = "[Client " + selfName + "] Request: "

Clientimpl ci = new Clientlmpl(msg);

if (DEBUG) {
System.out.printin("Client[" + selfName +
"1 \tSent: """ + msg + ""'");

}
String reply = ro.frob(ci);

if (DEBUG) {
System.out.printIn("'Client[" + selfName +
"1 \tGot: """ + reply + """);

}

InterruptibleThread.sleep(clientDelay);

s

} catch (Exception x) {
X.printStackTrace();
System.exit(1);

187

barrier.barrierPost();

// ServerRMI/Clientlmpl._java
import java.rmi.*;

import java.rmi.server.>;
import Extensions.™;

public class Clientlmpl extends UnicastRemoteObject implements

ClientOp {
static int delay = 0;
String message;

public String getString() {
return(message);

}

public Clientimpl() throws RemoteException {
message = "'No Message'';

}

public Clientimpl(String msg) throws RemoteException {
message = msg;
}

// ServerRMI/ClientOp.java
import java.rmi.*;

// A remote interface for an object that supports the *call”
// operation.

public interface ClientOp extends Remote {
public String getString() throws RemoteException;
}

// ServerRMI/Serverimpl._java

import java.rmi.*;
import java.rmi.server.>;
import Extensions.™;

public class Serverlmpl extends UnicastRemoteObject implements

ServerOp {
int nCalls = 0;

public Serverimpl() throws RemoteException {

}

188

public String frob(ClientOp 0) throws RemoteException {
int localCalls;
ClientOp ci = (ClientOp)o;
String request = ci.getString();
String selfName = Thread.currentThread() .getName();
String reply;

synchronized (this) {
localCalls = nCalls++;
3

it (Server.DEBUG) {
System.out.printIn('Server[" + selfName +
"I\t Starting: "" + request + """);

}

InterruptibleThread.sleep(Server.serverDelay);

reply = "[Server"™ + selfName + "] Reply: " +
localCalls + " to: " + request;

iT (Server.DEBUG) {
System.out.printIn('Server[" + selfName +
"I\t Processed: " + reply + ""');

}

if ((localCalls%100) == 0) {
System.out._printIn(*Server[" + selfName +
"J\t Processed: " + localCalls + " requests.');

}

return(reply);

public String getName() throws RemoteException {
return(*'<Serverlmpl: " + nCalls +">");
}

// ServerRM1/ServerOp.java
import java.rmi.*;

// A remote interface for an object that supports the *“call”
// operation.

public interface ServerOp extends Remote {
public String getName() throws RemoteException;
public String frob(ClientOp 0) throws RemoteException;

}

In the server, main() establishes a security manager (thisis required—we use
RMISecurityManager, but any security manager will do) and then callsNaming.rebind()
to register withthe rmiregistry. That'sall. [The method rebind() will overwrite previous
registration of an object, whereas bind () will throw an error if there isa previous registration.]

189

The client establishes a security manager and then calls Naming . lookup () to ask the
rmiregistry for aremote object reference. When it gets the reference, it then creates a pile of
ClientImpl objects and passes them as argumentsto ro. frob (). And that's pretty much it.

The full source code for this program includes alot of debugging statements that will print out
information about which thread is where and doing what. It is informative to examine the codein
more detail and watch its output. Compiling the program currently requires you to call a special
compiler, rmic, to build the stub code for the remote objects. (This may change.)

To run the program, you start the registry (Code Example 13-2), then the server, and finally, the
client. The registry needs to know the details of the class, so you must set CLASSPATH for it.
WEelll simply start the registry from the code directory (as CLASSPATH includes".")

Example 13-2 Running ServerRMI

bil@cloudbase[259]: rmic Serverimpl Clientimpl
bil@cloudbase[260]: rmiregistry &

bil@cloudbase[261]: java -DDEBUG Server &
Server: "Frobber®™ now registered with rmiregistry.

bil@cloudbase[262]: java -DDEBUG Client &

RMI's Use of Threads

RMI starts up one thread to listen for remote invocations on the exported object. RMI's threading
behavior is not specified beyond this. All RMI saysisthat it will run your request in some thread
other than the ones you created. If you trace this program on Solaris 2.6, you will notice that the
server will run abunch of remote requestsin RMI thread 1, afew morein RMI thread 2, etc. It
will probably run multiple requests simultaneously in different threads. Thisis officially hidden
from you, and the only way to discover thisisto print out the thread's name from frob ().

The good part of thisis that it doesn't matter. It's not part of your contract with RMI, so who cares?
The bad part is that if you mean to use RMI for high-performance programs, you have lost control
over the creation and number of threads that your server isrunning.

Exactly how and in which threads RM| executes remote requests is not specified, nor should it be.
All you care about is that your client made a remote invocation on an object and that methods
were run on the object in the server on some thread that you did not create.

In the reference implementation of Java 2, asingle "accept" thread (TPC-Accept) is started when
the first object is exported [either viabind () or when you pass it as an argument to another
process]. Thisthread will listen on adynamically alocated port for any and all incoming requests.
When a client connects and sends a request, the accept thread arranges for that request torunin a
TPC-Connection thread. If no connection threads exist, the accept thread will create one. If
thereis an idle connection thread, the accept thread will use that. Idle connection threads
eventualy exit.

There are no guarantees about which connection thread arequest will run in or about how many
connection threads RMI will create. If your application needs absolute control over server threads,
you may have to build a consumer/producer model on top of RMI. In this case, the initial remote
method would place a request object on a queue and return a "working" message to the client.
When the consumer thread completes its work, it can return the desired results via aremote
invocation on a remote client-side object.

190

The Deadlock Problem with RMI

What would happen if you locked a synchronized section on an object ¢, made aremote call,
passing c to the server, and then the server made a synchronized remote callback on c? The
server's callback would run in the client's RMI thread. It would try to get the lock, fail (because
the main thread owns that lock), and go to sleep, waiting for the main thread to releaseit.
Unfortunately, the main thread is waiting for frob () to return. Deadlock (Figure 13-3).

Figure 13-3. Deadlock by Remote Callback

Client Server
&: synch rf{) / frob() E*
{s = ro.frob(c)}
_____ 7 frob(o) rmi thread
r===1 {5 = c.fgetS();
- frob .
E Lfrobi) J return(r):} \
mainthread ~~ """
“request #1" I, - .:
faetS() r==-1
fgetS
IL get J.’]IJII

e oo o= d

8. synch fgetS() {...}

E*

rmi thread

Deadlock!

‘\-.,__‘\

What can you do about it? Nothing. In the best of situations you can simply ensure that alocking
hierarchy is maintained, recognizing that remote callbacks run in different threads. This has the
potential of becoming quite complex in more elaborate applications where hundreds of different
programs on different machines may all hold references to different remote objects scattered
across the network. In the very best of situations, you write your code so that this never comes up.

Anacther minor note: Y ou can synchronize on the local object stub for the remote object. Thiswill
lock the lock on the stub, not the actual object. Thisis probably not what you want to do.

Running synchronized remote methods on remote objects could get quite complicated. Don't do
that.

Remote Garbage Collection

A reasonable question at this point is: How does RMI handle garbage collection? Clearly, an
object that is not referenced locally could still have remote referencesto it which our loca process
wouldn't know about. RMI has a clever, optimistic distributed garbage collector (DGC). Basically,
each RMI process has a DGC client that periodically sends messages to other processes telling
them that it has references to objects there (thisis called lease renewal).

The DGC doesits level best, collecting all objects to which it can't find references. Should a
reference to one of these objects later turn up in some client process that didn't renew the lease,
too bad. The object is gone, and any remote method invocations on it will throw
RemoteException, and it will be up to the programmer to deal with the problem. Presumably

191

the program will catch that exception and go back to the server it got it from and request a new
object. Thisisagood research areafor Ph.D. students.

Summary

RMI creates its own threads to handle remote method invocations. The details are implementation
specific, but thisis not a problem. The one challenge is avoiding cross-process deadl ocks.

192

Chapter 14. Tools

Static Lock Analyzer

Using a Thread-Aware, Graphical Debugger
Proctool

TNFview

In which we consider the kinds of new tools that a reader would want when writing a threaded
program. An overview of the Solaristool set is given, as representative of what should be looked
for.

Programming with threads adds new challenges to the devel opment tools that you use. "Normal"
toolsets, in most cases, will not work well with threaded programs, because they were designed
with single-threaded programs in mind. All the vendors have some set of products to be used with
multithreaded programs—debuggers, code analyzers, and performance analysis programs.

This chapter focuses on some of the current tools that Sun Microsystems provides for the
development of multithreaded programs. Tool offerings from Symantec, IBM, etc., are fairly
similar.

Static Lock Analyzer

For C programs there isatool called LockLint, which is alint-type program for locks. It verifies
consistent use of mutexes and RWIlocks in multithreaded ANSI C programs. LockLint performs a
static analysis of the program and looks for inconsistent or incorrect use of these locking
techniques. It can tell you definitively if your program is subject to deadlock as long as the calling
structure of your program is predictable. Unfortunately, there is no similar tool for Java.

Using a Thread-Aware, Graphical Debugger

All of the different vendors have some version of agraphical debugger, all of which have the same
basic functionality. We'll look at a few screen shots from Sun's Java Workshop Debugger. To say
the least, the value of a graphical debugger for multithreaded programsis enormous.

Figure 14-1 uses the debugger to take alook at the code in An Example: Create and Join. We
started by loading the program into the debugger and then setting a breakpoint inmain(). Then
we started the program and let it hit the breakpoint.

Figure 14-1. Sun's Debugger [Program Stopped in sleep()]

193

¥ Jowea Wo rkTleop - 'I'-u_l.hvu ¥ Java WorkShop |ava Comole

TanHehsluy- SO0 plulns 10 sComaman: 10 nfredumrn 18 [0

Film [t Bulld Oebul Bowis Froso QUL Prefersnosi wiEdes =iz

A-TRE P e ik
PR ol Sl

BH O@ESEFELR 7 e

ATy s
rglurning mew
felur i S
BTERIr
I st
relurning e
il il Sew
LT S
reRurning mew

ey
fter (l=t l=d; deolooneere: iv+)
L = e Tl lew CohmEw fe, ¢, B oDelar)
£ srart |}
i

few [ize i=1, iérProslucers; [=4]
£ = new Thoewl s Frofuoey fe, ». & gilwiar])

[l T iy
o relurning mew

durning ew

o TR S
Systom ot poicdin ["Floisted! Frofecm © ¢ proste RN S

rfurning s
Fhaning sww
TP Sdw
THLATIIF] S
lurning sew
Hurning saw
R Sk
ild g sew
miurning =aw
pruiaziing
i P -
predEaEiag
presuiging
pranadsl iy
e e
elrnieg s
presausing
procraiing
IR B
proceasing

O Cameumel O f @ OOl el
i " Jbams Elep LmagpS " o w lamghl
Fyvimm wwik IC),

|
eatch (Etersptodisoamion lel FSpstan sl pointiniie # ° L sainld®i,]

Bulldl | Babug | B%ing Sedech

Gt comp g v ikl in Qoedurarfelutior: sucaeand
S Buiding deaadunanielaiian

|4
wewazoe jres i
i

P TR R e T et 0 T s L, 8 2 e Tt T v v [
I presEasing aitge =
A 10

Pl TR N L e e i TR e BP il Lt e S e 8 ST00 e el TREL S
| e AT L) |"'¢'-"- OwrQuewriolibion | Chwr| Cloan | | swmip | PRes i on by oubpil

Run without Debugger
dit
rrupt Program

Run with Debugger

Java Iﬂurh,'smp Xj larva WorkShop Threads/Stack
Eén_buitd(Bebug) wrowse KproectJuf Patwrences_wines sl || || =8 omaquenasotuticn -

F= 1 mi n theedd groug

1 2 Teitmain thread group

el *main” e ws Dabuggen Haln Threa il cond wailing (prkrity 0
E - Thied =5 Nawdtang Thegad) foi pended (priceity 5)
+9 [1] Sarvie procwis: 28

|LE Pemdmer Lle w, Server 3, Shnglelusyies b, (s d) fim':""'“""’“ﬁ
Tmn -wi e " ul == (3] v b Threndrure (pemined
erver = N '-E "Thread-5" ek bung Theewd) at breskpolal (wkority 5
dalay = o, 9
Berries B B s = ingtanaeed Conpuner
I ":I widkpile = manns o wWorkgil
"';I verver = irtancecf Sarser
ESlLe weld nesf| | I-c iy =500
fltmm lemm; S-S parrier = iritanoeel Dot ot Siaglebirner
e [] jvalars Tarsadrun o=kl
Ry £ “Toryad-7 Jumilang Theyad) walting b & menfior (priarity S
Pubile [Lous) F-.‘1-m1.;|-o]' Dasn lana They i) witing b b mon i (pekandy 51
Hmhenihal fecril L =l "Thren 8= Uik lang Theed) cond. wikiting (pebority B

whi JA] N 1
Iwhils ol le ampt p 0} warkpd le walt [._. Torgsd-10" Gavn s Thpsed con . waiing (pririty 51

"ﬂ “Taread- 11" Javn ling Thoead) cond waltng [priority 5
| '_1 “Thpegd=t T Gavi lang Thiead) cond siaitang (prisily 51
prve process e dedag), "i "Thied 4-15" Qi g Thebid coad wlking [priadity 5
1k "'-‘1*!'“-1 14" (v lamg Thrpad) con . walbing {priceity %1
T : "'I‘rmd 15" Java. lanag Theead) walting fv.g maeltor (priceity 51
E L: Thiwad=TE" (v ting Thread) 1y peeded (pranity 5
x “Thikad- 17 Jav bing Thraad sus pendad (priveity B
M Dl | Sy S | ". Thrgad=18" Javi. lang Thaadl wiahting o1 5 meei bar (pririty 5
".'1'1“1'- |':' Jlilli'i!mlﬂ"ﬂlh ‘IIM-H'NI' H'“'F;EI

wecmile nat iy iy

Jem = “chg varinhly Mam oeflmed In clagps® i

[usezgcain [prfnce omecuwesssintion Chse | bl

When any thread hits a breakpoint, all threads will stop. (Thisis a good thing, because you want
things to stop while you try to figure them out.) Notice that the Sun's Javaimplementation creates
severd threads for its own use in the main thread group. All of our threads are by default located
intheMulti .main thread group. The JDK's threads are managed by the JDK and have no effect
on your programing.

194

Also notice that the main thread is always "Main." Y ou can see from the thread pane that Main is
stopped in sleep(). The stack pane will show the entire call stack for the selected thread.

Thetiny folders are thread groups, the double lines are threads. The dark double lines indicate
threads that have been suspended, hence "Main" and "C" were running at the time of interruption,
whereas"A," "B," and "D" have arrows, hence were all blocked inacal towait() or sleep().
These three blocks piled on top of each other—"[1]," "[2]," and "[3]"—indicate calls on the stack
(those blocks are stacks, get it?). You can see the stack frame (and details thereof) for any thread
you choose. The graphics and interface are a bit awkward, but they are quite functional.

It is possible to single step an individual thread, or to continue all threads. No other options exist.
Y ou can let aprogram run and then interrupt it. This allows you to look at deadlocked programs
and figure out the problem.

Some caution must be exercised, as the first option can get you into confusion. If you step into a
call to asynchronized section, and that lock islocked, the thread will not be able to enter that
section and WS will alow al the other threads to run. And you may get confused.

Even in the best designed programs, it is common to have problems getting critical sectionsto
work exactly the way you want. When you do run into problems, it can be extremely time
consuming to find the information you need to fix them. Java locks do not appear in the debugger
at all and there is no way for you to find out which thread owns them.

Proctool

For Solaris 2 systems, there is a very nice system status display tool (Figure 14-2), which isfreely
available viaFTP (see Freeware Toals). It will show you al the system statistics on your program,
including the details for each individual LWP. Thistool can be useful when you want to know
how your threads are behaving with respect to system calls.

Figure 14-2. Proctool, Main Display Window

proctool

File Yiew Cosssnds Graphs Propecties H=lp
Hostname ; doud hace il -0ulT —

Momdiors : Active | Sample [y, A Y] Sses GHim oo
Logging : Off Kill -KILL | Interval: | e

Sorl :=CPU% . Last update: Sat Ang W H0:50:47 1007
Privileges: non_ROOT Renice||p | LAlLY " e

Sanpler G 0 sees
Find:
rd Uyedat Vi

PID UZER UID CPUE SIZE RE3 ST CPL# TIME MO

2856 bil 100 2.5 1686 1152 0 0 0m; 00: 06 pmon W

319 b1l pul i} 2.2 33736 dbrd 3 0 0D:01:4]1 wemace _static I

287 bil 100 2.0 31868 GB0B 3 0 00;09:26 ¥sun

2858 bil 100 0.4 a16 756 5 0 00:00:00 one_guewe_sclu

2855 bil 100 0.2 4728 EES4 3 0 00:00: 02 proctool

934 bil 100 0.2 23120 18724 5 0 00: 14:23 makerSH. axe
|- 1
SYETEM STATISTICS

B3 Processes: B1 Slesping, 1 Running, 0 Idle, 0 Runnable, 0 Zombie, 1 Stopped

Losad averages: 0.12, 0.11, 0.12

Memory: 39080k Virtual Free, L7k Physical Free

CPU 0 Last PID: ZB5G 3.70% user, 2.14% systes, 0.00% wait, .15% idle

195

In the main display window you see the compl ete status line for each process (you get to select
what to display). Thisis datathat is derived from the /proc file system. Selecting one of those,
you can look at detailed information about that process. In Figure 14-3 you see the detailed
statistics for each LWP. (Thisis one of the places where it's nice to have bound threads, because
you get to see what each individual thread is doing.)

Figure 14-3. Proctool, LWP Display Window

FroCtool - Process Property Window
Category: LW Sammary s Update Onge
“* futo-lpdate [FF
. ; PID : 2T CMD : one_guene_soln USERNAME : bil
LWF @ Defsult o & Puto-lpdate 08
lbsmr- ar Minor Butas Contact =
Lug lisar Saystem Fasl Lack CRl Stopped Fg Flt Pg Flt 10 Switchas Sigrals Systes
Id A Time Tuma Tims Hait Timo Hait Time Timo £ Sec /S5m0 Sec ¥ B Receiwed Calls
Tl 0 D000 O0MNGI0 DORO0:IS G00MO0 00sO0s00 OOMONA 000 000 000 000 0 159
20 (00Oaid G0e00s00 OQu00i]S 000000 OQi00eD 0updi(s 000 000 0.00 0,00] &
300 (0000l Q00000 O0u00i]S 000000 0040000 0upD:(s 000 000 0.00 0,00] B
d 0 D0E00aoe DOE0I00 MeEO0E]S ODs0i00 Qa00elD GeddEs D00 0,00 000 0,00 [x]]
5 0 (0:00a0d G000 O0e00i]S 00s0:0h Q400D 0epdiE 000 000 0.00 0,00] 11
B0 (00O QOs0000 O0e00i]S 000000 QQa00a0D gDl 000 000 0.00 0,00] 1
7 O D0:00400) DO:00I00 MEO0E]S 000000 Q0a00e0D GQeddEs 0,00 0,00 000 0,00] -] =
[
Bismizs Help

Many of the new, multithreaded kernels have internal instrumentation in both the kernel and
standard libraries. In Solaris, thisinstrumentation takes the form of a TNF (trace normal form)
probe. The basic ideafor all these types of instrumentation is that probes are included in various
important routines. These probes write their names into the file and, optionally, details of the
current program state (i.e., some variable values) into afile, along with the exact time of the call.
The probes are normally turned off but can be enabled when timing data is desired.

In Figure 14-4 we see callsto TNF_PROBE_N() (N isthe number of data values that the probe
will write out) in the Pthread library code, in the UNIX kernel, and even calls that we included in
our own code. When we run the program with tracing enabled, the probes will write their
information out into afile! Thetimi ng information is based on the high-resolution clock, which
ispart of al new Sun hardware. That clock can be read directly (no system call required) with a
resolution of 10 ps.

(1 Actually, it's a bit more complicated than we show, as there is an intermediate, binary format
between the probe and the human-readable file. Kernel probes write out to an internal buffer
instead of a file, so that must be merged into the final output.

Figure 14-4. Data Collection for TNF

196

JVM MyProgram a.tnf

pthread mutex lock() planvacation() gigg:'% iii%

{TNF_PRDBE_'D { L. :| : ‘ {'I‘D«TF_PRC*EE_J. [...}: PIDbE:3 1:16
- probe 1 1:16
} probe_3 1:21
} probe 1 1:22
probe 4 1:23
_» | Brobed 1%
' robe :
Ymunix grﬂlb]ﬁ:i %‘%%
. robe t
read() write() /f Erobe:z 1:35
{TMF PROBE 0(...); {TNF_PROBE 0(...); probe 1 1:36
- - - - probe 3 1:37

aow o L

} !

To use TNF probes from Java, it is necessary to write the probes themselvesin C and then use JNI
to call those probes from your Java code. Thisis more than alittle bit awkward and totally
nonportable, but it does give you a great deal of very detailed performance information. We have
an example of thisin the code on the Web page (TNFExample . java).

Once that dataiis collected, al that's left is to make sense of it. While you could simply read the
fileitself, that would probably prove to be rather difficult—there's just too much datato read from
aprintout.

bil@cloudbase[89]: tnfdump /tmp/trace-45132

probe tnf_name: "give_friend_raise_middle" tnf_string: "keys
Igl;Ffile tnf_list_global_lock.c;line 157;"

probe tnf _name: "give_friend _raise_end" tnf _string: "keys
Igl;Ffile tnf_list_global_lock.c;line 159;"

probe tnf_name: "liquidate_enemies_start"” tnf_string: "keys
Igl;file tnf_list _global_lock.c;line 186;"

probe tnf_name: "liquidate_enemies_end" tnf_string: "keys
Igl;Ffile tnf_list_global_lock.c;line 198;"

probe tnf _name: 'give_friends_raise _end" tnf_string: "keys
Igl;file tnf_list _global_lock.c;line 164;"

Elapsed (ms) Delta (ms) ... Probe Name
0.000000 0.000000 give_friends_raise_start
0.695500 0.695500 give_friend_raise_start
0.955000 0.259500 give_friend_raise_middle
1.447000 0.492000 give_friends_raise_start
16.150000 14.703000 give_friend_raise _end
16.703000 0.553000 give_friend_raise_start
17.311000 0.608000 give_friend_raise_middle
36.163000 18.852000 give_friend_raise_end

A better method isto use a special viewer, TNFview (also available via FTP), which condenses
that data into graphical form and produces a series of histograms and plots.

197

In Figure 14-5 we see the details of one run of our program (Code Example 14-1). The different
threads are shown as horizontal lines and specific probes are shown as different colored shapes,
squares, triangles, circles, etc. The time line can be scaled and individual events examined.

Figure 14-5. Main Data Display Window for TNF

e THNFView 2.0

In Figure 14-6 we see a histogram of method latencies. TNFview assumes that pairs of probes
ending in the words "start" and "end" are related and will produce graphs of latencies between the
timethe "start" probe fires and when the "end" probe fires. In this example we see that the vast
majority of callsto give friends_raise() took 20 ms (in this example the delay time was
20 ms), afew took zero seconds (these are the friends we couldn't find), and afew more took 10 or
30 ms (due to the 10 ms granularity of the system clock), and one last one took 50 ms (wonder
why!).

Figure 14-6. Histogram Display Window for TNF

198

give_friend_raise

Toinsert TNF probesinto Java code, you need to make calls outside the VM. It's a bit awkward
to do, but not particularly difficult, as we show in Code Example 14-1.

Example 14-1 Code Using TNF Probes in Java

// TNFExample

/*
Show how to use TNF from Java. (Only a bit messy.)
*/

import java.io.*;
import java.util._*;
import Extensions.*;

class ProbedObject {
public native void objectCreateStart();
public native void objectCreateEnd();

static {System.loadLibrary(*"javaProbe'™);}

class TNFExample implements Runnable {
static SingleBarrier barrier = new SingleBarrier(1);

public static void main (String[] arg) throws Throwable {
long startTime = System.currentTimeMillis();
long endTime;

it (arg-length == 0) {
System.out.printIn("'Running single-threaded™);
new TNFExample().-run(Q); // Non-threaded
} else {
System.out.printIn("'Running multi-threaded™);
for (int i = 0; 1 < 1; i++) {
new Thread(new TNFExample()).start();

199

}

barrier_barrierWait();

}

endTime = System.currentTimeMillis();
System.out.printIn(''Done after " + (endTime - startTime) +
"'ms');

}

public void run() {
ProbedObject obj = new ProbedObject();

System.exit(0);

for (int 1 = 0; 1 < 100; i++) {
obj.objectCreateStart();
obj = new ProbedObject();
obj.objectCreateEnd();

}

barrier.barrierPost();

/* javaProbe.c */

/* cc -G -1/usr/java/include -1/usr/java/Zinclude/solaris javaProbe.c
-0
libjavaProbe.so */

#include <jni_h>
#include <tnf/probe.h>
#include "ProbedObject.h"

INIEXPORT void JNICALL
Java_ProbedObject_objectCreateStart(IJNIEnv *env, jobject obj) {

TNF_PROBE_O(object create_start, "object creation', '"");
}

JNIEXPORT void JNICALL
Java_ProbedObject _objectCreateEnd(INIEnv *env, jobject obj) {

TNF_PROBE_O(object_create_end, "object creation™, "");
}

run.csh

Show how to compile, link, and run a program to get TNF information
echo "Compiling java code..."

Javac -0 TNFExample.java

Javah -jni ProbedObject

echo "Compiling C code..."

cc -G -1/usr/java/include -1/usr/java/include/solaris javaProbe.c -o
libjavaProbe.so

200

echo "Running program under prex..."
prex -o /tmp/tnf.tmp java TNFExample < cmds

echo "Dumping results (or view with tnfview)..."
tnfdump /tmp/tnf.tmp | head

echo "Viewing results with tnfview..."
tnfmerge -o /tmp/tnfview.tmp /tmp/tnf_tmp
$TNFHOME/bin/tnfview2 /tmp/tnfview.tmp

Summary

Using the Solaris toolset as an example, abrief overview of what you can expect from MT tools
was given, along with afew hints about what to look for and what to look out for.

201

Chapter 15. Performance

Optimization: Objectives and Objections
CPU Time, I/O Time, Contention, Etc.
Limits on Speedup

Benchmarks and Repeatable Testing
The Lessons of NFS

In which we make things faster, look at general performance issues, political performance issues,
an Y our program is not a commodity;nd thread specific performance issues. We conclude with a
discussion of the actual performance of multithreaded NFS.

Optimization: Objectives and Objections

Performance is an incredibly wide topic that means different things to different people. It is often
referred to broadly and vaguely as an obvious requirement for all programs, without ever defining
exactly what it is. We are not aware of any truly good and comprehensive texts on the subject.’! In
one short chapter, about all we can do is point out the things you probably already know.

™ There are a number of books discussing kernel tuning, many discussing algorithmic issues for
general programs, and numerous texts and papers do detailed analyses of theoretical limits.These
are all fundamental and important places to start, but they are all weak on many important aspects
of actual implementation.

Before you begin optimizing your program, you must answer the fundamental question: What do
you really want? We're not being silly. Thisis not an easy question. Major factors surrounding
performance tuning include:

Time to market

Available human resources and programming costs
Portability

User perception

Competition

Targeted machine configuration

Algorithm

CPU time, 1/0 time, contention, etc.

In general, your customers' only objective is going to be: "Do my work for the least cost.” They
really do not (well, should not) care about any of the details. They have their job to do and that's
the sole value of your software to them. Many of us engineering types have atendency to skip
over al this touchy-feely stuff and jump straight into the code. Let us resist for amoment and
consider these details that affect our pay checks so much. We may not like this, but it redly is
vitally important.

Time to Market

Most optimization issues are ultimately marketing issues. These marketing aspects are important
and have to be hashed out with management. It's no use having a program that runs twice as fast if
your company's out of business. Well get to the techniques in a moment, but we wish to
emphasize this point. The amount of optimization to do on a program is a marketing issue.

202

Related to thisis correctness. Correctness is more important than either performance or timeto
market. Minor bugs and occasional crashes can be traded off against time to market, but
fundamental correctnessis essential. Unfortunately, thisis amajor battle between engineering and
marketing all the time.

Available Human Resources and Programming Costs

If you can speed your program up by 50 percent, but it takes 60 programmers two yearsto doit, is
it worth it? Maybe yes, maybe no. It's up to you and you should be thinking in these terms when
you begin the optimization efforts.

Portability

Some of the techniques we're going to discuss will require customizing to a particular platform or
even to a particular configuration. Is such specialization worthwhile to you? Maybe yes, maybe no.
Sunsoft does a PSR (Platform Specific Release) of Solaris for each different machine (one for the
SS1, another for the SS2, athird for the SS10, etc.). Ninety-nine percent of the code will be shared,
but things like byte copy will be optimized for the exact CPU, memory bus, and cache
configuration.

It is highly unlikely you would ever go as far in your own code. The normal thing isto optimize
for a specific configuration (typically, the highest-performance one) and admit that the others will
be a bit suboptimal. Would you want to write and maintain upward of 20 PSRs just for Sun
machines? And another 20 for SGI, DEC, etc.?

User Perception

Y es, you might be able to optimize an editor to process keystrokes twice as fast. The user wouldn't
care, because the user can't tell the difference between 1-ms and 2-ms response time anyway.
Don't waste your time on useless optimization.

Easier said than done, of course. Especially as the world is rife with inappropriate benchmarks
upon which people do base their buying decisions. Sorry.

Competition

Being 10% faster means nothing to the user. It looks great on the data sheets, but that's about it.
Y our program is not acommaodity; don't sell it asif it were. Of course, if your program runs 50%
dower than the competition, you may need to speed it up significantly. Make sure that you get the
time and support you need.

2] . -

Yes, performance numbers on data sheets are important because people do make decisions
based upon a 1% difference in a published benchmark (dumb, but real). Nonetheless, given a
choice between releasing 5% slower than the competition today and 5% faster next year, we'd opt
for today.

Targeted Machine Configuration
Y ou have to select your primary target machine and you have to declare some configurations
inadequate. If you can't get your desired performance on ax286, don't sell on ax286.%! Next year's

machines will be twice as fast anyway. Sometimes, "throwing money at the problem™ is the right
answer.

203

B) At one of Bil's first software division meetings (back when everyone fit into the cafeterial), there
was a big debate concerning the poor performance of SunOS on a 4-MB machine. Some of
management wanted to restrict all developers to 4-MB machines so we would be more motivated to
control code inflation. The final resolution was to make 8 MB the minimum shippable configuration.

Algorithm

There are three vitally important aspects of performance optimization: algorithm, algorithm, and
algorithm. Serioudly. Forget al of this other stuff until you have settled on the very best possible
algorithm. We can show you programs that will run faster on a uniprocessor VAX 780 than on a
64-way, 500-MHz Alpha Server, simply due to algorithm choice.

Y ou can multithread bubblesort, and it will run twice as fast, but...

CPU Time, I/O Time, Contention, Etc.

That should be enough moralizing on the practicalities of dealing with the real world. Now let's
get serious—you're an ISV and you really want to get the best performance you can (for some
"reasonable” programming cost). First let's look at the overall system design and define our true
objectives.

The primary components are the CPU, the cache, the main memory bus, main memory, the I/O
bus, and the peripherals (disks, tapes, possibly displays, networks, etc.), al of which can be
viewed generically as resources. There is atendency to view the CPU as unique, and we often
speak of maximizing CPU usage before considering any other subsystems. However, that's not
really what we want. We really want our program to run in minimal wall-clock time. Let's
consider these subsystems.

CPU

Some programs are completely CPU-bound. They don't make great demands upon the peripherals
and have a small enough working set to be largely cache resident. A huge number of programs are
partially CPU-bound. To optimize such programs, our primary technique will be to reduce the
number of instructions executed, and our primary method of doing so will be by choosing the best
algorithms.

Our secondary method will be to examine our code very carefully to see if there are places where
loops can be made tighter. Sometimes we will even examine assembly code to verify the tightness
of the complied code. In al cases, we will first analyze our program, then focus our efforts on
those sections that consume the most time.

We will leave clever use of registers, optimal instruction scheduling, and the like to the compiler.
Only in the rarest of circumstances will we ever "bum” code (write assembly code). Byte copy can
be written in asingle line of C code. On Sun machines, the actual library call occupies roughly
500 lines of carefully hand-optimized assembly code. It is specialized for each of the different
byte alignments, and a different version is written for each PSR. The programmer counts the
instructions, spreads data across numerous registers to maximize pipelining and multiple
instruction issues, etc. It runs upward of ten times as fast as the one line of C.

The chances of you doing anything similar is quite small. It takes alot of effort, and it is valuable
for only afew very tight, very intensively used loops. The hassle of maintaining "bummed” code
isaso quite significant. Don't do this at home!

204

Memory Latency

The speed at which the main memory system can fill cache requestsis a major factor on the CPU
side of performance. Itisnot at all unusual for memory latency to occupy 50% of total CPU time.
Memory latency is difficult to identify as separate from CPU time because there are no standard
tools for measuring the amount of time it takes. Asfar asthe OSis concerned, the entire
CPU/cache system isa single entity and is lumped into a single number—CPU time.

No measurements of cache activity are recorded, so the only means of distinguishing cache from
CPU are (1) counting instructions, (2) comparing target code to known code, and (3) using
simulators. Simulators are not generally available Well focus on (1) and (2). Once we
determine the cache behavior of our program, we may be able to reorganize data access to
improve performance (see Reducing Cache Misses).

t4] They're too complex to use easily, so there's no reasonable way for vendors to market them. If
you are willing to go through a lot of pain and spend big bucks for one, tell your vendor. Vendors will
do anything for money.

Memory Bandwidth

No single CPU can come vaguely close to saturating a main memory bus. At the insane rate of one
memory access per cycle, a 200-MHz Ultra could demand nearly 100 M B/s—one-twelfth of the
UPA bus's bandwidth. Of course, the CPU wouldn't have any time to do anything. Readlistic
programs demand data rates closer to 50 MB/s, and 95% or more of that is serviced by the cache.
Main memory bus rates of 5 MB/sec per CPU are normal for actual programs. A UPA bus can
sustain data rates of over 1 GB/s.

It istrue that a maximally configured ES10000 with 64 CPUs can easily saturate the 100-MHz
UPA crossbar switch. We don't have any clever techniques for minimizing it.

I/O Latency

Making adisk request takes along time, about 20 ms. During this time a thread will typically go
to deep, letting others run. Depending upon the details of the access pattern, there are a coupl e of
things we can do either to reduce the number of requests or to pipeline them. When the working
set isjust abit larger than main memory, we can simply buy more memory.

When the working set is enormous, we can duplicate the techniques that we'll use for optimizing
memory access (see Reducing Cache Misses). Disk accesses are easier to deal with than cache
misses because the OS does collect statistics on them and because the CPU is able to run other
threads while waiting.

Other types of 1/0 must ssimply be endured. There really is ho way to optimize for asynchronous
network requests.

Contention

Sometimes one CPU will hold alock that another CPU needs. Thisis normal and unavoidable, but
it may be possible to reduce the frequency. In some programs, contention can be amajor factor in
reducing the amount of parallelism achieved. Contention is only an issue for multithreaded (or
multiprocess) programs, and primarily only on MP machines. Although threaded programs on
uniprocessors do experience contention, the most important cause of the contention is the speed of
other components of the system (e.g., you're holding alock, waiting for the disk to spin).
Reducing contention is always a good thing, and is often worth alot of extrawork.

205

Throughput vs. Latency

Given these resources, we next must refine our definition of performance—do we want to
minimize latency for individual subsystems, such as having an NFS server respond to individual
requests as fast as possible, or do we want to maximize the number of requests per second that the
server can handle? Thisis a serious consideration and we cannot blithely answer "both."

Consider Figure 15-1.% We get to select the point on the graph where we wish to operate. For
some programs (e.g., numerical calculations), thislatency vs. throughput issue is nonexistent; for
others (e.g., NFS) it is paramount. The answer to the question is almost always, "Maximize
throughput with ‘reasonable’ latency.” For NFS this means that everyone designs their serversto
give maximum throughput at 40-ms average latency.®! The question now becomes: "For my
individual application, which of these subsystemsis the limiting factor, and how much can |
accelerate that before another subsystem becomes saturated?”

5] Program data and graphs from Hennessy and Patterson, Computer Architecture, 2nd edition
(San Francisco: Morgan Kauffmann, 1996).

(6] Forty milliseconds is also the limit chosen for the maximum allowable latency for the SPEC
Laddis benchmark.

Figure 15-1. NFS Throughput vs. Latency on Some SGI Machines

Response
Time (ms) SGI S (1 CPU)

40 SGI DM (4 CPUs)

30

\

SGI XL (12 CPUs)

20

10

0 1000 2000 3000 4000 5000 6000 7000
NFS Throughput

Limits on Speedup

A naive view of multiprocessing says that we should expect a two-CPU machine to do twice as
much work as a one-CPU machine. Empirically, thisis not at all the case. Indeed, it is not unusual
to hear reports of people who see very little improvement at al. Thetruth isthat it all depends
upon what you are doing. We can cite examples of programs that get near-linear speedup, afew
that show superlinear speedups, alarge majority that show some speed up, and even afew that
slow down.

206

One basic fact should be acknowledged up front: Thereis always alimit. For every program or
system load that you can imagine, there is an optional number of CPUs to run it on. Adding more
CPUs to the machine will slow it down.

Y ou could, if you wanted, build a 1-million-CPU SMP machine. It just wouldn't be very efficient.
And while we can invent programs that would make good use of all 1 million CPUs (e.g., analyze
all 20 move chess games), they would be highly contrived. Most "normal” programs can make use
of only asmall number of CPUs (typically, 2—20).

Let's start by looking at some data from some simple programs (Figure 15-2). These are
numerically intensive programs that run entirely in memory. Because there is no 1/0 involved, and
because the amount of shared datais often quite limited, all of these programs show a superb
scaling up to 16 CPUs.

Figure 15-2. Parallel Speedup on Several Numerical Programs

Speedup

CPUs 124816 1 24816 1 24 816 1 2 4 816
FFT LU Barnes Ocean

Fast Fourier transforms are performed by a set of matrix manipulations. It is characterized by
largely independent operations with significant interthread communication in only one section.
The next three programs all have largely constant amounts of interthread communications. LU
factorization is dense matrix factorization, and also performed by a set of matrix manipulations.
Barnes-Hut is an N-body simulation for solving a problem in galaxy evolution. Ocean simulates
the effects of certain currents on large-scale flow in the ocean.

Notice that all of these programs do show afalloff in performance for each additional CPU. At
some point, that falloff will drop below zero and begin to slow the total throughput. Why? Well,
let's take alook at where these programs are spending their time. As you can see from Figure 15-3,
the amount of time that the CPUs actually spend working on the problem drops as the number of
CPUs increases. Notice that memory overhead can easily occupy 50% for total CPU time. On
database-style programs, it can exceed 50%. The requirement for synchronization takes up more
and more of the time. Extrapolating out to just 128 CPUs, we can infer that performance would be
dismal indeed.

Figure 15-3. Program Behavior for Parallelized Benchmarks

207

Percentage of
Total CPU Time

100%

75%

50%

25%

CPUs 12 4 816 124816 12 4816 12 4816
FFT LU Barnes Ocean

Bl CPU Busy [Memory Overhead [Synchronization
(Cache Loading)

Superlinear Speedup

In avery small number of programs, such as Ocean on two and four CPUs (Figure 15-2), it is
possible to see speedups dlightly better than linear. Thisis aresult of having more cache and
possibly reducing overhead because of fewer context switches. It's niceif you get it, but don't
expect it.

Timing Threaded and Nonthreaded Programs

In our measurements, we compare the runtime of identical code that creates different numbers of
threads, appropriate to the available CPUs. Thisisn't redlly fair, because we're including the
synchronization overhead (and possibly aless efficient algorithm) for the one-CPU case, which
doesn't need that synchronization.

Unfortunately, for any real program, it's far too complex to implement, optimize, and maintain two
different programs (the PSR argument again). Most ISV s ship asingle binary and simply run
suboptimally on uniprocessors. Y ou may console yourself (and your marketing department) by
noting that you can praobably find more performance improvement in the techniques mentioned
above than you can in writing a uniprocessor-only version.

Amdahl's Law

Amdahl's law (Figure 15-4) states: If a program has one section that is parallelizable, and another
section that must run serially, the program execution time will asymptotically approach the time
for the serial section as more CPUs are added.

Figure 15-4. Amdahl's Law: Time(total) = Time(serial) + Time(parallel) /
Number_of CPUs

208

T{parallal)

T(serial)

CPUs

Although obviously true, this fact is of no interest to many programs. Most programs with which
we have worked (client/server, and I/O intensive) see other limitations long before they ever hit
this one. Even numerically intensive programs often come up against limited memory bandwidth
sooner than they hit Amdahl's limit. Very large numeric programs with little synchronization will
approach it. So don't hold Amdahl's law up as the expected goal. It might not be possible.

Client/server programs often show alot of contention for shared data and make great demands
upon the 1/0 subsystem. Consider the TCP-C numbersin Figure 15-5. Irrespective of how
representative you think TPC-C is of actual database activity (there'slots of debate here), it isvery
definitely a benchmark into whose optimization vendors put enormous effort. So it is notable that
on abenchmark as important asthis, the limit of system sizeis down around 20 CPUs.

Figure 15-5. TPC-C Performance of a Sun UE6000

TPC-C

UE 4000: 11,465
10,000

7,500

5,000

UE 2: 3,107
2,500

UE 1: 1,332

CPUs 0 4 8 12 16 20 24 28

So what does this mean for you? That there are limitations. The primary limiting factor might be
synchronization overhead, it may be main memory access, it might be the 1/0 subsystem. Asyou
design and write your system, you should analyze the nature of your program and put your

optimization efforts toward these limits. And you should be testing your programs along the way.

Performance Bottlenecks

Wherever your program spends its time, that's the bottleneck. We can expect that the bottleneck
for atypical program will vary from subsystem to subsystem quite often during the life of the

209

program. Bottleneck is a somewhat pejorative term that isn't really fair. After al, whichever
subsystem is the bottleneck is the one that's doing your work! Thereis also agenera tendency to
want to "balance out" the work across the different subsystems, keeping them all busy all the time.
Once again, that's a bit inaccurate. Balancing the work isuseful only if it helps your program run
faster.

In Figure 15-6 we show arepresentation of where a program is spending its time and where the
bottleneck is with respect to CPU, cache latency, and 1/O latency. Each block represents how busy
that subsystem is during some period of time (say, 10 us).

Figure 15-6. Performance Bottlenecks and Capacities of Programs

CPUD
Cache
l]®]

CPU1

Cache
11O

CPU 2

Cache
o) | |

B roo%Busy [] 75% [] s0% [] 25% [] o%

L = Mutex Locked Here U = Mutex Unlocked Here A = Mutex Lock Failed

Black indicates a subsystem used at full capacity, white indicates zero usage. A black CPU is
never stalled for anything; the other subsystems are waiting for it to make requests. A black cache
indicates that the CPU is stalled, waiting for data at least some of the time, and the same for 1/O.
Depending upon system design, it may or may not actually be possible for CPU and cache to be
busy simultaneously. (We show a system where there is overlap.) The solid white sections for
CPU 1 and 2 indicate that they are suffering contention, waiting for CPU 0 to release alock.

Typicaly, we expect CPU and cache to take turns being the bottleneck, alternating very rapidly.
When 1/O is the bottleneck, it will be so for extended periods of time (the latency on a disk read
runs on the order of 20 ms).

By definition, there must be aline of solid black from one end of our graph to the other. In some
sense, the more solid black in the CPU section, the more work is getting done. A typical subgoal
will be to maximize the amount of time that al the CPUs actually work. (The primary goal isto
make the program run fast. Normally, you expect that making more CPUs do more work will have
that effect.) Eliminating contention is amajor factor in doing so.

Benchmarks and Repeatable Testing

Before you get into the details of optimizing your code, you need to be very clear on what your
starting point is and what your objectiveis. Y our overall objective isto make the entire system run
faster. Perhaps you have a specific target (you need 13.5% improvement to beat the competition);

210

perhaps you just want to spend six months and get as much improvement as you can. Y our starting
point will be a specific release of your program, a specific machine to run it on, and a very well-
defined set of input data. Y ou absolutely must have an unambiguous, repeatable test case for
which you know the statistics.

Things you may have to control for include other activity on the test machine, unanticipated
network traffic, file layout on your disk(!), etc. Once you have all of that, you will generally find
that most of your time is used by afew small loops. Once you're convinced that these loops really
are theright ones, you'll separate them out into their own little testbeds and verify that you can
produce the same behavior there. Finally, you will apply your efforts to these testbeds,
investigating them in great detail and experimenting with the different techniques below.

When you feel confident that you've done your best with them, you'll compare the before and after
statistics in the testbeds, then integrate the changes and repest the testsin the original system. It is
vitally important that you repeat the test in both original version and in the new version. Far, far
too many times people have discovered that "'something changed,” that the original program now
completes the test faster than before, and that the extensive optimizations they performed didn't
actually make any improvement at all.

Is It Really Faster?

Even "simple, deterministic programs' show variation in their runtimes. External interrupts, CPU
selection, VM page placement, file layout on disks, etc., can cause wide variation in runtimes. A
difference of 20% between two runs of the same "deterministic* CPU-bound program is not
unusual. Consider the runtimes listed in Table 15-1. A program was run four times, giving the first
set of results. It was changed, recompiled, and gave the second set of results.

Table 15-1. Runtimes for Four Trials

| Run 1 | Run 2
rate: 27.665667/s rate: 28.560094/s

rate: 23.503779/s rate: 28.000473/s

rate: 20.414748/s rate: 25.274012/s

rate: 20.653608/s rate: 35.249477/s

Mean rate: 23.05/s Mean rate: 28.27/s
\Standard deviation: 3.34 \Standard deviation: 4.20

The question is. How sure are we that the difference we measured is the difference between the
actual means? The answer requires atiny hit of statistics which you can take straight from a book
or even "eyeball" the data. Y ou just have to know what you're looking for. We want to know this:
H1— M2 =? X1 — X given the datain Table 15-1.

X1 =23.05 s1.=3.34

X, = 28.27 S2=4.20

The answer isthat for four measurements (which isn't very many), looking for the usual 95%
confidence level:

Lp—U>=x;—x>% 1.96 SE(X;—X>5) (1.96 for 95% confidence)

SEUH _XE," = {"'IZ [ny + .‘,221,”2}[.2 |
(3.34%/ 4 + 4.20% / 4)12
= 2.7

211

Thus

My — My = 522+54

Theinterval includes zero. We are |ess than 95% certain that the two sets of measurements are
different! And indeed, thisis taken from a set of runs that were done incorrectly. After modifying
the program, it was recompiled to a. out by mistake. The two sets of measurements actually
come from exactly the same binary!

If you run only four measurements, the difference between the measured means must be greater
than (1.96 x std. error), or roughly twice the measured standard deviation. By running it ten times
(see Table 15-2) the 95% confidence level is obtained when the differenceis greater than the
standard error. When the numbers are reasonably close together, you can eyeball the mean and
standard error fairly easily.

Table 15-2. Runtimes for Ten Trials

| Run 1 | Run 2
IN_PROD =1 N_CONS =4 'N_PROD =1 N_CONS =5
rate: 85.965975/s rate: 89.984372/s

rate: 86.802915/s rate: 91.710778/s

rate: 88.528658/s rate: 91.075302/s

rate: 85.411582/s rate: 91.741185/s

rate: 85.957945/s rate: 87.995095/s

rate: 84.514983/s rate: 93.661803/s

rate: 86.732842/s rate: 89.505427/s

rate: 84.284994/s rate: 89.262953/s

rate: 85.024726/s rate: 89.611914/s

rate: 85.602694/s rate: 91.972079/s

| |

Mean rate: 85.88/s Mean rate: 90.65/s
Standard deviation: 1.25 Standard deviation: 1.67

The difference between the means is about 5 and the standard deviation is about 1.5. The
difference, 5— 1.5, is much greater than zero, so we can conclude with confidence that run 2 is
indeed superior to run 1. Doing this stuff well isnot at al obvious, and doing it wrong is all too
common. We're not expecting you to do this carefully on every test, but you do have to be aware
of it.

General Performance Optimizations

By far the most important optimizations will not be specific to threaded programs, but rather, the
general optimizations you do for nonthread programs. Well mention these optimizations but leave
the specifics to you. First, you choose the best algorithm. Second, you select the correct compiler
optimization. Third, you buy enough RAM to avoid excessive paging. Fourth, you minimize 1/0.
Fifth, you minimize cache misses. Sixth, you do any other loop optimizations that the compiler
was unable to do. Finally, you can do the thread specific optimizations.

212

Best Algorithm
That's your problem.
Compiler Optimization

Thisis not necessarily obvious and is highly dependent upon the individual compiler. If you just
use the usual byte code compiler, there are no particular issues—your program will run at a
nominal speed on any platform. With aJIT compiler or an adaptive compiler such as HotSpot, the
compiler is able to take advantage of specific instructions on individual machines and you should
expect much better performance and you should not have to do anything extrato obtain it.

C Compiler Optimization

By contrast, let's consider what you need to do for optimal performance of a C program. Y ou need
to select the individual machine to compile for. For example, Sun supports SS1s and SS2 (both
SPARC version 7 machines, which trap to the kernel to handle the integer multiply instruction),
SS10s, SS20, SS1000s, and SC2000s (all SPARC version 8 machines, which have hardware
integer multiply); and Ultras (SPARC version 9 machines, which have 64-bit registers and 64-bit
operations). Optimizing for an Ultramight produce lousy code for an SS1. Optimizing for an SS1
will produce OK code for an SS10 or Ultra. (Thisis a marketing decision, of course.)

Y ou need to choose the optimization level for your program. Y ou may choose different levelsfor
different modules! Sun compilers, for example, provide five levels of optimization. Level -x02 is
the normal good optimization level, producing fairly tight code, highly reliable and highly correct.
Levels 3, 4, and 5 produce extremely fast code (it may be larger), which is much faster than -x02
in some cases and possibly slower in others. They are much more likely to fail (i.e., not compile at
al).

Thus, expect to compile and test your program at —x02 (default). Compile and profile it at -x02.
Separate out the high time functions and recompile them at higher levels. If they work and are
faster, great. If not, too bad.

Java Compiler Optimization

Java compilers do not in general have anything similar to the switchesin C, and you often have no
options at all.

Buy Enough RAM

Test the program with different amounts of memory and select the best price/performance level.
Minimize 1/0

Organize your data so that when you do read a disk block, you make maximum use of it and you
don't have to read it again. One obvious thing isto use the mmap () callsto map filesinto the
address space instead of calling read (). This eliminates an extra kernel memory copy and alows
you to give access pattern hints to the OS.

Again, Java does not have any such options. The only way to get data into the programisto call
read(). Unfortunately, system calls are particularly expensive in Java because Java must do alot

of setup before calling the native code, so I/0O in Javais significantly slower than even regular 1/0
inC.

Minimize Cache Misses

213

Organize your data so that when you do load a cache line, you make maximum use of it and you
don't have to load it again (see Reducing Cache Misses).

Any Other Loop Optimizations

There are al sorts of things you might be able to do to assist the compiler in performing
optimizations that it can't do by itself for some reason: inlining functions, loop unrolling, loop
interchange, loop fusion, etc. Generally, these things are done by the optimizer. We will look at
the assembly code for very tight loops just to verify our expectations. Y our vendor documentation
will help here.

Thread-Specific Performance Optimizations

Now that we have wildly emphasized the importance of doing all the normal performance work
firgt, let'stake alook at the stuff that's specific to multithreaded programs. There are just a couple
of performance areas specific to MT: reducing contention, minimizing overhead, and creating the
right number of threads.

Reducing Contention

Clearly, we do not want to have lots of CPUs waiting around idle because they can't get a mutex
they need. Equally obviously, we cannot neglect proper locking to avoid this contention. Y our
options for dealing with this situation are limited by what you're doing.

In some circumstances, you will be able to divide your global datainto smaller groups, with more
locks. Then athread that needs to use item 1 will not block other threads that need item 2. This
will work only if the two items are not used together all the time. Thisis fine-grained locking.
There is atrade-off between grain size and overhead. Other times, you'll be able to substitute
readers/writer locks for mutexes.

Minimizing MT Overhead

There are afew different threads functions that you might call often enough to make a significant
impact upon performance. The first caseis the fine-grained vs. course-grained locking trade-off.
In cases where different data items are used together, making the locking finer-grained will
increase the overhead due to locking, slowing the total performance even though contention may
be reduced. In the friends/ enemies program (Manipulating Lists), it is possible for usto lock
every single list node individually. Thiswill increase the parallelism of the program over the
global mutex design, but total runtime will be many times worse.

What is the right granularity? It will be obvious in most cases, but sometimes the only solution is
to experiment.

Reducing Paging

In most operating systems, overlapping 1/0O and computation can be accomplished without threads.
Most operating systems have some sort of asynchronous I/O that allows you to issue an I/O
request, then go back to what you were doing without waiting for it to complete. When it does
complete, asignal will be sent to your process and you will then ask the operating system which
request it was that completed and deal with it as you please. (Obvioudly, thisis not a direct issue
for Java, which has nothing similar.)

This asynchronous I/0O can be awkward to deal with, but it will do the job. Using threads instead

of asynchronous I/0O is much easier to program and equally fast (Figure 15-7). The one place
where async 1/0 will not work is with page faults. When a nonthreaded program takes a page fault,

214

it waits. Threaded programs can finesse this, because there is no problem with thread 4 continuing
to run while thread 1 is waiting for a page fault. The finesse yields a nice performance
improvement for many programs, even on uniprocessor machines.

Figure 15-7. Using Threads to Optimize Paging

Page In

)

64 MB Physical N
-f— -
256 MB Image

Work in Virtual Memory
Page In Work
Work Page In
Page In Work
Work Efgi In Page Faults are per-LWP!

Communications Bandwidth

Sometimes the amount of data that needs to be exchanged between threads for a program is very
low compared to the total computing time. For example, a chess position can be encoded into a
dozen or so bytes, whereas the time to compute the best move might be hours. Such a problem,
which also requires only atiny amount of synchronization, can be productively spread across
thousands of very distant processors that don't even share memory.? Distributed parallel systems
such as PVM are well suited to such problems.

[n one of the big computer chess tournaments back in the late 1980s, one of the contestants
managed to convince several thousand of us to run a networked chess program over the weekend.

When the data/computation ratio is higher, or when more synchronization is required, distributing
across a network is not feasible, as the communications costs would exceed the CPU time to
execute the entire computation locally. Most image processing programs fit into this category.
Dithering a 1000 x 1000 image might take 1 second on one CPU and require very little
synchronization. Executing this program on 1000 CPUs would take only 1 ms of computation
time, yet moving that 1-meg image out and back across a network would take far longer.
Executing it on a 10-CPU shared memory multiprocessor would make far more sense, taking more
like 100 mstotal.

Right Number of Threads

Y ou want to have enough threads to keep all the CPUs busy all the time (if possible), but not so
many that the CPUs are doing unnecessary context switching. Determining exactly the right
number is ultimately an empirical experiment. We give rough estimatesin How Many LWPs?.

Short-Lived Threads

215

Thread creation and synchronization timeis quite low (about 1.5 ms on an 110-MHz S$4),
making it reasonable to dispatch relatively small tasks to different threads. How small can that
task be? Obvioudly, it must be significantly larger than the thread overhead.

Something like a 10 x 10 matrix multiply (requiring about 2000 FP ops @ 100 Mflops = 20 us)
would be much too small to thread. By contrast, a 100 x 100 matrix multiply (2M FP ops @ 100
Mflops = 20 ms) can be threaded very effectively. If you were writing a matrix routine, your code
would check the size of the matrices and run the threaded code for larger multiplies, and run the
simple multiply in the calling thread for smaller multiplies. The exact dividing point will be about
3 ms. You can determine this empirically, and it is not terribly important to hit exactly.

One ISV we worked with was doing an EDA simulation, containing millions of 10-ustasks. To
say the least, threading this code did not produce favorable results (it ran much slower!). They
later figured out away of grouping the microtasks into larger tasks and threading those. The
opposite case is something like NFS, which contains hundreds of 40-ms tasks. Threading NFS
works quite well.

Dealing with Many Open Sockets

In C, C++, etc., when you want to have alarge number of clients connected to your server at the
sametime, you use aselect()® cal [in Win32it'swaitForMul tipleObjects()]. This
function takes alist of file descriptors as an argument and returns when there is data ready on one
of them. This allows a single thread to wait on 1000 sockets. Thisis a good thing because the
overhead of having 1000 threads, each waiting on a single socket (as we've done in our programs),
would be prohibitive.

& or pol1(), which is actually more common now, due to its ability to handle very large numbers
of open connections.

Unfortunately, Java does not have anything similar, putting an extra constraint on the size and
scalability of your server. In Java you must have one thread devoted to each client, rendering the
producer/consumer version of a server awkward. Many of the major Java server programs actually
use JNI callsinto C to make use of the select() there. Thereis pressure for Javato implement
select().

The Lessons of NFS

One practical problem in evaluating the performance of threaded programs is the lack of available
data. There are smply no good analyses of real threaded programs that we can look at. (There are
analyses of strictly computational parallel programs but not of mixed usage programs, client/
server, etc.) Nobody's done it yet! Probably the best data we have comes from NFS, which we
shall ook at now.

The standard metric for evaluating NFS performance is the SPEC LADDIS benchmark, which
uses a predefined mix of file operations intended to reflect realistic usage (lots of small file
information requests, some file reads, and a few file writes). As the NFS performance goes up,
LADDIS spreads the file operations over a larger number of files on more disks to eliminate trivial,
single-disk bottlenecks.

An NFS server is very demanding on all subsystems, and as the hardware in one areaimproves,
NFS performance will edge up until it hits a bottleneck in another. Figure 15-8 shows
configurations and performance results for a variety of systems. Notably, all of these systems are

216

configured below their maximum size. Adding disks, controllers, or CPUs will not improve the
performance. They do not use the maximum throughput of either 1/0 or memory buses.

Figure 15-8. NFS Throughput on a Series of Sun UE Machines (The performance
improvement is somewhat exaggerated, as a two-way UE6000 will outperform a
two-way UE 2.)

NFS Throughput
20,000 UE 6000: 21,014
15,000

UE 4000: 13,536
10000 UE 3000: 8,103
5,000 UE 2: 4,303

UE 1:2,102

1 4 8 12 16 20 24 28
Mumber of CFUs

In all of these maximum performance configurations, the bottleneck is contention and memory
latency. One CPU will be working on some portion of afile system and will have locked inodes,
allocation tables, etc., that another CPU requires. Once these locks are released, the other CPUs
may have to context switch to the appropriate thread. It will certainly have to take alot of cache
misses to load those newly changed tables. Additional CPUs will not improve the situation, but
higher-performance CPUs will. Thisis because one CPU can now do more work, hence the datain
cache will be used more, reducing both the number of misses and the amount of contention.

NFSisnot a"typical" client/server application in one particular aspect: NFSis started as atypical
user-level process, but al that process does isto make asingle call into the kernel. For the rest of
itslifetime, NFS remains in the kernel, spawning threads there as it deems necessary. Thus, NFS
does not have to do any context switching for 1/0 as normal user-level programs must do, and it
can avoid the extra step of copying data from kernel buffer to user space.® NFS could have been
written as a user-level program, but the context switching would have killed performance. It was
never tried.™®

) Most programs would not benefit from the "optimization" of executing entirely in the kernel.
Outside the horrible complexity of trying to build and maintain a patched kernel using constantly
changing internal kernel interfaces, very few programs spend so much time in system calls and so
little time in their own code. NFS spends about 45% of its time in the transport layer, 45% in the file
system, and 10% in actual NFS code. Even DBMSs which are known for their enormous 1/0
demands pale in comparison to NFS. The distinction is that DBMSs are going to use much of the
data they load, as opposed to just pushing it across the network like NFS.

1% There is one example of precisely this being done, but it was never optimized to any degree, so
we can't validly compare the (abysmal) results.

A 24-way ES6000 can sustain about 21,000 NFS operations/second (about 900 ops/CPU) with a
latency of about 40 ms. A one-way machine gets about 2000 ops. Thisimplies aregquirement of
500us on the CPU per NFS op and thus 80 outstanding requests (waiting for the disks) at any one
time. The limiting factor is CPU power plus locking contention. There is plenty of room for more
or faster disks, and more network cards, but they wouldn't help.

217

Actual datatransfers are accomplished viaDMA from/to disks and the network. The dataiis
brought into the CPU only to perform checksums; it is never written by the CPU. Checksums have
horrible data locality—they load lots of data, but use that data only once, and only for asingle
addition. This means that the CPU will spend an inordinate amount of time stalled, waiting for
cache loads, but that it will do virtually no writes. (Some folks are building checksumming
hardware for exactly this purpose.) Normal programs spend more time using the data once loaded
into cache, do more writes, and generally spend less time stalled on cache misses.

NFS s constructed as a producer/consumer program. The master/slave design was rejected as
being inappropriate because of the nature of interrupt handling. When a network card gets a packet,
it issues an interrupt to one of the CPUs (interrupts are distributed in a round-robin fashion on
Sun's UE series). That CPU then runsits interrupt handler thread.

For an NFS request, the interrupt handler thread acts as the producer, building an NFS request
structure and putting that onto alist. It isimportant for the interrupt handler thread to complete
very quickly (as other interrupts will be blocked while it's running); thusit is not possible for that
thread to do any appreciable amount of work (such as processing the request or creating a new
thread). The consumers pull requests off the queue (exactly like our P/C example) and process
them as appropriate. Sometimes the required information will be in memory, but usually a disk
request will be required. This means that most requests will require a context switch.

Many of the original agorithms used in single-threaded NFS proved to be inappropriate for a
threaded program. They worked correctly, but suffered from excessive contention when
appropriate locking was added. A major amount of the work on multithreaded NFS was spent on
writing new algorithms that would be less contentious.

The results? An implementation that scales extremely well on upward of 24 CPUs.

Summary

Performance tuning is avery complex issue that has numerous trade-offs to be considered. Once a
performance objective and level of effort has been established, you can start looking at the
computer science issues. Even then the major issues will not be threading issues. Only after you've
done agreat deal of normal optimization work will you turn your eyes toward threads. We give a
cursory overview of the areas you need to consider, and wish you the best of luck.

218

Chapter 16. Hardware

e Types of Multiprocessors
e BusArchitectures
¢ Memory Systems

In which we look at the various designs for SMP machines (cache architectures, interconnect
topologies, atomic instructions, invalidation techniques) and consider how those designs affect our
programming decisions. Some optimization possibilities are looked at.

Types of Multiprocessors

In dealing with MT as we have described it here, we are a so making some assumptions about the
hardware we are going to be using. Everything we discussed is based on our using shared memory
symmetric multiprocessor (SMP) machines. There are several other types of multiprocessor
machines, such as distributed shared memory multiprocessors (Cray T3D, etc.) and massively
parallel multiprocessors (CM-1, etc.), but these require very different programming techniques.

Shared Memory Symmetric Multiprocessors

The fundamental design of this machine requires that all processors see al of main memory in an
identical fashion. Even though a memory bank might be physically closer to one CPU than
another, there is no programming-level distinction in how that memory is accessed. (Hardware
designers can do all sorts of clever things to optimize memory access behind our backs, aslong as
we are never aware of them.)

The other distinguishing aspect of this machineisthat all CPUs have full access to all resources
(kernel, disks, networks, interrupts, etc.) and are treated as peers by the operating system. Any
CPU can run kernel code at any time (respecting locked regions, of course) to do anything. Any
CPU can write out to any disk, network device, etc., at any time. Hardware interrupts may be
delivered to any CPU, although thisis aweaker requirement and is not always followed.*!

Mn practice, interrupts are generally distributed to CPUs in a round-robin fashion.

All of the multiprocessors in the PC, workstation, and server realms are shared memory symmetric
multiprocessors. the two-way Compag machines and all of the Sun, SGI, HP, DEC, HAL, and
IBM RISC machines. (IBM aso builds the SP-2, alarge, distributed memory machine—basically,
acluster of PowerServers.) Obvioudly, all manufacturers have their own internal designs and
optimizations, but for our purposes, they have essentially the same architecture.

The CPU

All of the CPUs have the same basic design. There's the CPU proper (registers, instruction set,
fetch, decode, execution units, etc.), and there's the interface to the memory system. Two
components of the memory interface are of particular interest to us. First there's an internal cache
(192 —typically 20-32 kB), then an external cache (E$—typically, 0.5-16 MB),2! and finally,
there's a store buffer. The 1$ holds all of the most recently accessed words and provides single-
cycle access for the CPU. Should the 1$in CPU 0 contain aword that CPU 1 changes, there has to
be some way for CPU 0 to beware of this change. E$ accessis about 5 cycles, with the same
coherency issue. Thisis problem 1.

219

2l "$" stands for U.S. dollars (i.e., money). Another word for paper money is cash, which sounds
just like the way Americans pronounce cache. Aren't hardware designers funny?

B) The distinction between unified caches and divided caches (one section for instructions, a
different section for data) is not particularly interesting for what we're doing.

The store buffer isa small, specialized cache that holds words the CPU is writing out to memory.
Theideaisthat instead of requiring the CPU to stall while awriteis going on (it takes 30-100
cycles), the word will be placed into the store buffer, which will then arrange to write the word out
to main memory when it sees fit. Thisway the CPU can run at full speed, not worrying about
exactly when aword arrivesin main memory.

Of course, the store buffer must be closely coupled with the 1$ and memory fetch unit to ensure
that the CPU has a coherent view of memory. It wouldn't do for CPU 0 to write x1234545F into
location x00000010, then load x00000010 and not see x1234545F. Hardware architects take
care of that, so we don't have to bother. The other issue with using a store buffer is that of
determining when writes arrive in main memory. CPU 0 might write out dozens of words, placing
them in the store buffer, while CPU 1, which then accesses those words, wouldn't see the changes,
because the store buffer hasn't written them out yet. Thisis problem 2.

Just to further complicate the hardware picture, it is possible for the hardware designersto give the
store buffer more latitude in its choice of which words to write out when. Total store order refers
to adesign that requires the store buffer to write words to main memory in the same order as the
instruction stream. It can be more efficient for the store buffer to write words out in a different
order (perhaps it can write a series of contiguous words out together; perhapsit can write aword
to memory bank 1, then memory bank 2). There are avariety of schemes for this out-of-order
writing (partial store order, weak order, etc.). The importance to usis that we must not rely on
write order! Thisis problem 3.

One more complication is that CPUs might do out-of-order execution, too. If a CPU has to wait
for acachefill before executing instruction 1, it is allowed to ook at instruction 2. If thereisno
dependency on 1, the CPU may proceed to execute 2 first. Thisis awonderful thing for hardware
architects, asit gives them enormous leeway in their designs, allowing the CPU to run at
maximum possible speeds. It also complicates CPU design, ensuring full employment for
hardware designers. For us software types, it means that we cannot rely on order of execution.”
Also problem 3.

“ There are some fancy algorithms, such as Decker's algorithm, which avoid using mutexes by
depending upon the write order of CPUs. These techniques will not work on modern SMP machines.

The System

Figure 16-1 shows atypical SMP system. Each CPU has its own on-chip "I$" and store buffer. It
also has amuch larger, off-chip E$. All external communication is done over a single memory bus.
Part of the memory bus protocol for al these machinesis that each CPU will do bus snooping.
Every memory transaction will be observed by every bus snooper, and every time that CPU 0
writes aword out to main memory, every other bus snooper will seeit and invalidate® that entry
in its own caches (both "E$" and "I1$"). The next time that CPU 1 wants to use that word, it will
look in its own cache, see that the entry has been marked invalid, and go out to main memory to
get the correct value.

B! There are other schemes for dealing with this problem, such as cache broadcast, which simply
sends out the updated value immediately, but this won't change our programming decisions.

Figure 16-1. SMP System Architecture

220

Store Buffer (~2k) Bus Snooper

CPU CPU CPU
[18 20-32k +I
External S meqg -
Cache 16 meg
T Memory Bus
Main Memory
Other Devices

What if CPU 1 also wants to write out the same word? What if CPU 1's store buffer is waiting to
write it out? No answer. It would never happen, because that would mean that two different
threads were manipulating the same data at the same time without a mutex and that's not proper.
(If you did this anyway, the value would just get overwritten.) Problem 1 solved.

What if aglobal variableisin aregister so the CPU doesn't see the invalidated word in cache?
This also won't happen because the compiler is not allowed to keep nonlocal datain registers
across function calls[e.g., pthread_mutex_lock()!].

Store Barriers

Problems 2 and 3 are solved with the same mechanism—store barriers. A store barrier isa
machine instruction which siys@, effectively, "flush the store buffer." The CPU will then stall
until the store buffer has been written out to main memory. On a SPARC machine, there are two
instructions, stbar and membar.

© i reality it says, "Place a token here in the output buffer and prevent any future writes from
crossing this boundary." This is actually more efficient than flushing the store buffer, but harder to
explain.

Now then, when should we flush the store buffer? Whenever a CPU has changed some data that it
wants other CPUs to see. Thiswould be shared data, of course, and shared data may be used by
other CPUs only after the first CPU has released the lock protecting it. And that's when stbar is
called—when amutex is being released. Thisis done by all the synchronization variable functions,
so you will never call it yourself.

Thus, the short answer to all the problems above is, "Protect shared data with a mutex.”

Bus Architectures

The design of the main memory bus does not have much effect on how we write MT programs
specificaly, but it does have enormous influence over how fast our programs run, and for high-
performance programs we must pay it respect. Depending on the specific program, anywhere from

221

25% to 90% of the runtime will be devoted to waiting for the memory bus. (Y ou can find
programs that run entirely in cache and have zero percent bus waits, but they are the exceptions.)

There are two primary bus designsin usein SMP machines. There is the simple, direct-switched
bus such as the MBus, which was used in Sun's early SMP machines and the SPARCstation 10 s
and 20 s. Then there is the more expensive, more complex, packet-switched bus (a.k.a. split-
transaction bus) such asisused in all the server machines from al the manufacturers (Sun's
SPARCservers, Sun's Ultra series, SGl's Challenge series, HP's PA-RISC, IBM's POWERSservers,
DEC's Alpha servers, HAL's Mercury series, Cray's S6400 series, €tc.). In addition to these, there
are also crosshar switches that allow several CPUs to access several different memory banks
simultaneoudly (Sun's Ultra servers and SGI's Origin servers).

Direct-Switched Buses

In adirect-switched bus (Figure 16-2), memory accessis very simple. When CPU 0 wants to read
aword from main memory, it asserts bus ownership, makes the request, and waits until the datais
loaded. The sequenceis:

Figure 16-2. Direct-Switched Memory Bus

CPU 1 CPU 2 CPU 3
5
=1
MBus g “,
Ownership

Address VA
Strobe

Memory Y A
Strobe
e | -

~1us

1. CPU 0 takesacache miss. E$ must now go out to main memory to load an entire cache

line (typically, 8 words).

CPU 0 asserts bus ownership (perhaps waiting for a current owner to release).

CPU 0 |loads the desired address onto the bus address lines, then strobes out that address

on the address strobe line.

4. Memory sees the strobe, looks at the address, finds the proper memory bank, and then
starts looking for the data. DRAM is fairly slow and takes roughly a microsecond™ to
find the desired data.

wn

7 Depending on when you're reading this book!

5. Once found, memory puts the first set of words onto the bus's data lines and strobes it into
the ES. It then loads the next set of words, strobes that out, and continues until the entire
cache-line request has been satisfied.

Thetotal bus transaction latency, from initial request to final transfer, ison the order of 1 usfor all
machines. It simply takes DRAM that long to find the data. Once found, DRAM can deliver the
data quite rapidly, upward of 60 ns per access, but theinitial lookup is quite slow.

222

On adirect-switched bus, the total memory bandwidth is quite small, not because of limited bus
speeds, but because each transaction occupies the bus for so long, most of the time just waiting.
Obviousdly, thisis not an optimal situation. Sun's MBus was designed to accommodate up to four
CPUs. In practice, it was found that four CPUs generated too much bus traffic in most programs,
and the vast mgjority of M Bus machines were shipped with just two CPUs.

Packet-Switched Buses

In a packet-switched (a.k.a. split-transaction) bus (Figure 16-3), the transaction is split between
the CPU's request and the memory's reply. The objective of this design isto overcome the
enormous periods of dead time that the direct-switched buses suffer. In this design the CPU will
release bus ownership while memory is busy looking up the address, hence freeing it for use by
other CPUs. The sequenceis:

1. CPU 0 takes a cache miss. E$ must now go out to main memory to load an entire cache
line (typically, 8 words).

2. CPU 0 asserts bus ownership (perhaps waiting for a current owner to release).

3. It loadsthe desired address onto the bus address lines, then strobes out that address on an
address strobe line.

4. Memory seesthe strobe, looks at the address, finds the proper memory bank, and then
startslooking for the data.

5. At thispoint, CPU 0 releases bus ownership.

6. Once found, memory reasserts bus ownership.

7. Memory then strobes the datainto CPU 0's ES$.

Figure 16-3. Packet-Switched Memory Bus

ADBus Y Y / \
Ownership CPU Memary
Address e

Strobe

Memory A S A W
Strobe

- ~Tis -

Tota latency for a packet-switched bus is no shorter than for a direct-switched bus, but because
the busis now free for use by other CPUs, the total throughput is much, much higher. Sun's
UE10000 can run productively with upward of 64 CPUs on asingle bus.

Crossbar Switches

A crossbar is arouting switch that allows any one el ement on one axis to communicate directly
with any one element on the other axis. This does not affect the ability of other elements on the
first axis to communicate with other elements on the second. Contention occurs only when two

223

elements on one axis want to communicate with the same element on the second. Crossbar
switches are much faster than buses—and more expensive.

The practical limit on crossbar switches right now (1999) seemsto be about 4 x 4 (Figure 16-4),
the size of both the Sun and SGI designs. To build machines larger than four CPUs, some
additional interconnect is required. On the larger Sun Ultra machines, a centerplane busis used
that can accommodate up to 16 quad CPU boards. On the larger SGI machines, an entirely
different approach is used.

Figure 16-4. Cluster Using a Crossbar Switch

CcPU CPU CPU CPU
Cache Cache Cache Cache
I |
Memory
Memory
Memaory
4x4 Crossbar Memoary
Int
n e;aﬂe PC Board
Interconnect

Hierarchical Interconnects

The practical (and legal™®) limit to bus length is approximately 16 boards. Beyond that you have
horrendous problems with signal propagation. The "obvious" solution to thislimit isto build a
hierarchical machine with clusters of buses communicating with other clusters of buses, ad
infinitum. In its simplest form, thisis no big deal. Want some more CPUs? Just add a new cluster!
Sure, you'll see longer communication latencies as you access more distant clusters, but that's just
the way things are.

(6] 186,000 miles/second. It's not just a good idea, it's the law!

There is one aspect of SMP design that makes a mess of this simple model—cache memory. We
need to use caches to avoid saturating the interconnect, but at the same time caches need to be
kept coherent, and that's tricky. If the cache for CPU 169 contains an entry for address
x31415926, and CPU 0 writes into that address, how is cache 169 going to get invalidated?
Propagating every invalidate across the entire interconnect would saturate it quickly. The object
now becomes finding a method to propagate invalidations only to those caches that need them.

Built along the designs of Stanford's DASH project, the SGI Origin (Figure 16-5) uses asmall
crossbar for its clusters and an expandable, hierarchical lattice instead of a bus. Embedded in each
cluster is an invalidation directory, which keeps track of which other clusters have cached copies
of itslocal memory. When main memory iswritten to, the directory knows to which clustersto

224

send invalidations. The result is that the basic machine can be expanded well past the 16-board
limit of bus-based machines, at a cost of about 150 ns extra latency for each hop across the lattice.
The Origin is spec'd to expand out to 4096 CPUs. Now the only problem iswriting programs that
can use 4096 CPUs.

Figure 16-5. Hierarchical Design of the SGI Origin Series

T
SN N SN SN

[FTIEILZJEI

(00

000

ccNUMA

Cache coherent nonuniform memory architecture is what the Origin does. The Origin clearly
supports a coherent cache viaits elaborate scheme for directly cache invalidates. It also supports
nonuniform (speed) memory access, as on-board memory access is much faster than off-board
access. There are also strict bus-based systems that are CCNUMA. Sun's machines are not among
these, asthey al define access memory to run at the same speed on-board and off-board.

Packet-Switched Buses and 1dstub

There is one place we care about the bus design very directly (see Figure 16-6). Remember
Idstub, the mutex instruction? Well, the definition of 1dstub saysthat it must perform its work
atomically. For a packet-switched bus, this means that it must retain bus ownership throughout the
entire operation, first fetching the byte in question, then writing all ones out to it. In other words,
using Idstub completely defeats the packet-switched nature of a packet-switched bus!

Figure 16-6. Packet-Switched Memory Bus Running ldstub

225

- P

==l=sli==li==
] [Cwe] e

XDBus /

Ownership

Address A FEY
Strobe

Memory o\

Strobe
-} -
~lps

There is no way around the fundamental problem, as Idstub must be atomic. It must occupy the
bus for the duration. What we can do is simply not call it too often. In particular, this means
modifying our definition of spin locks. Whereas our first definition of spin locks resulted in our
calling 1dstub on every iteration of the loop (thus flooding the bus), our better definition (Code
Example 16-1) will avoid calling 1dstub unlesswe're fairly sure that it will succeed. What well
doisspininaloop, looking at the value of the ownership byte. Aslong asit's owned, well just
keep spinning, looking at the value in cache, not generating any bus traffic at al.

Example 16-1 Spin Locks Done Better
/* Implementation dependent. This is valid only for Solaris 2.5 */
void spin_lock(mutex_t *m) {

int i;

for (i = 0; 1 < SPIN_COUNT; i++) {

it (n->lock.owner64 == 0) /* Check w/o ldstub */
iT (pthread_mutex_trylock(m) != EBUSY)
return; /* Got it! */
/* Didn"t get it, continue the loop */
}
pthread_mutex_lock(m); /* Give up and block */

}

When the lock is released, the owner CPU will write out zero, which our bus snooper will see,
invalidating our copy of the byte. On our next iteration we'll get a cache miss, reload from main
memory, and see the new value. Well call trylock (hence Idstub), and if we're lucky, it will
succeed and we'll get lock ownership. On the off chance that some other CPU sneaksin there at
exactly the right nanosecond, our Idstub will fail, and we'll go back to spinning. Generally, you
should expect spin locks to be provided by your vendor.

The Thundering Herds

Thisisasfar aswe're going to go with spin locks. This covers 99.9% of al programs that need
spin locks. For that final 0.1%, where there is enormous contention for a single spin lock, even
this scheme will suffer. If there are 10 CPUs all spinning on this lock, the moment it's released, all
ten of them will take cache misses, flooding the bus first with cache load requests, then Idstub
requests. Thisisknown as the thundering herds problem and is discussed in more detail by
Hennessy and Patterson (see Appendix B). Suffice it to say, if you're suffering from this problem,

226

you have real problems. The best thing you can do isto find another algorithm with less
contention.

LoadLocked/StoreConditional and Compare and Swap

We mentioned that there are other types of atomic instructions that are a bit more versatile. On
SPARC v9, there isthe Compare and Swap if Equal instruction. On the Alpha, there is a different
approach to the same issue, using two instructions, known as Load Locked and Store Conditional
(Code Example 16-2).

Example 16-2 Atomic Increment Using LoadLocked and StoreConditional

try _again:LoadlLocked address 1 -> register_1
add register_1, 1 -> register_2
StoreConditional register_2 -> address_1
Compare register_ 2, 0
branch_not_equal try again

The Alphainstructions require atiny bit more hardware but reward the designer with an atomic
instruction that doesn't lock the memory bus. Alongside the bus snooper hardware is one more
register (Figure 16-7). When aLoadLocked instruction isissued, the data is fetched directly
from main memory, and that address is recorded in the register. Should some other CPU write to
that address, the register notices it. Later the program will issue aStoreConditional
instruction. Thisinstruction looks at the register before doing the store. If the register says that the
address is unchanged, the store proceeds. If the address has been written to aready, the store
doesn't take place. After StoreConditional isfinished, the programmer must check to seeif
the store took place. If so, al iswell. If not, go back and repeat.

Figure 16-7. SMP System Architecture

LockedLoad Register

CPU | cPU [CPU |
B +I I+$;I 1$
External External External
Cache Cache Cache

L% e LT

Main Memory

Building a mutex with these instructions is ssimple. Of more interest are the other types of
synchronization we can do, such as atomic increment/decrement, and atomic list insertion. In
effect we will beimplicitly locking the word in question, updating it, and releasing the implicit
lock. The important distinction is that we can now execute these operations with no possibility of
the lock owner going to sleep.

227

In Code Example 16-2 we assume that memory location address_ 1 will not change between the
time we read it and the time we execute the StoreConditional. If it does change, we simply
loop back and try it again. This operation is equivalent to acquiring alock, incrementing the word,
and releasing the lock, with the exception that it isimpossible to go to sleep while holding the lock.
We cannot mix use of these instructions and normal mutex locks.

The advantage to these instructions is that they run roughly twice as fast as mutex-protected code
and there is no danger of being context switched in the middle of execution. The disadvantage is
that the operations you can perform are very simple and may not be sufficient to our purposes.
Inserting an element onto the front of alist is simple, but inserting elsewherein thelist is
impossible. (Y es, we can correctly change the next pointer of item_n, but item_n might have
been removed from the list while we were reading the next pointer!) For more general use we
need mutex locks.

Thetricky part isthat you can use these instructions to increment or decrement avariable
automatically, but you can't make any decisions based on "current” value because the variable's
value may change before you make your decision. In normal code you would make a decision
based on the value of avariable whilein acritical section, so that the variable couldn't change.
Y ou will sometimes see the use of these instructions referred to as lock-free synchronization.

All of thisis quite interesting of course, but it is not applicable to Java, as you have no ability to
access such low-level instructions without going through JNI. Going through JNI would both
break the program'’s portability (it would not be a pure Java program anymore) and it would be
dow (going through JNI is expensive).

Lock-Free Semaphores and Reference Counting

Semaphores need to know if a decrement attempt succeeded or not. If successful, there is nothing
else for the semaphore to do. It's done (this will be our "fast path"—the most common case).
Should the semaphore value already be zero, a bit of careful programming will allow the thread to
go to sleep confident that the next sem_post () will wakeit up. This means that sem_wait()
can execute in asingle instruction (we don't even have to block out signals because no lock is
being held)! Callsto sem_post() will be somewhat more complex (they have to look for
deepers) but till very fast.

Reference counting is one of the few other things that you can use such atomic instructions for,
because the only decision you make in reference counting occurs when the count hits zero. Once
zero, the reference count cannot be changed (there are no pointers left to the item to copy), hence
you can rely on this value.

Volatile: The Rest of the Story

At last we have the background we need to discuss volati le. Asin C, volati le ensuresthat a
variable will not be cached in either registers or memory cache. Every read of that variable will go
out to the main memory bus, and every write will result in awrite on the main memory bus.
Moreover, volati le will insert astore barrier after every write. This means that things like
Dekker's algorithm will work, even on an out-of-order execution machine.

Now, what does this give you? Very, very little. Y ou can write something like Dekker's
algorithm™ to do locking instead of using locks. Y ou can write data atomically and in order, but
for the same reasons as above, it's unlikely to give you want you want. Consider that every use of
avolati le variable requires amain memory read. Every main memory read costs upward of
100 cycles, whereas a simple direct nonvolatile use of the same variable would execute in one
cycle.

228

™ bekker's algorithm is basically a clever way of building locks for a known number of threads
based on the assumption that writes to main memory arrive in order. Without a volatile declaration,
it is not possible to implement on an out-of-order machine.

The definition of volati le doesimply that 64-bit data (e.g., doubles and longs) will be treated
atomically. On amachine that does 64-bit writes (UltraSPARC, Alpha, €tc.), thisis
straightforward to implement. On a machine that only does 32-bit writes (SPARC v7, x86, etc.)
thisis abit more difficult. To meet the definition of volati le, it isactually necessary for 32-bit
machines to maintain alock specifically for 64-bit volati le data

It isunlikely that you will ever use volati le at al.2 Be careful!

1% n the 2nd edition of his book, Doug Lea (see Appendix B) is including a simple example of using
volatile to manage a list. The code is amazingly complex for such a simple problem. | figure that if
it's that difficult for Doug to get it right, | don't want to be doing it at all!

Atomic Reads and Writes

Most writes on most systems are either 32 or 64 bits wide, aligned on the appropriate word
boundary. Such writes are atomic—you never have to be concerned that the first 16 bits have been
written before the second 16 bits. What good does this do you? Very little. Y ou cannot test avalue
because it may change. Y ou cannot increment a value because someone else might be using it at
the same time. Y ou may be able to figure out a tricky way of combining this fact with a

volati le declaration to allow you to avoid using alock, but it probably won't make your
program go any faster.

Interlocked Instructions

In Win32 there are a set of interlocked functions[InterlockedIncrement(),
InterlockedDecrement(), and InterlockedExchange ()] which call the respective
interlocked instructions on x86 machines. These instructions provide equivalent functionality to
the fancy synchronization instructions we just looked at. Although some Win32 programmers will
gladly attest to their glory, they don't actualy provide the C program with much value, and they
cannot be called from Java. Use locks!

Memory Systems

The memory system in modern SMP machines is designed to be ignored. Y ou shouldn't have to
spend any time thinking about it—it should just work. And it succeedsin this, to adegree. Aslong
as you are writing a program that is reasonably well behaved and that doesn't have overwhelming
needs for absolute maximum performance, you can skip over this section. Probably 95% of all
programs fit into this category. Asfor the other 5% percent...

In 1980, memory speeds were about the same as CPU speeds, and a machine could access main
memory in asingle cycle. Since then, DRAM speeds have improved by an order of magnitude and
CPU speeds by almost four. Direct main memory access now costs between 30 and 100 CPU
cycles. It isnot at all unusual for a CPU to spend over half its time stalled, waiting for memory.
To the degree that you can reduce the number of main memory accesses (i.e., cache misses), you
will be handsomely paid in program performance. (N.B.: There is nothing unique to MP machines
or MT programs here.)

Reducing Cache Misses

229

So how to reduce cache misses? There are a couple of generdlities that we can point to, but not
much more. Happily, these generalities do cover alot of programs.

1. Write your program so that you never have to load a cache line more timesthan is
absolutely necessary.

2. Organize your data so that when you do load a cache line, you are able to make use of all
the data.

3. Keep data used regularly by different threads out of the same cache line.

Depending upon your particular program, it may or may not be reasonable to apply the above. For
well-behaved programs that reuse the data in cache many times, a great deal can be done just
covering these three rules. We can show afactor of 10 difference between anaive matrix multiply
and the most highly optimized implementation, al due to better cache management. For programs
with very poor datalocality, such as NFS or databases, which spend alot of time bringing in new
data and looking at it only once, it is almost impossible to do anything at all.

Two SPECfp95 benchmarks were submitted by Sun for almost the identical machine. The first
was a400-MHz, 8-way UE 3500 with 4-MB E$. The second was the same, but with an 8-MB E$.
We show (in Table 16-1) the three most affected benchmarks along with the geometric average for
SPECTp.

Table 16-1. Selected SPEC Benchmarks for Two UE 3500s

4-MB E$ 8-MB E$
101.tomcat 105 122
1102.swim 1278 671
107.mgrid 108 147
SPECfp95 50.1 57.7

Cache Blocking

For something like matrix manipulation or image processing, a haive algorithm might load and
reload a cache line numerous times. The same operation can be performed much faster in amore
clever algorithm that does cache blocking—arranging to load a subset of the data and use it many
times before loading a new block.

A naive multiply algorithm would multiply al of row 1 by column 1. Then row 1 by column 2,
column 3, etc. Next, row 2 would be multiplied with each column, etc. For a 1024 x 1024 matrix,
each row would be loaded only once, but the columns would be rel oaded 1024 times! Assuming
64-bit floats and 64-byte cache lines, that adds up to atotal of 128k cache |loads.

A cache-blocked program would multiply rows 1-64 with columns 1-64, then columns 65-128,
then 129-192, etc. Each of those setswill fit completely in a2-MB E$, so the total number of
cache loads will be reduced to amere 16k column load plus 1k row |oads.

That's the basics of cache blocking. There's plenty more that can be done. For example, you can
optimize 1$ blocking on top of the E$ blocking. Y ou can take into account the writing scheme
(does the CPU write back viathe cache, write through the cache, or write around it?). Y ou can
recall that E$ is physically mapped, hence it requires a TLB trandation. (The trandlation lookaside
buffer performs high-speed virtual-to-physical mappings.) Of course, TLBs are very small. The
Sun TLB for the large SC2000 server holds atrandlation for only 0.5 MB, so if you can avoid
referencing data in cache beyond the current contents of the TLB, you can avoid extraneous TLB
misses. Then you may also wish to consider which data is coming from which memory bank.

230

We really don't expect you to deal with these fine-grained optimizations. We don't. They involve a
lot of careful estimation and painstaking verification, and they have to be tailored to individual
machines. But this kind of thing is possible, it does yield impressive improvements for some
programs, and the truly high-performance obsessive types do it. (Dakota Scientific's numerical
libraries take all of these parameters into account and get impressive results.)

Data Reorganization

What if you had alarge number of records about people—names, ages, salaries, addresses,
favorite programming languages, etc.? To calculate the average salary for these folks, you would
have to bring in the cache block with the first person's salary in it (along with seven other words),
add that to the total, then bring in the next person's salary, etc. Each cache miss would bring in
exactly one piece of useful data, and every salary would require a cache miss.

If you organized the data differently, placing all of the salariesinto one array, al of the namesin
another, etc., you would be able to make much better use of each cache load. Instead of one salary
being loaded with each miss, you'd get eight, significantly reducing cache wait times.

Thisis not something you'd do for acasual program. When you have this kind of program design
and data usage, and you are desperate for optimal performance, that's when you do this kind of

thing (see Portability).
Word Tearing

What is the minimum-size data item that you can write to memory? On most modern machinesiit's
8 bits. On someit's 32. It's possible that on some machinesit could be 64!

Now, what would happen if you used one lock to protect the first bit in aword, and another lock to
protect the second? It wouldn't work. Every time you wrote out bit 1, you would overwrite bit 2,
and if someone else was using bit 2, ... Too bad.

Don't do that. Happily, it is easy to avoid word tearing and it would be a pretty odd program
indeed that actually violated this restriction.

False Sharing

A cache memory is divided up into cache lines (typically, eight words) which are loaded and
tracked as a unit. If oneword in the lineisrequired, al eight are loaded. If one word is written out
by another CPU, the entire line isinvalidated. Cache lines are based on the idea that if oneword is
accessed, it's very likely that the next word will be also. Normally, this works quite well and yields
excellent performance. Sometimes it can work against you.

If eight integers happened to be located contiguously at aline boundary, and if eight different
threads on eight different CPUs happened to use those (unshared) integers extensively, we could
run into a problem. CPU 0 would write a[0]. Thiswould, of course, causethe a[0] cachelineto
be invalidated on all the other CPUs. CPU 1 now wishesto read a[1]. Even though it actually has
avalid copy of a[1] in cache, the line has been marked invalid, so CPU 1 must reload that cache
line. And when CPU 1 writesa[1], CPU 0 will invalidate its cache line, etc., etc.

Thisiswhat is called false sharing. On an 8-way, 244-MHz UE4000, the program shown in Code
Example 16-3 runsin 100 swhen the integers are adjacent (SEPARATION == 1),andin10s
when the integers are distant (SEPARATION == 16). Itisan unlikely problem (it can happen,
however), one that you wouldn't even look for unless you did some careful performance tuning
and noticed extensive CPU stalls. Without specialized memory tools, the only way you could find

231

this out is by counting instructions and dividing by CPU speed. If there is alarge discrepancy, you
can infer memory system stalls (see Memory Latency).

Example 16-3 False Sharing
int a[128];

public class FalseSharing {
int index;

public void run(Q) {
while (MANY_INTERATIONS)
a[index]++;

for (i = 0; 1 <8 ji++)
new FalseSharing(i * SEPARATION).start();

Summary

There are numerous machine designs, most of which will not affect our programming decisions.
There are alot of issues concerning memory coherency, all of which are solved by using proper

locking. For very high performance programs, clever, semiportable cache blocking schemes and
data organization can have an enormous impact.

232

Chapter 17. Examples

Threads and Windows

Displaying Things for aMoment (Memory.java)
Socket Server (Master/Slave Version)

Socket Server (Producer/Consumer Version)
Making aNative Call to pthread _setconcurrency()
Actual Implementation of POSIX Synchronization
A Robust, Interruptible Server

Disk Performance with Java

Other Programs on the Web

In which several complete programs are presented. The details and issues surrounding the way
they use threads are discussed, and references to other programs on the Net are made.

This chapter contains several example programs that use Javathreads. The examples use threads
to demonstrate different concepts from previous chapters. All the example code (except for the
JINI example) has been compiled and run on Solaris, IRIX, Digital UNIX, and Windows NT.

Use this code in whatever manner you choose; many of the concepts demonstrated in the
examples can be reworked to be used in your applications. Of course, there are some bugsin the
code somewhere. All the source code used in this book is available on the Web (see Code

Examples).

Threads and Windows

This example (Code Example 17-1) uses threads to speed up the operation of a GUI program
which has long running operations. Without threads, this program would have to wait for each
long-running operation to compl ete before the next button could be pushed.

Example 17-1 ThreadedSwing Program

// ThreadedSwing/ThreadedSwing. java

/*
When the user pushes a button, disable it and sleep for 6 seconds.
IT "Threaded,™ do the sleeping in a new thread, allowing the
other buttons to remain active. If "Non-Threaded,'" do the sleeping
in the SWING thread, effectively disabling the other buttons.

After sleeping, reenable the button by calling invokelLater().
(Swing is NOT thread-safe.)

CF: Same program in AWT: ThreadedAWT and in PThreads: ThreadWin.c
*/

import java.applet.*;

import java.awt.™;

import java.awt.event.*;
import com.sun.java.swing.*;
import Extensions.™*;

233

public class ThreadedSwing extends JFrame {
static boolean useThreads = false;
static boolean KILL = false;

public ThreadedSwing() {
ThreadedJButton button;

if (System.getProperty("KILL™) I!= null)
KILL = true;

setTitle(""ThreadedSwing™);
JPanel topPanel = new JPanel();
getContentPane() .add(topPanel);

ThreadButtonListener tbl = new ThreadButtonListener();
NumericButtonListener nbl = new NumericButtonListener();

button = new ThreadedJButton(*'Non-Threaded™);
topPanel .add(button);
button.addActionListener(tbl);

for (int 1 = 1; 1 <5; i++) {
button = new ThreadedJButton(''+i);
topPanel .add(button);
button.addActionListener(nbl);

}

public static void main(String args[]) {
ThreadedSwing mainFrame = new ThreadedSwing();

mainFrame.pack();
mainFrame.setVisible(true);

// Killer MUST be in another thread.
it (KILL)
new Thread(new Killer(120)).start(Q);

// ThreadedSwing/NumericButtonListener.java

/*
This classes listens only for button pushes on the numbered buttons.
*/
import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.>;
import Extensions.™;

public class NumericButtonListener implements ActionListener {
public void actionPerformed(ActionEvent event) {
ThreadedJButton currentButton =
(ThreadedJButton)event.getSource();

System.out.printIn(*'Pressed " + currentButton);

currentButton.setEnabled(false);
System.out.printIn(currentButton + " disabled.");

234

DoWorker w = new DoWorker(currentButton);

if (ThreadedSwing.useThreads)
new Thread(w).start();
else
w.run(Q);

class DoWorker implements Runnable {
ThreadedJButton button;

public DoWorker(ThreadedJButton b) {
button = b;
}

public void run() {
Thread selfName = Thread.currentThread();

System.out.printin(button + " sleeping... " + selfName);
InterruptibleThread.sleep(6000);
System.out.printin(button + ' done. " + selfName);

// This will run workComplete() in Swing main thread.
// This is the main point of the whole example.
SwingUtilities. invokeLater(new DidWorker(button));

class DidWorker implements Runnable {
ThreadedJButton button;

public DidWorker(ThreadedJButton b) {
button = b;
}

public void run() { // Run only in Swing main thread.
Thread selfName = Thread.currentThread();

button.setEnabled(true);
System.out.printin(button + ' reenabled. " + selfName);

// ThreadedSwing/ThreadButtonListener.java

/*
This classes listens only for button pushes on the
"Threaded"™ / "Non-Threaded" button.

*/

import java.applet.*;

import java.awt.*;

import java.awt.event.*;
import com.sun.java.swing.>;
import Extensions.™;

235

public class ThreadButtonListener implements ActionListener {
public void actionPerformed(ActionEvent event) {
ThreadedJButton currentButton =
(ThreadedJButton)event.getSource();

System.out.printIn("'Pressed " + currentButton);
ThreadedSwing.useThreads = IThreadedSwing.useThreads;

iT (ThreadedSwing.useThreads)
currentButton.setText(""Threaded™);

else
currentButton.setText("'Non-Threaded™) ;

// ThreadedSwing/ThreadedJButton. java

/*
Once upon a time this was an interesting class. Now it
provides a nice print string.

*/

import java.applet.*;

import java.awt.™;

import com.sun.java.swing.*;
import Extensions.*;

public class ThreadedJButton extends JButton {
public ThreadedJButton(String s) {
super(s);

public String toString() {
return(""ThreadedJButton_ " + getText());
}

}

In a"normal” windowing application, when a button is pressed, some task is executed and then
control in the program is returned to the window. Thisisfineif the time required to execute the
task isminimal. If the time required for the task is not minimal, the window freezes or the clock
icon is displayed while the task is executing. This behavior is not desirable in most cases, because
the graphical interface should always be active for the user to select other actions.

This example demonstrates how we can get around the freezing problem. A simple window is
created and filled with pushbutton widgets. When a button is pushed, the program simulates some
processing [i.e., sleep(6000)] that would normally cause the interface to freeze. In this
example the work is performed in separate threads. Thisway, when a button is pressed, athread is
created to do the work, and the window can return to its event processing for the user (Figure 17-
1.

Figure 17-1. ThreadedSwing Window Example

236

sleep(6000)
sleep(6000) 4% invokeLater (DidWorker) ;
—'-E invokeLater (DidWorker) ; LY) i

' Threeﬁediwing
=T

When you run this example, you will see that when a button is pressed, it changes colorsand is
deactivated while the work is being done. However, you can press as many buttons as you like,
one right after the other without waiting for the first to complete.

This program is exactly what was described in Are Libraries Safe?. The main thread builds a
window. This starts up an event thread that then enters the event loop and waits for input. When
you push a button, the callback ThreadButtonListner.actionPerformed() runs,
deactivates the button, changesits colors, and (optionally) creates a new thread (T2) to run the
work function [DoWorker .run()].

The event thread then returns to the event loop. Y ou press another button and the cycle repeats. In
the meantime (back at the ranch), the new thread has started up and begun running. With our
second push, athird thread (T3) has started up, just like T2. After afew seconds, T2 completesits
work and calls invokeLater[new DidWorker ()] and exits.

The event thread seesthe invokelLater request and runs the method DidWorker . run(). That
function sets the button back to the original colors and reactivates the button. Now only T3 is
running. Soon it will complete and repeat the actions of T2. In this fashion, the event loop is
always active and the Swing calls are made only from the event thread.

If you push the "Threaded" button, the program will not use threads, but rather, it will do all the
work directly in the event thread. And the program will slow down alot.

Notice that we are using a runnable as the item of work to be performed and we are going to allow
it to be run either in anew thread or in the event thread itself. Thisis one of the reasons that
runnables are good.

Displaying Things for a Moment (vemory.java)

Sometimes you would like an applet (or any windowing program) to display something for the
user to see for a short time, then continue on to do other things. In their excellent book Java by
Example (see Appendix B), Jackson and McClellan show alittle program that tests human
memory. We wrote an abbreviated version of it. It shows four colored boxes: red, blue, green,
yellow (Figure 17-2). When the game starts, it makes one of those boxes brighter for a couple
seconds, then dims it again. Next it chooses another (at random) and brightens that for a couple
seconds.

Figure 17-2. The Memory Game

237

Applet Viewer: FollowMe

Iﬁprﬂet started.

After the pattern has been displayed, the player must now take the mouse and duplicate the
sequence. If the game flashed blue, green, red, green, the player must mouse blue, green, red,
green. Pretty simple.

The question comes up: How can we arrange for the flashing colors to be displayed to the player?
If we ran this game entirely in the main applet thread, it wouldn't work. All painting happensin
the main applet thread, so if you made a box bright blue, you could then request a repaint, but that
repaint would not occur until your function returned. If you tried to have your function sleep, the
repainting would have to wait.

So running the snippet of code shown in Code Example 17-2 in the main applet thread would
brighten a box, request a repaint, sleep, then dim the box, etc. After you were all done with this,
your method would return and then the repaints would happen all at once. Not very useful.

Example 17-2 How to Display Something for a Short Time

private void reset() {
for (int 1 = 0; 1 < patternLength; i++) {
// Select random cell

int randomX = (int)((Math.random() * 10) % numCellsOnSide);
pattern[i] = Cell.cells[randomX];

// Display the pattern square by redrawing it briefly in a
// brighter version of its current color.

chosenCell = Cell_.cells[randomX];
chosenCell .brighten();
repaint();

// Sleep so the user can see the bright color before we
// darken it again.

InterruptibleThread.sleep(sleepTime);

// Redraw the square in its original color before going to
// the next square.

chosenCell .darken();
repaint();

// Sleep between squares.
InterruptibleThread.sleep(sleepTime);

238

The right way to do thisisto run your method in a separate thread. This way, when you run the
method, the applet thread isidle. Y ou regquest a repaint, you go to sleep, and now the repaint can
occur in the applet thread!

Socket Server (Master/Slave Version)

The socket server example uses threads to implement a"standard" socket port server. A standard
socket server listens on a socket port and when a message arrives, forks a process to service the
request. The server program first sets up all the needed socket information. The server then enters
aloop, waiting to service a socket port. When a connect request is sent to the socket port, the
server creates a new thread to handle the requests on this socket file descriptor.

The newly created listener thread then receives requests on this socket in the function
producer () until the string *"End"* comes across. For each request, the listener thread creates a
new thread to handle it. That worker thread processes the request in processRequest(), which
sleegps for a bit (smulating disk 1/0) and then sends a reply back across the file descriptor.

The client side of the example (not shown) sends 1000 requests to the server for each file
descriptor you request on the command line (default 1). It waits for each reply and exits when the
server returns "'End . ** This client code can aso be run from different machines by multiple users.

The codeisalittle bit artificial because we wrote it to look as much as possible like our
producer/consumer example. We also added some instrumentation to it, so it will count the
number of threads created and running. One notable artifice is that we accept 1000 requests from
each socket rather than one request from each of 1000 sockets, as you might expect. Our design
gives the program atwo-level structure, with the main thread waiting for new socket requests [in
the accept() cal]. The main thread creates a new thread to handle each new socket, and that
new thread then waits for the 1000 requests, spawning 1000 additional threads, one per request.

Socket Server (Producer/Consumer Version)

Run the master/dave code on afast enough machine and you will discover that it creates so many
threads that it runs out of memory! Thisis not a good thing. One solution is to keep careful track
of how many threads you have created and how many have exited. A better solution would be to
redesign the program to be a producer/consumer model. This way you will be able to control the
number of threads with no problem and you will be able to use the list of outstanding requests as a
buffer for when the number of requests exceeds the ability of the program to handle them.

Of course, if the rate of incoming requests exceeds the ability to reply for too long, you will
eventually have to simply reject the requests. Y ou could have the producer thread send explicit
rejections to the client programs, or it could simply refuseto call accept() until thereisroom on
thelist. In this case, the kernel will queue up afew requests, then simply refuse to acknowledge
any more requests.

Most of the code for the producer/consumer version (Code Example 17-3) isidentical to that in
the master/slave version. Y ou will notice that most of the code is stolen directly from Code
Example 6-12 . Both the producer () and consumer () functions areidentical. Redlly, all that
we're doing is redirecting the producer, from creating new threads for each request, to placing
those requests onto a queue and | etting the consumers worry about them.

239

Example 17-3 Producer/Consumer Socket Program

// ServerProducerConsumer/Server . java

/*
A simple server program. It sets up a TCP port for the client
program to connect to. Then it accepts connections, spawning a
new producer thread for each. [Java has no "select()" function.]

It starts up nConsumers consumer threads to pull requests off the
list and process them, sending a reply string back to the client.

Any 10 failures are handled by printing out an error message,
closing

the socket in question, then ignoring it. Check out the location
of

the exception handlers and which methods throw exceptions. This is

carefully designed and *should* be fully robust.

This version is really just a producer/consumer program that
happens

to run across a socket.
*/

import java.io.™;
import java.net.*;
import Extensions.*;

public class Server {
ServerSocket serverSocket;

static int port = 6500;
static int delay = 10;
static int spin = 10;
static boolean DEBUG = false;
static int nConsumers = 10;
static int MAX_LENGTH = 10;

static boolean KILL = false;

public static void main(String[] args) {
Server server = new Server();
Thread t;
int stopperTimeout = 10; // 10s

if (args.length > 0) {
port = Integer.parselnt(args[0]);
}

if (args.length > 1) {
delay = Integer.parselnt(args[1]);
}

if (args.length > 2) {
spin = Integer.parselnt(args[2]);
}

if (args.length > 3) {
nConsumers = Integer.parselnt(args[3]);
}

if (args.length > 4) {
stopperTimeout = Integer.parselnt(args[4]):

240

}

}

if (System.getProperty("'DEBUG™) != null) {
DEBUG = true;
}

if (System.getProperty("KILL™) 1= null) {
KILL = true;
}

System.out.printIn(*"'Server(port: "™ + port +
" delay: " + delay + "ms spin: " + spin +
""'us nConsumers: ' + nConsumers + "' stopperTimeout " +
stopperTimeout + "'s)');

if (KILL) {
new Thread(new Killer(120)).start(Q);
}

server.runServer();

public void runServer() { // Executes in main thread

port);

1t.

Socket socket;
Workpile workpile = new Workpile(MAX LENGTH);

try {
serverSocket = new ServerSocket(port);

System.out.printIn(*'Server now listening on port " +

Thread t new Thread(new Consumer(workpile));

for (int i = 1; 1 < nConsumers; i++) {
t.start();

while (true) {
socket = serverSocket.accept();
Client client = new Client(socket);
Thread t = new Thread(new Producer(workpile, client));
t.start();
System.out.printIn(''Server[" + t.getName() +
"J\tStarted new client: " + client);

} catch (10Exception e) { // Log failure, then ignore

System.out.printIn(''Cannot get 1/0 streams in new

Client(Q" + e);

}

}

public Server() {

}

// ServerProducerConsumer/Client. java

import java.io.™;
import java.net.*;

241

public class Client {
int outstandingRequests = 0;
Socket socket;
InputStream is;
OutputStream os;

int delay = 10;
int count = 0;
static int total = 0;
int MessagelLength = 70;

public String toString() {
return("<Client: " + count +'">");
}

public Client(Socket s) throws I0Exception {
socket = s;
is = socket._getlnputStream();
0s = socket.getOutputStream();
synchronized (getClass()) {
total++;
count = total;

}

public Request read() throws I10Exception {
byte[] b = new byte[MessagelLength];

int n = is.read(b);

if (n = Messagelength)
throw new I0Exception(this + ""Read too few characters " +

n);
incrementOutstandingRequests();
return new Request(this, b);
}
// NMethods something like these might be useful... :-)
public synchronized void incrementOutstandingRequests() {
outstandingRequests++;
}
public synchronized void decrementOutstandingRequests() {
outstandingRequests--;
if (outstandingRequests == 0)
notifyAll(); // In case someday there"s
more than 1.

}

public synchronized void waitForOutstandingRequests() {
boolean interrupted=false;

while (outstandingRequests != 0) {
try {
wait(Q);
} catch (InterruptedException e) {
interrupted = true;
}

242

if (interrupted)
Thread.currentThread().interrupt(Q);

// ServerProducerConsumer/Consumer . java

import java.io.™;
import Extensions.™;

public class Consumer implements Runnable {
Workpile workpile;

public Consumer(Workpile w) {
workpile = w;
}

public void run() {
while (true) {
workpile.mutex.lock();

while (workpile.empty()) {
workpile.consumerCV.condWait(workpile.mutex);
}

Request request = workpile.remove();
workpile._mutex.unlock();

workpile.producerCV.condSignal();
request.process();

// ServerProducerConsumer/Producer . java

import java.io.™;
import Extensions.™;

public class Producer implements Runnable {
Workpile workpile;
Client client;

public Producer(Workpile w, Client ¢) {
workpile = w;
client = c;

}

public void run(Q) {
String selfName = Thread.currentThread() .getName();

try {
for (int i = 0; true; i++) {
Request request = client.read();
if (request.string.startsWith("End™)) {
client.decrementOutstandingRequests();
client.waitForOutstandingRequests();

243

// Send "End" right back to client. We"re done!
client.os.write(request.bytes);
client.socket.close();

System.out.printIn("Server[" + selfName +
"J\tCompleted processing.");

InterruptibleThread.exit();
}

workpile.mutex.lock();

while (workpile.full()) {
workpile.producerCV.condWait(workpile._mutex);
}

workpile.add(request);
workpile._mutex.unlock();
workpile.consumerCV.condSignal();

}

} catch (10Exception e) { // Log failure, then

ignore it.

try {
client.socket.close();

} catch (10Exception ioe) {
}

System.out._printIn(*'Server[" + selfName +
"J\tException during processing." + e);

InterruptibleThread.exit();

// ServerProducerConsumer/Request. java
import java.io.*;

import java.net.*;

import Extensions.™;

public class Request {

Client
byte[]
Thread
String
int

client;
bytes;

self;

string = "";
count;

static final int MessagelLength = 70;
static int total = O;

public String toString() {

int 1 = string.indexOf(0); // Find end-of-string.
if (<1

i=1;
return(*'<Request: " + client + " " + self.getName() +

+ string.substring(0, 1) + "">");

244

public Request(Client s, byte[] b) {
client = s;
bytes =
self

b;
= Thread.currentThread();
string =

new String(b, 0);

synchronized (this.getClass()) {
count = ++total;
}

if (Server.DEBUG) {
System.out.printIn("'Server[" + self.getName() +
"IN\tCreated: " + this);

}

if (((count % 1000) == 0) && Server.DEBUG) {
System.out.printIn("'Server[" + self.getName() +
"IN\tCreated: " + count + " requests.");

}

public void process() {
Thread self = Thread.currentThread();

try {
byte reply[] = new byte[MessagelLength];
String s = new String(bytes, 0);

s = "[Server " + self.getName() + "] Reply: "™ + count + "
to: " + s;
s.getBytes(0, MessagelLength-1, reply, 0);
InterruptibleThread.sleep(Server.delay);
client.os.write(reply);
client.decrementOutstandingRequests();
if ((count % 1000) == 0) {
System.out.printIn(*'Server[" + self.getName() +
"J\tProcessed: " + count + " requests.");
}
if (Server.DEBUG) {
System.out.printIn("'Server[" + self.getName() +
"J\tProcessed: " + this);
}
} catch (10Exception e) { // Log failure, then
ignore it.
try {
client.socket.close();
} catch (10Exception ioe) {
}
System.out.printIn(*'Server[" + self.getName() +
"J\tException during processing." + e);
}
}
}

// ServerProducerConsumer/Workpile.java

/*

245

A Workpile is a container for a list of Requests and the
synchronization

variables that protect its internals. The synchronization and
management

of the list is EXTERNAL to the class because | want to illustrate
its

use in the producer/consumer code (and to make this program as
similar

as possible to the C version).

The Workpile is constructed on top of a List (see Extensions). It
could

equally well be implemented by subclassing Vector; unfortunately,
Vector

is HORRIBLY inefficient for lists.
*/

import java.io.*;
import Extensions.*;

public class Workpile {

List list = List.nil;

int length = 0O;

static int max = 10;

Mutex mutex = new Mutex();

ConditionVar producerCV
ConditionVar consumerCV

= new ConditionVar();
boolean stop = false;

new ConditionVar();

public Workpile(int 1) {

max = 1i;

}

public void add(Request request) {
list = list.cons(request);
length++;

}

public Request remove() {
Request request = (Request) list.first;

list = list.next;
length--;
return request;

}

public boolean empty() {
return length == 0;

}

public boolean full() {
return length == max;

}

}

Now alittle problem we've glossed over. Y ou may have noticed that our program has no way to
tell if it has sent out all the pending replies before the "End" request comes across. It is possible
that the client program takes care of this, though ours doesn't. Obvioudly, this must be doneto
have a properly running program. Lots of techniques are possible, none of which are uniquely
outstanding. We made a couple of minor additions to the server which allow it to keep track of the

246

number of outstanding requests per client. These are the methods
incrementOutstandingRequests(), decrementOutstandingRequests(), and
waitForOutstandingRequests(). When the client sends the "End" message, we will not
close the socket until the number of outstanding requests has dropped to zero.

Making a Native Call to pthread_setconcurrency()

Here we simply show the basic interface for making a native call to set the concurrency level to 10.
Code Example 17-4 uses the Solaris Ul threads function thr_setconcurrency(), which will
run on al post-Solaris 2.1 systems [pthread_setconcurrency() is part of UNIX98 and not
implemented until Solaris 7].

Example 17-4 Setting the Concurrency Level in Solaris (TimeDiskSetConc.java)

/* NativeThreads.c */

#include <thread.h>

#include <unistd.h>

#include <jni.h>

JNIEXPORT void JNICALL Java_Test NativeTSetconc(INIEnv *env, jclass

obj) {
thr_setconcurrency(10);
}

/* Test.java */

public class Test {
static native void NativeTSetconc();
static {System.loadLibrary(‘'NativeThreads");
public static void main(String argv[]) {

NativeTSetconc();

Actual Implementation of POSIX Synchronization

In Code Example 17-5 we have the actual implementations of explicit POSIX-style mutexes and
condition variables. Take note of how InterruptedException ishandled.

Example 17-5 Correct Implementation of Mutexes and Condition Variables

// Extensions/Mutex.java

/*

Pthreads style mutexes. Not recursive.
*/
package Extensions;

247

import java.io.™;

public class Mutex {
Thread owner = null;

public String toString() {
String name;

if (owner == null)
name = "null™;
else
name = owner.getName();

return <" + super.toString() + "owner:" + name +'">"";

// Note that if we are interrupted, we will simply resend that
// interrupt to ourselves AFTER we"ve locked the mutex. The
caller
// code will have to deal with the interrupt.
public synchronized void lock() {
boolean interrupted = false;

while (owner = null) {
try {
wait();
} catch (InterruptedException ie) {
interrupted = true;
}

}

owner = Thread.currentThread();
if (interrupted)
Thread.currentThread().interrupt(Q);
}

public synchronized void unlock() {
if (Jowner.equals(Thread.currentThread()))
throw new IllegalMonitorStateException(*'Not owner™);

owner = null;

notify();

// Extensions/ConditionVar.java

/*
A Pthreads style condition variable.

Note that if you use these, you must handle InterruptedException
carefully. condWait() will return as if from a spurious wakeup
if interrupted. If your code allows interrupts to be sent, you
MUST look at InterruptedException inside the while() loop:

while (Icondition) {
condwait(m);

248

if (Thread.interrupted()) {throw something/do something!}
}

*/
package Extensions;
import java.io.*;

public class ConditionvVar {
public void condWait(Mutex mutex) {
boolean interrupted = false;

while (true) {

try {
synchronized (this) {
mutex.unlock();
wait();
break;

}

} catch (InterruptedException ie) {
interrupted = true;

}

}

mutex. lock();

if (interrupted)
Thread.currentThread() - interrupt();
}

public void condWait(Mutex mutex, long timeout)
boolean interrupted = false;

while (true) {

try {
synchronized (this) {
mutex.unlock();
wait(timeout);
break;

} catch (InterruptedException ie) {
interrupted = true;
}

}
mutex. lock();
if (interrupted)
Thread.currentThread().interrupt();
}
public synchronized void condSignal() {

notify();
}

public synchronized void condBroadcast() {

notifyAll();
}

249

A Robust, Interruptible Server

Our next program (Code Example 17-6) is a variation of our old friend the producer/consumer
version of anetwork server. In this version of it, we show how we can use
InterruptedException to shut down the server on demand aswe did in our StopQueue
example. The main distinction between this program and StopQueue is that this version will not
only interrupt the threads waiting on sockets, but it will also handle any of the checked exceptions
no matter what the client code is doing.

Note that we do close the socket as soon as we get the InterruptedException becauseit may
not bein arecoverable state.

Example 17-6 A Robust Server

// Serverlinterruptible/Server.java

/*
A simple server program. It sets up a TCP port for the client
program to connect to. Then it accepts connections, spawning a
new producer thread for each. [Java has no "select()' function.]

It starts up nConsumers consumer threads to pull requests off the
list and process them, sending a reply string back to the client.

Any 10 failures are handled by printing out an error message,
closing

the socket in question, then ignoring it. Check out the location
of

the exception handlers and which methods throw exceptions. This is

carefully designed and *should* be fully robust.

This version is really just a producer/consumer program that
happens
to run across a socket.

Unlike the StopQueueSolution, which has the consumer threads exit
at

stop time (that was done for the illustration of synchronization),
this

program simply stops accepting new requests, closing the socket as
soon

as the final reply has been issued. The Client program is sent an
IlEndll

message then, and left to its own devices to deal with the fact
that the

socket has been closed.

This program uses InterruptedlOException, hence MUST be compiled
under

Java 2.
*/

import java.io.*;

import java.net.*;
import Extensions.™*;

250

public class Server {

ServerSocket serverSocket;

static int port = 6500;

static int delay = 10;
Request (ms)

static int spin = 10;

static boolean DEBUG = false;

static int nConsumers = 10;

static int MAX_LENGTH =
Workpile

static int MAX_ OPEN =
descriptors

static int outstandingClients

static Workpile workpile;

static Thread[] consumers;

static Thread[] producers;

static int nProducers=0;

static int stopperTimeout = 10;

static int killerTimeout

static boolean KILL = false;

static Thread acceptor;

accept()

public static void main(String[] args) {
new Server();

}
publ

Server server =

if (args.length > 0)
port =

if (args.length > 1)

delay = Integer.parselnt(args[1]);

if (args.length > 2)
spin =

if (args.length > 3)
nConsumers =

if (args.length > 4)
stopperTimeout =

if (args.length > 5)
killerTimeout =

if (System.getProperty("'DEBUG') != null)

DEBUG = true;

if (System.getProperty("KILL™) I!= null)

KILL = true;

System.out.printIn(*'Server(port

Integer.parselnt(args[0]);

Integer.parselnt(args[2]);

1000;

0;

//

//

//

//

//

//
/7/
//

//

Integer.parselnt(args[3]);

reading from port
Sleep time /
CPU-spin time (us)

Max length of

Max open File

active clients
10s
2min

Thread doing

Integer.parselnt(args[4]);

Integer.parselnt(args[5]);

+ port +

" delay: " +

delay + "ms spin: " + spin + "us nConsumers: " +

nConsumers +

stopperTimeout

+ stopperTimeout +

"s killerTimeout " + killerTimeout + 's)'");

server.runServer();

ic void runServer()
Socket socket;

{ // Executes in main thread

251

it (KILL)
new Thread(new Killer(120)).start(Q);

acceptor = Thread.currentThread();
consumers new Thread[nConsumers];
producers new Thread[MAX OPEN];
workpile = new Workpile(MAX_LENGTH);

for (int i = 0; i < nConsumers; i++) {
consumers[i] = new Thread(new Consumer(workpile));
L

consumers[i].start();
}
for (int 1 = 0; 1 < 3; i++) { // Main start/stop loop
try {
serverSocket = new ServerSocket(port);
System.out._printIn(""\n ");

System.out.printIn(*'Server now listening on port " +
port);

nProducers = 0;
new Thread(new Stopper(workpile,
stopperTimeout)).start();
for (int j = 0; true; j++) { // New client
loop
try {
socket = serverSocket.accept();
Client client = new Client(socket);

synchronized (this) {
waitlfTooManyClients();
¥

Thread t = new Thread(new Producer(this,
client));
t.start();
producers[j] = t;
nProducers = j + 1;
System.out.printIn("'Server[" + t.getName() +
"J\tStarted new client: " + client);
} catch (SocketException ie) {
synchronized (workpile) {
System.out._printIn(*'Acceptor " + ie);
Thread.interrupted(); //SocketException
does NOT clear flag!
if (workpile.stop)
break; // stop better be true!
System.out.printIn(*Impossible bug! Stop
must be true.™);
System.exit(-1);

3} // End of new
client loop

serverSocket.close();

waitForOutstandingClients();

System.out.printIn(*'Server shutdown complete.");

InterruptibleThread.sleep(2000); // "Feels" better
to delay here.

252

workpile.stop=false;

} catch (10Exception e) { // Log failure, then die.
System.out.printIn(Exiting on " + e);
System.exit(-1);

}
} // End of start/stop
loop

System.out.printIn("Exiting normally."™);

System.exit(-1);
}
public Server() {
}

public synchronized void incrementOutstandingClients() {
outstandingClients++;
}

public synchronized void decrementOutstandingClients() {
outstandingClients--;

if ((outstandingClients == 0) |] (outstandingClients ==
MAX_OPEN-1))

notifyAll(); // In case someday there®s
more than 1.

}

public synchronized void waitForOutstandingClients() {
boolean interrupted = false;

while (outstandingClients = 0) {

try {
wait();

} catch (InterruptedException e) {
interrupted = true;

}

}

if (interrupted)
Thread.currentThread().interrupt(Q);
}

public void waitlfTooManyClients() { // NOT synchronized!
boolean interrupted = false;

while (outstandingClients == MAX_OPEN) {

try {
wait();

} catch (InterruptedException e) {
interrupted = true;

}

}

if (interrupted)
Thread.currentThread().interrupt(Q);

// Serverlinterruptible/Client. java

253

import java.io.™;
import java.net.*;

public class Client {

public int outstandingRequests = 0;
public Socket socket;
public InputStream 1is;
public OutputStream os;
public int delay = 10;
public int count = O;
public static int total = 0;
public int MessagelLength = 70;
public String toString() {
return "<Client: " + count +'">";
}

public Client(Socket s) throws I0Exception {

try {

} catch (10Exception ie) {

socket = s;
is = socket.getlnputStream();
0s = socket.getOutputStream();
synchronized (getClass()) {
total++;
count = total;

}

illustration/debugging

}

public Request read() throws InterruptedlOException,

System.out.printIn(ie + " in new Client()");

throw ie;

byte[] b = new byte[MessagelLength];

try {

characters "

} catch (10Exception ie) {

int n = is.read(b);
if (n = Messagelength)

// Included for

I0Exception

throw new I0Exception(this + " read too few

+ n);
incrementOutstandingRequests();
return new Request(this, b);

illustration/debugging

}

// NMethods something like these might be useful...

System.out._printIn(ie + " in client.read()");

throw ie;

// Included for

public synchronized void incrementOutstandingRequests() {
outstandingRequests++;

}

public synchronized void decrementOutstandingRequests() {
outstandingRequests--;
if (outstandingRequests == 0)

254

notifyAll(); // In case someday there"s
more than 1.

}

public synchronized void waitForOutstandingRequests() {
boolean interrupted=false;

while (outstandingRequests != 0) {
try {
wait(Q);
} catch (InterruptedException e) {
interrupted = true;
}

}

if (interrupted)
Thread.currentThread().interrupt(Q);

// Serverlinterruptible/Consumer. java

import java.io.™;
import Extensions.*;

public class Consumer implements Runnable {
Workpile workpile;

public Consumer(Workpile w) {
workpile = w;
}

public void run() {
Request request;

String selfName = Thread.currentThread() .getName();

while (true) {
try {
synchronized (workpile) {
while (workpile.empty()) {
workpile.wait();
¥

request = workpile_.remove();
workpile_notifyAll();
}

request.process();
} catch (InterruptedException ie) { // Never called.

System.out.printIn(ie + " in consumer.run() " +
selfName);

}
}

255

// Serverlinterruptible/Producer.java

import java.io.™;
import Extensions.™;

public class Producer implements Runnable {

public Workpile workpile;

public Client client;

public Server server;

public static String END = "End";

public final int MessagelLength = 70;

public byte[] END_BYTES = new byte[MessagelLength];

public Producer(Server s, Client c) {

server = s;

workpile = server.workpile;

client = c;

END.getBytes(0, MessagelLength-1, END_BYTES, 0);
}

public void run() {
String selfName = Thread.currentThread() .getName();

server.incrementOutstandingClients();
for (int i = 0; true; i++) {
try {
Request request = client.read();
if (request.string.startsWith("End™)) {
client.decrementOutstandingRequests();
client.waitForOutstandingRequests();

// Send "End" right back to client. We"re done!

client.os.write(END_BYTES);

client.socket.close();

System.out.printIn("'Server[" + selfName +
"J\tCompleted processing.");

break;

}

synchronized (workpile) {
while (workpile.full() && !workpile.stop) {
workpile.wait();
}

workpile.add(request);

workpile_notifyAll();

if (workpile.stop)
break;

} catch (InterruptedException e) {
System.out.println(e + ' in producer.run() for " +

client);
synchronized (workpile) {if (workpile.stop) break;}
System.out.printIn(*'Impossible bug. Stop must be
true!™);
} catch (InterruptedlOException e) {
System.out.println(e + ' in producer.run() for " +
client);

synchronized (workpile) {

256

if (workpile.stop)
break;

}

System.out.printIn(*"Impossible bug. Stop must be
true!™);

} catch (10Exception e) { // Log failure,

then ignore it.

System.out._println(e + "in producer.run().");

break;

}

client.waitForOutstandingRequests();

try {
client.os.write(END_BYTES);

client.socket.close();
} catch (10Exception ioe) {

}

server .decrementOutstandingClients();

System.out.printIn("'Server[" + selfName +
"] exiting from producer.run().");

InterruptibleThread.exit();

// Serverlinterruptible/Request. java
import java.io.*;

import java.net.*;

import Extensions.™;

public class Request {

Client client;

byte[] bytes;

Thread self;

String string = """';

int count;

static final int MessagelLength = 70;
static int total = 0O;

public String toString() {
int 1 = string.index0Of(0); // Find end-of-string.

if (i <1)
=1

return "<Request: " + client + " " + self.getName() +
""" + string.substring(0, i) + "">";

}

public Request(Client s, byte[] b) {
client = s;
bytes =
self

b;
= Thread.currentThread();
string =

new String(b, 0);

257

synchronized (this.getClass()) {
count = ++total;
}

if (Server.DEBUG) {
System.out.printIn("'Server[" + self.getName() +
"IN\tCreated: " + this);
}

if (((count % 1000) == 0) && Server.DEBUG) {
System.out.printIn("'Server[" + self.getName() +
"IN\tCreated: " + count + " requests.");

}

public void process() {
Thread self = Thread.currentThread();

try {

byte reply[] = new byte[MessagelLength];

String s = new String(bytes, 0);

s = "[Server " + self.getName() + "] Reply: "™ + count + "
to: " + s;

s.getBytes(0, MessagelLength-1, reply, 0);

InterruptibleThread.sleep(Server.delay);

client.os.write(reply);

client.decrementOutstandingRequests();

if ((count % 1000) == 0) {
System.out.printIn("'Server[" + self.getName() +
"J\tProcessed: " + count + " requests.");

}

if (Server.DEBUG) {

System.out.printIn(*'Server[" + self.getName() +
"J\tProcessed: " + this);

} catch (InterruptedlOException e) { // Log failure,
then ignore it.
System.out.printIn(e + " in request.process().");
} catch (10Exception e) { // Log failure, then
ignore it.
// A consumer *may* still be working on requests for a
client that
// has been closed! (Shouldn®t happen.)
System.out.printIn(e + " in request.process().");

// Serverlinterruptible/Stopper.java

import java.io.™;
import Extensions.™;

public class Stopper implements Runnable {

Workpile workpile;
int delay;

258

public Stopper(Workpile w, int d) {
workpile = w;
delay = d;

}

public void run() {
InterruptibleThread.sleep(delay*1000);
System.out.printIn(*'Stopping...");

synchronized (workpile) {
workpile.stop = true;
workpile_notifyAll();

}
// for (int i=0; i1 < Server.nConsumers; i++)
// Server.consumers[i].interrupt();

for (int i = 0; 1 < Server.nProducers; i++)
Server .producers[i].interrupt();

Server .acceptor.interrupt();

// Serverlinterruptible/Workpile.java

/*

A Workpile is a container for a list of Requests and the
synchronization

variables that protect its internals. The synchronization and
management

of the list is EXTERNAL to the class because | want to illustrate
its

use iIn the producer/consumer code (and to make this program as
similar

as possible to the C version).

The Workpile is constructed on top of a List (see Extensions). It
could

equally well be implemented by subclassing Vector; unfortunately
Vector

is HORRIBLY inefficient for lists.
*/

import java.io.™;
import Extensions.*;

public class Workpile {

List list = List.nil;
int length = 0;
static int max = 10;
boolean stop = false;

public Workpile(int i) {
max = 1i;
}

259

public void add(Request request) {
list = list.cons(request);
length++;

}

public Request remove() {
Request request = (Request) list_first;

list = list.next;
length--;
return request;

}

public boolean empty() {
return length == 0;

}

public boolean full() {
return length == max;

}

Disk Performance with Java

Our final program (Code Example 17-7) isasimple test of disk performance with multiple threads.
Because disk controllers can overlap incoming requests from the CPU, having lots of outstanding
requests is a good thing and yields a performance improvement upward of twofold. This program
demonstrates that fact and the value of making native call to thr_setconcurrency() on
Solaris platforms. A nearly identical programin C yields slightly (about 25%) better results due to
the expense of Java making callsinto the native read () system call.

Example 17-7 Measuring Disk Access Throughput

// TimeDisk/Test.java

/*
This program runs a set of read() calls against one large file.
It runs with one or more threads so you can see the performance
effect of MT. Each read() gets one byte from a random location.
You can run it for a number of iterations and get mean and SD.

Make sure that there are links in /tmp pointing to wherever you
can find room.

I rwxrwxrwx 1 bil other ... time diskO.tmp ->
/disk2/6/temp_disk_ test
In -s /disk2/6/temp_disk_test /tmp/time_diskO.tmp

The file must be much larger than physical memory. 10x would be
great,

but 2x will do. Expect "performance™ to improve as the mbufs get

loaded. For a file 2x Physical, initial 100/s will improve to
200/s

(as 50% of the file will become cached). To populate the cache,
you

can run this program for awhile.

260

runtime = (Physical Memory / PAGE_SIZE) / READS PER_SECOND
eg:
160seconds = (128MB / (8KB/PAGE)) / 100

NB: This only runs under Java 2.
CF: Same program in C: time_disk.c
*/
import java.io.™;
import java.util.*;
import Extensions.*;

public class Test implements Runnable {

static int MAX_FILE_SIZE = 1024*1024*1024;

static int PAGE_SIZE = 8192;

static int MAX_PAGES = (MAX_FILE_SIZE/PAGE_SIZE);
static int MAX_THREADS = 512;

static int MAX_DENSITY = 100;

static int MAX_ READS;

static int[] hits = new Int[MAX_ PAGES];
static int[] density = new Int[MAX_DENSITY];
static String path="/tmp/time_diskO.tmp";

static int spinTime = 0, runtime = 10, nThreads = 1;
static int iterations = 1;

static boolean setConcurrency = false;

static int[] nProcessed;

static boolean DEBUG = false;
static Thread[] threads;
static boolean stop = false;

static native void pthread_setconcurrency(int i);
static {System.loadLibrary(*'PThreadslinterface');}
// System.out.printin(Loaded");}

Random ran;
int me;

public void run() {

int err;

long length;

byte[] b = new byte[2];
RandomAccessFile fd = null;

long fileOffset;

Thread self = Thread.currentThread();
try {

fd = new RandomAccessFile(path, "r');
length = fd.lengthQ);

for (int i = 0; 1 < MAX_READS; i++) {
if (stop)
break;

fileOffset = Math.abs((ran.nextint() * PAGE_SIZE) %
length);

hits[(int) fileOffset / PAGE_SIZE]++;

//if (DEBUG)

261

// System.out.printIn(t + " reading at " +
fileOffset);

fd.seek(FileOffset);
err = fd.read(b, 0, 1);
if (err == -1) {
throw new I10Exception();
}

InterruptibleThread.spin(spinTime * 1000);
nProcessed[me]++;

// 1t°s interesting to see the results of yield()

here
// when using > 1 GREEN THREADS. (The results are
what
// you expect -- same performance only spread to all
// threads.) You would never include this in a "real”
// program.
// Thread.yield();
}
// 1T one thread completes MAX_READS, all quit.
// This is probably because you"re using GREEN THREADS.
stop = true;
} catch (10Exception e) {
System.out.printIn(*lIs " + path + ' correct? \n" +e);
System.exit(-1);
}
}
public static void main(String argv[]) throws Exception {
int totalProcessed;

double[] rates = new double[MAX_ THREADS];
double S = 0.0, mean, rate sum = 0.0, realtime;
Thread t;

if (argv.length > 0)
nThreads = Integer.parselnt(argv[0]);

if (argv.length > 1)
spinTime = Integer.parselnt(argv[l]);

if (argv.length > 2)
runtime = Integer.parselnt(argv[2]);

if (argv.length > 3)
iterations = Integer.parselnt(argv[3]):

if (argv.length > 4)
setConcurrency = (Integer.parselnt(argv[4]) == 1);

if (System.getProperty("'DEBUG') != null) DEBUG = true;
System.out.printIn(*"Test(nThreads: " + nThreads +
" spinTime: " + spinTime + "ms runtime: " + runtime +
s iterations " + iterations + " setConcurrency: " +
setConcurrency + ")'™);

if (spinTime > 0)

262

InterruptibleThread.calibrateSpin();

MAX_READS = 200*runtime; // About 2x fastest current

nProcessed = new int[nThreads];

threads = new Thread[nThreads];

if (setConcurrency)
pthread_setconcurrency(nThreads + 1);

for (int j = 0; jJ < iterations; j++) {

for (int i = 0; 1 < MAX _PAGES; i++)
hits[i] =

for (int 1 = 0; 1 < MAX_DENSITY; i++)
density[i1]=0;

for (int i = 0;1 < nThreads; i++)
nProcessed[1]=0;

totalProcessed = 0;

new Date().getTime();

long start

for (int i = 0; 1 < nThreads; i++) {
Random ran = new Random(start + i);
t = new Thread(new Test(i, ran));
t.start();
threads[i] = t;

}

start = new Date().getTime();
InterruptibleThread.sleep(runtime*1000);
stop = true;

for (int i =
threads[i
}

long end = new Date().getTime();
realtime = (end - start) / 1000.0;

< nThreads; i++) {

0; i
1-§oinQ;

for (int i = 0; 1 < nThreads; i++) {
ifT (DEBUG) {
System.out._printIn(*"Thread "™ + i +
" processed \t" + nProcessed[i]);

}

totalProcessed +=nProcessed[i];

for (int i = 0; 1 < MAX _PAGES; i++) {
it (hits[i] < MAX_DENSITY)
density[hits[i]]++;
else {
it (DEBUG) {

System.out.printIn("'Page "™ + i + " got "

hits[i] + ' hits!™);

263

if (DEBUG) {
System.out.printIn(''nHits \t nPages");
for (int i = 0; 1 < MAX_DENSITY; i++) {
it (density[i] > 0)
System.out.printIn(i + "\t " + density[i]);

}

if (iterations == 1) {
System.out.printIn("'Processed + totalProcessed +
" in " + realtime + "s. Rate\t" +
(totalProcessed/realtime) + "/s.™);

}

rates[j] = totalProcessed / realtime;
rate_sum += totalProcessed / realtime;

stop = false;

}

if (iterations > 1) {
mean = rate_sum / iterations;

for (int i = 0; 1 < iterations; i++)
S += (mean - rates[i]) * (mean - rates[i]);

S = Math.sqrt(S / (iterations - 1));

System.out._printIn(‘'Mean rate: + mean +
""/sec, Standard Deviation: " + S);
}
System.exit(0);
}
public Test(int i, Random r) {
ran = r;
me = i;
}
}
/* TimeDisk/PThreadsinterface.c */

#include <thread.h>
#include <unistd.h>
#include <jni_h>

JNIEXPORT void JNICALL
Java_Test pthread_1setconcurrency(JNIEnv *env, jclass obj, jint i)

thr_setconcurrency(i);

}

/* TimeDisk/compile.csh */
This is a Java2 only-program (for native threads and

InterruptedlOException).
setenv JAVAHOME /disk2/6/Java/jdkl.2/jdkl.2betad

264

setenv JH INC3 ${JAVAHOME}/include
setenv JH INC2 ${JAVAHOME}/include/solaris
setenv CLASSPATH .:/export/home/bil/programs/Java/Extensions/classes

Java"s going to get the interface code from .
setenv LD _LIBRARY_PATH ${LD_LIBRARY_PATH}:.

Tell Java to use native threads.
setenv THREADS FLAG native

${IJAVAHOME}/bin/javac *.java
${JAVAHOME}/bin/javah -stubs Test
${IAVAHOME}/bin/javah -jni Test

cc -G -1${IH_INC3} -1${JH_INC2} PThreadslnterface.c -Ithread \
-0 libPThreadslInterface.so

Other Programs on the Web

There are asmall series of other programs on the Web page that may be of some interest. Each of
them has points of interest, but none of them is sufficiently interesting for us to print in its entirety.
Y ou may well find the programs helpful in clarifying details about how to write code for specific
situations and for how to use the APIs. Several are variations of the programs in previous chapters,
and several are simple test programs which illustrate how some of the fancier extension functions
work, such as FIFO mutexes, recursive mutexes, mutexes with timeouts.

Summary

Several Java programs were shown, each with a certain point to elucidate. As with all the example
programs, trandation to POSIX or Win32 is (supposed to be) straightforward and is | eft as an
exercise for the reader.

265

Appendix A. Internet

Threads Newsgroup
Code Examples
Vendor's Threads Pages
Threads Research
Freeware Tools

Other Pointers

The Authors on the Net

Threads Newsgroup

For discussion, questions and answers, and just general debate about threading issues, thereisa
newsgroup on the Internet (started by Bil). The issues discussed are not confined to any one
vendor, implementation, standard, or specification.

comp.programming.threads

There are two FAQs for the newsgroup, the first high-level and general (maintained by Brian), the
other very low-level and specific (maintained by Bil):

http://www.serpentine.com/~bos/threads-fag

http://www.LambdaCS.com

Code Examples
All the code examples in this book (and direct counterpartsin PThreads) are available via the Web:

http://www.LambdaCS.com

Vendor's Threads Pages

The SunSoft Web page (designed by Marianne, maintained by Dan) includes an FAQ on Ul
threads, performance data, case studies, and demonstration programs. It also has alot of pointers
to other pagesonit.

http://www.sun.com/software/Products/Devel oper-products/threads/

The IBM threads page includes a short exposition on POSIX threads programming and IBM's
implementation:

http://devel oper.austin.ibm.com/sdp/library/ref/about4.1/df 4threa.html

http://www.rs6000.ibm.com/doc link/en US/a doc lib/aixprggd/genprogc/thread quick ref.htm

266

http://www.serpentine.com/%7Ebos/threads-faq
http://www.lambdacs.com/
http://www.lambdacs.com/
http://www.sun.com/software/products/developer-products/threads/
http://developer.austin.ibm.com/sdp/library/ref/about4.1/df4threa.html
http://www.rs6000.ibm.com/doc_link/en_us/a_doc_lib/aixprggd/genprogc/thread_quick_ref.htm

DEC's documentation pages include a " Guide to DECthreads":

http://www.unix.digital.com/fags/publications/base doc/DOCUMENTATION/HTML/AA-
Q2DPC-TKT1 html/threads title.html

Or, for something (unfortunately, only slightly) more "wieldy":

http://www.unix.digital .com/fags/publications/base doc/DOCUMENTATION/HTML/BOOKSH
ELF.HTM

Threads Research

There isabibliography of several hundred papers related to threading (created and maintained by
Torsten). The papers are largely theoretical, exploring the outer limits of threading and
concurrency:

http://liinwww.ira.uka.de/bibliography/Os/threads.html

A good number of people are doing research and development on all sorts of threads-related issues.
Here are afew of the major ones.

Doug Lea (the famous author previously mentioned) has written some on-line stuff on Java
Threads and has the code for his book there also.

http://gee.cs.oswego.edu/dl

Douglas Schmidt wrote an extensive package to facilitate threading and interprocess
communication called "The Adaptive Communication Environment (ACE)."

http://www.cs.wustl.edu/~schmidt/A CE.html

Freeware Tools

Two useful tools are available as unsupported from Sun. TNFview (by Bonnie's group) allows you
to look at the exact timing of different eventsin a program. Proctool (Morgan's brainchild) gives
you aview of the high-level operations of processes and LWPs on Solaris.

http://soldc.sun.com/devel oper/support/driver (TNFView)

http://www.sunfreeware.com (Pr octool)

Other Pointers
Y ou can see the "Single UNIX® Specification” at

http://www.rdg.opengroup.org/unix/online.html

267

http://www.unix.digital.com/faqs/publications/base_doc/documentation/html/
http://www.unix.digital.com/faqs/publications/base_doc/documentation/html/
http://www.unix.digital.com/faqs/publications/base_doc/documentation/html/BOOKSHELF.HTM
http://www.unix.digital.com/faqs/publications/base_doc/documentation/html/BOOKSHELF.HTM
http://liinwww.ira.uka.de/bibliography/os/threads.html
http://gee.cs.oswego.edu/dl
http://www.cs.wustl.edu/%7Eschmidt/ace.html
http://soldc.sun.com/developer/support/driver
http://www.sunfreeware.com/
http://www.rdg.opengroup.org/unix/online.html

To see dl the details on performance measurements, the SPEC homepage is

http://www.specbench.org

For about $140 you can get the actual POSIX threads spec (IEEE 1003.1) from IEEE. It isa
specification, more intended for implementers than programmers, so it is very likely not what you
want. But, if you do:

http://www.ieee.org

customer.service@ieee.org

The Authors on the Net

If you would like to contact the authors directly, you can send mail to Daniel.Berg@sun.com and
Bil@LambdaCS.COM. We would like to hear from you about what you liked or disliked about
the book, and what we may be able to improve.

Danidl recently left Cyrus Inc. and has returned to Sun as worldwide director of Advanced Internet
Consulting Practice.

Bil left Sun and is currently running his own company, Lambda Computer Science, teaching, and
consulting on multithreaded programming.

268

http://www.specbench.org/
http://www.ieee.org/
mailto:customer.service@ieee.org
mailto:Daniel.Berg@sun.com
mailto:Bil@LambdaCS.COM

Appendix B. Books

e Threads Books
e Related Books

Threads Books

The following are the other books in publication to date. Some of the examples, explanations,
figures, etc., in them will be better than those in this text. Some of them will simply explain things
better for you. We have read each of them carefully and have our own preferences. All of them are
sufficient for their purposes.

Java Threads

Doug Lea, Concurrent Programming in Java. Reading, MA: Addison-Wesley, 1997 (240 pages,
source on the Web). Describes how to write multithreaded programs in Java, using design patterns.
WEell written from a computer science point of view, although perhaps overwhelming for the
hacker-oriented. Familiarity with design patternsis a necessity.

Scott Oaks and Henry Wong, Java Threads. Sebastopol, CA: O'Reilly, 1997 (252 pages, source on
the Web). Describes how to write multithreaded programsin Javain a more conventional,
programmer-oriented style. Explanations are clear, though often simplistic. The programs
illustrate the points well, yet tend to gloss over problem areas in Java.

Stephen J. Hartley, Concurrent Programming—The Java Programming Language. Oxford
University Press, 1998 (250 pages, source on the Web). Describes how to write multithreaded
programs in Javain a more conventional, programmer-oriented style. Somewhat simplistic,
intended as an undergraduate text.

POSIX Threads

Steve Kleiman, Devang Shah, and Bart Smaalders, Programming with Threads. Upper Saddle
River, NJ: SunSoft Press, Feb. 1996 (534 pages, source on the Web). Covers POSIX threads,
concentrating on the Solarisimplementation. It has a small but adequate introduction, then
concentrates on more advanced programming issues. The examples are good because they are
realistic and show you what to expect. They are bad because they are very realistic and obscure
the main pointsin the text.

Len Dorfman and Marc J. Neuberger, Effective Multithreading with OS2. New Y ork: McGraw-
Hill, Nov. 1995 (280 pages, source on diskette). Gives abrief introduction, then focuses the rest of
the discussion on the API and examples. It covers the OS/2 API.

Charles J. Northrup, Programming with UNIX Threads. New Y ork: Wiley, Mar. 1996 (400 pages,
source via FTP). Covers the Ul threads library, focusing on the UNIXware implementation. The
presentation is oriented around the API and contains numerous examples.

Thuan Q. Pham and Pankg K. Garg, Multithreaded Programming with Windows NT. Upper
Saddle River, NJ: Prentice Hall, Jan. 1996 (220 pages, source on diskette). Focusing on the NT
library, this book gives some comparison with other libraries. While it describes concepts and
designs well, it lacks many of the practical details and glosses over problems.

269

Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell, Pthreads Programming. Sebastopol,
CA: O'Reilly, Nov. 1996 (268 pages, source via FTP). Concentrates on the Digital implementation
of POSIX. It gives agood explanation of the concepts but is alittle too condensed to do them
justice. Includes a mgjor section comparing the final standard to draft 4, DCE.

Scott J. Norton and Mark D. Dipasquale, ThreadTime. Upper Saddle River, NJ: HP Professional
Books, Dec. 1996 (530 pages, source on diskette). Describes POSIX threads with concentration on
the HP-UX implementation. Includes an excellent introduction, computer science descriptions,
and standards discussion.

Dave Butenhof, Programming with POS X Threads. Reading, MA: Addison-Wesley, May 1997
(380 pages, source on the Web). Concentrates more on architecture than any specific
implementation of POSIX threads. A lucid exposition of concepts and discussion of standards
from one of the guys on the committee. Japanese trandation available.

Bil Lewis and Daniel J. Berg, Threads Primer. Upper Saddle River, NJ: SunSoft Press, Oct. 1995
(320 pages, source on the Web). Thisisthefirst edition of the primer, which covers Ul threads. It
lacks the depth of many of the other books but gives a more extensive explanation of the
fundamental s. Japanese trandation available.

Bil Lewis and Daniel J. Berg, Multithreaded Programming with PThreads. Upper Saddle River,
NJ: SunSoft Press, 1998 (380 pages, source on the Web). This is the second edition of the primer,
which covers POSIX threads. It has much more depth than the Primer and also gives more
extensive explanation of the fundamentals. Multithreaded Programming with PThreadsis very
similar to Multithreaded Programming with Java Technology, and the programming examples are
directly comparable. Japanese translation available.

Win32 Threads

Jim Beveridge and Robert Wiener, Multithreading Applicationsin Win32. Reading, MA:
Addison-Wedley, Jan. 1997 (368 pages, source on diskette). Describes Win32 threads (NT and
Win95). Includes some comparison to POSIX. Excellent discussion of the practical aspects of
programming Win32. Many insightful comments on both the good parts and the more problematic
parts.

Shashi Prasad, Multithreading Programming Techniques. New Y ork: McGraw-Hill, Jan. 1997
(410 pages, source on diskette and the Web). Describes and contrasts the multithreading libraries
of POSIX, Ul, Mach, Win32, and OS/2. Each library has its own chapters and its own code
examples. This means that the introduction and presentation of conceptsis lighter, but the
examples are ported across the various platforms, making this a good reference for porting.

Related Books

Jeffrey Richter, Advanced Windows NT: The Developer's Guide to the Win32 Application
Programming Interface. Redmond, WA: Microsoft Press, 1994. This book contains about 200
pages that cover the NT threads API and its use. It covers the API well, contains a good amount of
code, but has very little on the concepts.

Raobert A. lannucci, Editor, Multithreaded Computer Architecture: A Summary of the Sate of the
Art. New Y ork: Kluwer Academic Publishers, 1994. This book is a collection of papers dealing
with hardware design considerations for building specialized machines that can support
multithreaded programs.

270

Derrel R. Blain, Kurt R. Delimon, and Jeff English, Real-World Programming for OS2 2.1.
Upper Saddle River, NJ: Sams Publishing/Prentice Hall PTR, 1993. This book contains about 50
pages that cover the OS/2 threads API and its use. It covers the API well, contains one nice
example, but is very short.

Solaris Multithreaded Programming Guide. Upper Saddle River, NJ: SunSoft Press, 1995. Thisis
the documentation that comes with Solaris 2.4 and contains the Ul API. It is also available as part
of the Solaris AnswerBook® and on the Web (see Vendor's Threads Pages).

John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative Approach, 2nd
ed. San Francisco: Morgan Kaufmann, Inc., 1996 (800 pages). Thisis the definitive text on
computer design—CPU, memory system, and multiprocessors. Not about threads per se, but
everything underneath. Superb research and exposition!

Daniel E. Lenoski and Wolf-Dietrich Weber, Scalable Shared-Memory Multiprocessing. San
Francisco: Morgan Kaufmann, 1995 (340 pages). This takes up in great detail what Hennessy and
Patterson describe in mere passing detail. It describes the state of SMP research asit led to the
Stanford DASH machine, and now the SGI Origin series and HAL Mercury. Superb research and
exposition!

Jerry R. Jackson and Alan L. McClellan, Java by Example. Upper Saddle River, NJ: SunSoft Press,

1997. Thisisanice introduction to Java and contains one particular example using threads that we
use as the basis for one of our programs (Memory).

271

Appendix C. Timings

Timings

Timings

The choice of which synchronization variable to use depends partially on its execution speed. This
is particularly applicable when choosing between using a mutex lock and a readers/writer lock.
The design of programs calling Java functions in tight loops will aso depend upon these numbers
for optimizations. For the most part, however, al of these times are short enough that they may be
ignored.

Because of the dependence of these tests upon several unusual instructions (Idstub and stbhar
on SPARC), machines with different cache or bus designs will exhibit nonuniform scaling
(meaning that a context switch may be twice as fast on a 20-MHz processor asit ison a10-MHz
processor, but locking a mutex might take the same amount of time). Different releases of Java
may also exhibit different timings.

Execution times on other platforms may also differ significantly, but probably in roughly the same
ratios (e.g., creating athread will be a couple of orders of magnitude faster than creating a
process). The one obvious exception to thisis the semaphore, which should be ailmost as fast as
mutexes on machines with the more complex atomic instructions.

The major conclusions you should draw from these numbers are:

Synchronized sections are faster than RWIlocks.

Testing for interruption is moderately fast. Disabling it is slower.
Processes are more expensive than threads.

TSD isslower than just using instance variables ("fake" TSD).

The programs we ran to get the numbers shown in Table C-1 are available on the Web.

Thetestsin C are in the PThreads directory, and thosein Java are al in the TimeTests directory.
The Javatests are run by calling

%java Test.

Mutex Lock/Unlock

Acquire, then release, a POSIX mutex (JavaMutex) with no contention.

Table C-1. Timings of Various Thread-Related Functions on POSIX and Java (us)

Function PThreads Java 1.1.5 Java 2
Mutex lock/unlock 1.8 30 30
Explicit synchronized 10 3
Implicit synchronized 13 4
\Readers/writer lock/unlock | 4.5 | 70 80
Semaphore post/wait 4.3 40 20
object.notify() n/a 3 3

272

|CV.condSignal() 0.2 | 30 .30

Context switch (unbound threads) 89 430 80
Context switch (bound threads) 42 n/a n/a
Context switch (processes) 54 n/a n/a
Cancellation disable/enable 0.6 50 50
\Test for deferred cancellation | 0.25 | 7 \ 0.2
\Createan unbound thread | 330 | 1500 \ 1500
Create a bound thread 720 n/a n/a
Create a process 45,000 n/a n/a
Reference a global variable 0.02 0.2 0.08
\Reference thread-specific data | 0.59 | n/a \ 65
\Reference "fake" TSD | n/a | 7 \ 3

Explicit Synchronized

Acquire, then release, a synchronized section with no contention with the object mentioned
explicitly: synchronized(object){}.

Implicit Synchronized

Call an empty synchronized method with no contention.
Readers/Writer Lock/Unlock

Acquire, then release, areaders/writer lock as awriter with no contention.
Semaphore Post/Wait

Increment an unnamed semaphore, then decrement it. (On machines with LoadLocked
instructions, in POSIX this operation should take about the same time as a simple mutex
lock/unlock.)

notify()

Cdl notify() onan object that has no waiters.
condSignal()

Cadll condSignal () on acondition variable that has no waiters.
Local Context Switch (unbound)

Cdll sched_yield() from each of two unbound threads. (This number is much higher than
expected, much slower than seen on an SS10.)

Cdl Thread.yield().

Local Context Switch (bound)

273

Call sched_yield() from each of two bound threads.
Process Context Switch

Call sched_yield() from each of two processes.
Cancellation Disable/Enable

Call pthread_setcancelstate(DISABLE) then ENABLE.
Cdl InterruptibleThread.disable(), then Inter-ruptibleThread.enable().
Test for Deferred Cancellation

Call pthread_testcancel ().

Cadll Thread. interrupted().

Reference a Global Variable

Load asingle word into aregister.

Reference Thread-Specific Data

Cdl pthread_getspecific().

Call (Integer) tsd.get().

Reference "Fake" Thread-Specific Data

Call (TSDThread) Thread.currentThread().j.

274

Appendix D. APIs

Function Descriptions

The Classjavalang.Thread

The Interface javalang.Runnable

The Class javalang.Object

The Class javalang.Threadl ocal

The Class javalang. ThreadGroup

Helper Classes from Our Extensions Library
The Class Extensions.InterruptibleThread
The Class Extensions.Semaphore

The Class Extensions.Mutex

The Class Extensions.ConditionV ar

The Class Extensions.RWLock

The Class Extensions.Barrier

The Class Extensions.SingleBarrier

This appendix contains a very brief description of the Java threads API.

Function Descriptions

In the sample entry below, the method name comes first. Next are the method and argument list
(sometimes there'll be two methods shown, should they be very closely related). A short paragraph
describing the basic operation follows (it may well leave out some details). Next comes a
reference to the most applicable portion of the text. Finally, any comments that seem appropriate
are given.

start
public void start()
throws IllegalThreadStateException

Cdlling the start() method on aninstance of Thread will cause the appropriate run() method
to execute in anew thread.

Reference: (Chapter 4.

The Class java.lang.Thread

The class Thread defines thread objects. When the start () method is called, an actua running
thread is created which the Thread object can contral. It isimportant to distinguish between the
object (which isjust memory and a set of methods) and the running thread (which executes code).
All static thread methods apply to the current thread.

Thread
public Thread()
public Thread(String name)
public Thread(Runnable runObj)
public Thread(Runnable runObj, String name)

275

throws SecurityException,
I11legalThreadStateException

These create a new thread object.

References: \Chapters 4 and 10.

MIN_PRIORITY MAX_PRIORITY NORM_PRIORITY
public final static int MIN_PRIORITY 1;
public final static int MAX PRIORITY 10;
public final static int NORM_PRIORITY = 5;

These are the minimum, maximum, and default priorities for normal threads.

Reference: Chapter 5.
Comment: You will probably never use these functions.
start

public void start()
throws IllegalThreadStateException

Cdlling the start() method on an instance of Thread will cause the appropriate run() method
to execute in anew thread.

Reference: Chapter 4.

run
public void run()

Thisisthe method you define that actually executes the code you want. The base method simply
looks to seeif thereisaRunnable and calsits run() method.

Reference: (Chapter 4.

currentThread
public static Thread currentThread()

This method returns the current thread object.

\Reference: \Chagter 4.

join
public final void join(Q)
public final void join(long milliseconds)
public final void join(long milliseconds, long nanosec)
throws InterruptedException

Thiswaits for the thread to exit.

Reference: Chapter 4.
Comment: Rarely used.
stop

public final stop()

276

public final stop(Throwable t)

Thiskills the thread asynchronously.

\Reference: |Chagter 4.
\Comment: |It is deprecated in Java 2. Don't use it.
sleep

public static void sleep(long milliseconds)
public static void sleep(long milliseconds, long nanosec)
throws InterruptedException

This causes the current thread to go to sleep for the specified time. The precision of the wakeup is
OS dependent. A typical minimum resolution is 10 ms. (Solaris defaultsto 10 ms; root can set it to
1 ms. On Digital UNIX it's a mibisecond, 1/1024 second, 0.9765 ms.)

Reference: |Chapter 4.
Comment: |Fine for test programs. Probably will never use this in a real program.

destroy
public final void destroy()

This causes the thread to exit immediately, running no final Iy sections, and releasing no locks.
Thiswasincluded in the Java spec to handle the extreme case of broken threads that ignore
stop(). Itisvirtually impossible to use correctly and has never been implemented.

\Reference: \Chagter 4.

isAlive
public final boolean isAlive()

Thisreturnstrueif the target thread is till adive.

Reference: (Chapter 4.

yield
public static void yield()

This causes the current thread to give up its LWP (or CPU) to another thread at the same or a
higher priority level (if any). Itislegal for yield() to do nothing, so you must not rely oniit.

Reference: Chapter 5.
Comment: You probably will never use this function.

setPriority getPriority
public final void setPriority(int newPriority)
throws SecurityException, lllegalArgumentException
public final int getPriority()

These change (return) the priority level of the thread. The priority level must be between
MIN_PRIORITY and MAX_PRIORITY if the thread group to which this thread belongs may set a
lower bound than MAX_PRIORITY.

277

\Reference ; \Chagter 5.

\Comment: \You probably will never use these functions.

suspend
public final void suspend()

This causes the thread to stop running and wait until you call thread. resume (). Because
suspension is asynchronous, you have no ideawhat the target thread was doing when you
suspended it. For example, it may hold some locks that your other threads need. This makes it
virtually impossible to use.

Reference: Chapter 5.
Comment: It has been deprecated in Java 2.
resume

public final void resume()

This causes a suspended thread to resume.

\Reference: \Chagter 5.
\Comment: \It has been deprecated in Java 2.
interrupt

public void interrupt()

This sets the interrupt flag and causes the target thread to throw an InterruptedException if
itisblocked on (or as soon as it executes) an interruptible method or
InterruptedlOException if itisblocked on /0.

\Reference: \Chagter 9.

interrupted
public static boolean interrupted()

This returns the value of theinterrupt flag for the current thread and clearsiit.

Reference: (Chapter 9.

islnterrupted
public boolean islInterrupted()

This returns the value of theinterrupt flag for the thread.

Reference: |Chapter 9.
\Comment: |You will probably never use this.
getThreadGroup

public final ThreadGroup getThreadGroup()

This returns the thread group for this thread object.

Reference: Chapter 10.

278

checkAccess
public void checkAccess() throws SecurityException

If there is a security manager, its checkAccess () method is called with the Thread asan
argument.

Reference: (Chapter 10.

getName setName
public String getName()
public void setName(String name)
throws SecurityException

This gets/sets the print name for the thread.

\Reference: \Chagter 4.

isDaemon setDaemon
public boolean isDaemon()
public void setDaemon(boolean on)
throws SecurityException,
I1legal ThreadStateException

This gets/sets this thread to be a daemon. Y ou cannot change the status of a running thread.

\Reference: \Chagter 10.

countStackFrames
public int countStackFrames()

This returns the depth of the stack.

Reference: Chapter 10.
Comments: Deprecated in Java 2. Not well defined in any case.
dumpStack

public static void dumpStack()

This prints out the stack.

\Reference: \Chagter 10.

activeCount
public static int activeCount()

This returns the number of active threads in the current thread's thread group.

Reference: |Chapter 10.

Comments: |Deprecated in Java 1.1. See ThreadGroup.allThreadsCount().

enumerate
public static final int enumerate(Thread tarray[])

Thisfills tarray with as many currently active threads as fit, returning that number.

279

\Reference: \Chagter 4.

‘Comment: \Deprecated in Java 1.1. See ThreadGroup.allThreads().

The Interface java.lang.Runnable

This interface provides the building blocks for threads. Y ou implement this interface, define a
run() method on the class, and pass an instance of it to the thread.

run
public void run()

Thisis the method you define that actually executes the code you want.

\Reference: |Chagter 4.
\Comment: |This is the only way to start anything.

The Class java.lang.Object

All objects have alock and wait set associated with them.

synchronized
synchronized

This language keyword causes the current thread to obtain the hidden lock for the object. If the
lock is aready held by the current thread, it will essentially increment a counter for that lock (it'sa
recursive lock). If the lock is held by a different thread, this thread will go to deep waiting for it to
become available.

Reference: (Chapter 6.

wailt

public void wait()
throws InterruptedException

This causes the current thread to block until it is awakened by either acall to notify (),
interruption, or by a spurious wakeup. It will release the synchronization lock for the object as it
goes to sleep and reacquire it before returning.

\Reference: \Chagter 6.

notify notifyAll
public void notify()
public void notifyAll()

These cause (one/all) of the threads that arein await () call for this object to wake up and return.

\Reference: \Chagter 6.

280

The Class java.lang.ThreadLocal

This class implements thread local storage by defining an object that can hold different values for
different threads.

ThreadLocal
public ThreadLocal ()

This creates a new thread local object.

\Reference: \Chagter 8.

get set
public Object get()
public void set(Object 0)

These functions set/get athread-local value for this object.

Reference: \Chapter 8.

The Class java.lang.ThreadGroup

ThreadGroup
public ThreadGroup(String name) throws SecurityException
public ThreadGroup(ThreadGroup parent, String name)
throws SecurityException, Null Pointer Exception

These create a new thread group.
\Reference: \Chagter 10.
toString

public String toString(Q)

Thisreturns a printable string.

Reference: (Chapter 10.

checkAccess
public final void checkAccess() throws SecurityException

If there is a security manager, its checkAccess () method is called with the ThreadGroup as
an argument.

Reference: (Chapter 10.

getName
public final String getName()

281

This returns the name that you gave to the group.

Reference: (Chapter 10.

getParent
public final ThreadGroup getParent()

This returns the parent of this group.

Reference: (Chapter 10.

parentOf
public final boolean parentOf(ThreadGroup g)

Thisreturnstrueif thisisthe parent.

\Reference: \Chagter 10.

stop
public final void stop() throws SecurityException

Thiscals stop() on every thread and thread group in this group.

Reference: Chapter 10.
Comments: Deprecated in Java 2.
suspend

public final void suspend()
throws SecurityException

This cals suspend() on every thread and thread group in this group.

Reference: Chapter 10.
Comments: Deprecated in Java 2.
resume

public final void resume()
throws SecurityException

Thiscalls resume () on every thread and thread group in this group.

Reference: Chapter 10.
Comments: Deprecated in Java 2.
destroy

public final void destroy()
throws SecurityException,
I1legal ThreadStateException

Thisremoves the group if it is empty. If the thread group has subgroups, destroy () is called on
each of those first. Finally, the newly destroyed thread group is removed from its parent.

\Reference: \Chagter 10.

282

getMaxPriority setMaxPriority
public final void getMaxPriority()
public final void setMaxPriority(int newMaxPrio)throws
SecurityException, IllegalArgumentException

This gets/sets the maximum priority allowed for any thread in this group.

\Reference:]Chagter 10.

isDaemon setDaemon
public final void isDaemon()
public final void setDaemon(boolean daemon) throws
SecurityException

This gets/sets this group to be a daemon.

\Reference:]Chagter 10.

threadsCount
public int threadsCount()

This counts the threads in this group.

Reference: (Chapter 10.

allThreadsCount
public int allThreadsCount()

This counts the threads in this group and subgroups.

Reference: (Chapter 10.

groupsCount
public int groupsCount()

This counts the groups in this group.

\Reference:]Chagter 10.

allGroupsCount
public int allGroupsCount()

This counts the groups in this group and subgroups.

Reference: (Chapter 10.

threads
public Thread[] threads()

Thisreturns an array of al the threads in this group.

\Reference:]Chagter 10.

283

allThreads
public Thread[] allThreads()

This returns an array of al the threadsin this group and subgroups.

Reference: (Chapter 10.

groups
public ThreadGroup[] groups(Q

Thisreturns an array of all the groupsin this group.

\Reference: \Chagter 10.

allGroups
public ThreadGroup[] allGroups(Q)

This returns an array of al the groups in this group and subgroups.

Reference: (Chapter 10.

activeCount
public int activeCount()

This returns the number of groupsin this group.

Reference: Chapter 10.
Comments: Deprecated in Java 1.1. Use al IThreadsCount().
activeGroupCount

public int activeGroupCount()

This returns the number of groups in this group.

Reference: Chapter 10.
Comments: Deprecated in Java 1.1. Use al IGroupsCount().
enumerate

public int enumerate(ThreadGroup list[])
public final void enumerate(ThreadGroup list[], boolean
recurse)

Thisis deprecated. Useal IThreads().

Reference: |Chapter 10.

Comments: |Deprecated in Java 1.1. Use al IThreads-Count() or threads(),
allGroups(), or groups() -

list
public final void list()

Thisis adebugging utility that prints out a detailed description of this thread group.

284

\Reference: \Chagter 10.

allowThreadSuspension
public final boolean allowThreadSuspension(boolean on)

This was never implemented.

uncaughtException
public final void uncaughtException(Thread t, Throwable e)

Thisis called whenever athread in this group dies via an uncaught exception.

\Reference: \Chagter 10.

Helper Classes from Our Extensions LibraryThe Class
Extensions.InterruptibleThread

Thisisone of the classes that we defined for this book to provide a consistent interface for dealing
with certain problems. Some of those problems are artificial, a product of trying to write uniform
example code in both POSIX and Java.

exit
public void exit()

This causes the current thread to exit. It is syntactic sugar for
Thread.currentThread() .stop().

Reference:|Chapter 4.

Comment: |We wrote this method while trying to deal with the absence of such a
function and the absence of any advice on this apparent oversight. We have
subsequently been convinced that this is the wrong way to do things and that
you should always return from the run() method (see Exiting a Thread).

public void interrupt()

This sets the interrupt flag and causes the target thread to throw an InterruptedException if
it is blocked on (or as soon as it executes) an interruptible method or
InterruptedlOException if itisblocked on /0.

Reference: (Chapter 9.

disablelnterrupts
public void disablelnterrupts()

This causes the current thread to set aflag indicating that it is not interruptible. The method
interrupt() will look at this.

Reference: (Chapter 9.

enablelnterrupts
public void enablelnterrupts()

285

This causes the current thread to set aflag indicating that it is interruptible. The method
interrupt() will look at this. If the flag indicates a pending interrupt, that interrupt will be
reissued at thistime.

Reference: (Chapter 9.

The Class Extensions.Semaphore

Thisisone of our classes. It implements POSIX-style semaphores. It is probably not useful except
for demo programs.

semWait
public void semWait()

This attempts to decrement the value of the semaphore. If it succeeds, it simply returns. If the
valueis zero, thiswill cause the current thread to go to sleep until another thread incrementsiit.

Reference: Chapter 6.

semPost
public void semPost()

This increments the value of the semaphore, waking up one thread (if any are slegping).

\Reference: \Chagter 6.

The Class Extensions.Mutex

Thisisone of our classes. It implements POSIX-style (non-recursive) mutex locks. Use only when
synchronized sections won't work, such as chained locking.

lock
public void lock()

This locks the mutex. If the lock is held by a different thread, this thread will go to deep, waiting
for it to become available.

Reference: Chapter 6.

unlock
public void unlock()

This unlocks the mutex, waking up one thread (if any are sleeping).

\Reference: \Chagter 6.

286

The Class Extensions.ConditionVar

Thisisone of our classes. It implements POSIX-style condition variables. Use only when
synchronized sections and wait/notify won't work.

condwWait
public void condWait(Mutex m)

This causes the current thread to block until it is awakened by either acall to condSignal () or
by a spurious wakeup (not by interruption). It will release the mutex lock for the object as it goes
to deep, and reacquire it before returning.

\Reference: \Chagter 6.

condSignal condBroadcast
public void condSignal()
public void condBroadcast()

These cause (one/all) of the threads that arein acondwait() call to wake up and return.

\Reference: \Chagter 6.

The Class Extensions.RWLock

Thisisone of our classes. It implements POSIX-style readers/ writer locks. RWlocks are useful
only in very limited circumstances. Time your program carefully first!

readLock writelLock
public void readlLock()
public void writeLock()

Thislocks the RWLaock in either reader or writer mode. If aread lock is held by a different thread,
this thread will be able to get another read lock directly. If awrite lock is requested, the current
thread must go to seep, waiting for it to become available.

\Reference: \Chagter 7.

unlock
public void unlock()

This unlocks the RWLock (both for readers and for writers). If thisis the last reader, it will wake
up one writer thread (if any are deeping). If thisisawriter, it will wake up one writer thread (if
any are sleeping); otherwise, it will wake up al the sleeping threads with reader requests.

\Reference: \Chagter 7.

The Class Extensions.Barrier

287

Thisisone of our classes. It implements barriers.

simulation, these might come in useful.

Comment: [You won't use these very often, but if you're implementing something like a

Barrier
public Barrier (int i)

This creates a barrier object with acount of i.

Reference: \Chapter 7.

barrierSet
public synchronized void barrierSet(int i)

This resets the barrier count to i.

Reference: \Chapter 7.

barrierWait
public synchronized void barrierWait() {

This causes the calling thread to block until count threads have called barrierWait().

\Reference: \Chagter 7.

The Class Extensions.SingleBarrier

Thisisone of our classes. It implements barriers with a divided set of waiters and posters.

Comment: |You won't use these very often, perhaps only for example programs.

SingleBarrier
public SingleBarrier (int i)

This creates a single-barrier object with acount of i.

\Reference: \Chagter 7.

barrierSet
public synchronized void barrierSet(int i)

Thisresets the single barrier count to i.

Reference: \Chapter 7.

barrierWait
public synchronized void barrierWait() {

This causes the calling thread to block until barrierPost() hasbeen called count times.

288

Reference:]Chagter 7.

barrierPost
public synchronized void barrierPost() {

This increments the counter for how many times barrierPost() has been called.

Reference: Chapter 7.

289

Glossary

API

The set of function callsin alibrary, along with their arguments and their semantics. APIs
are published so that programmers can always know which interface a vendor supports.

asynchronous signal
A signal that is sent to a process independently of what the process happens to be doing.

An asynchronous signal can arrive at any time whatsoever, with no relation to what the
program happens to be doing (cf. synchronous signal).

async /O
An abbreviation for asynchronous input/output—normally, 1/0O calls block in the kernel
while waiting for data to come off adisk, atape, or some other "slow" device. But async
I/O calls are designed not to block. Such calls return immediately, so the user can

continue to work. Whenever the data comes off the disk, the process will be sent a signal
to let it know the call has completed.

atomic operation

An operation that is guaranteed to take place "at asingle time." No other operation can do
anything in the middle of an atomic operation that would change the result.

blocking system call

A system call that blocks in the kernel while it waits for something to happen. Disk reads
and reading from aterminal are typically blocking calls.

cache memory

A section of very fast (and expensive) memory that is located very close to the CPU. Itis
an extralayer in the storage hierarchy and helps "well-behaved" programs run much
faster.

CDE

An abbreviation for common desktop environment—the specification for the look and feel
that the major UNIX vendors have adopted. CDE includes a set of desktop tools.

290

CDE isthe major result of the Cose agreement. It is a set of tools and window toolkits
(Motif 1.2.3), along with supporting cross-process communications software (Tool Talk®),
which will form the basis of the window offerings of all major UNIX vendors. Each
vendor will productize CDE in its own fashion and ultimately maintain separate source
bases, doing its own value-add and its own bug fixing.

coar se-grained locking
See [fine-grained locking]

context switch

The process of removing one process (or LWP or thread) from a CPU and moving
another one on.

critical section

A section of code that must not be interrupted. If it doesn't complete atomically, some
data or resource may be left in an inconsistent state.

daemon

A process or athread that works in the background. The pager is a daemon processin
UNIX.

DCE

An abbreviation for distributed computing environment—a set of functions deemed
sufficient to write network programs. It was settled upon and implemented by the original
OSF (Open Software Foundation). DCE is the environment of choice of anumber of
vendors including DEC and HP, while Sun has stayed with ONC+™. As part of the Cose
agreement, all of the vendors will support both DCE and ONC+.

deadlock

A situation in which two things are stuck, each waiting for the other to do something first.
More things can be stuck in aring, waiting for each other, and even one thing could be
stuck, waiting for itself.

devicedriver

291

A program that controls a physical device. The driver is aways run as part of the kernel,
with full kernel permissions. Device drivers may be threaded, but they would use the
kernel threads library, not the library discussed in this book.

dynamic library

A library of routines that a user program can load into core "dynamically." That is, the
library is not linked in as part of the user's executable image but is loaded only when the
user programisrun.

errno

Aninteger variable that is defined for all ANSI C programs (PCs running DOS as well as
workstations running UNIX). It is the place where the operating system puts the return
status for system calls when they return error codes.

external cache

Cache memory that is not physically located on the same chip as the CPU. External cache
(ak.a "E$") isslower than internal cache (typically, around five cycles versus one) but
faster than main memory (upward of 100 cycles, depending upon architecture).

FIFO

An abbreviation for first in, first out—akind of aqueue. Contrast to last in, first out,
which is a stack.

file descriptor

An element in the process structure that describes the state of afile in use by that process.
The actual file descriptor isin kernel space, but the user program also has afile descriptor
that refersto this kernel structure.

fine-grained locking

The concept of putting lots of locks around tiny fragments of code. It's good because it
means that there's less contention for the individual locks. It's bad because it means that
the program must spend alot of time obtaining locks. Coarse-grained locking is the
opposite concept and has exactly the opposite qualities.

green threads

292

Thisis athreads package that was used during the initial development of Java. It isnot a
native threads library and cannot take advantage of multiple CPUs, nor can it do
concurrent 1/O.

internal cache

Cache memory (ak.a. 1$) that islocated on the same chip as the CPU and henceis very
fast.

Interrupt

An externa signal that interrupts the CPU. Typically, when an external device wants to
get the CPU's attention, it asserts a voltage level on one of the CPU pins. This causes the
CPU to stop what it's doing and run an interrupt handler.

Javaalso has an interrupt() method that interrupts a thread.

interrupt handler

A section of code in the kernel that is called when an interrupt comesin. Different
interrupts will run different handlers.

kernel mode

A mode of operation for a CPU in which al instructions are allowed (cf. user mode).

kernel space

The portion of memory that the kernel uses for itself. User programs cannot accessiit (cf.
user space).

kernel stack

A stack in kernel space that the kernel uses when running system calls on behalf of a user
program. All LWPs must have akernel stack.

kernel threads

Threads that are used to write the operating system ("the kernel"). The various kernel
threads libraries may be similar to the user threads library (e.g., Solaris) or may be totally
different (e.g., Digital UNIX).

293

LADDIS

A standardized set of calls used to benchmark NFS performance. It was created by and is
monitored by SPEC.

Library

A collection of routines that many different programs may wish to use. Similar routines
are grouped together into asingle file and called alibrary.

library call

One of theroutinesin alibrary.

LWP

An abbreviation for lightweight process—a kernel schedulable entity.

memory management unit

See[MMU]

memory-mapped file

A file that has been "mapped" into core. Thisisjust like loading the file into core, except
that any changes will be written back to thefile itself. Because of this, that area of
memory does not need any "backing store" for paging. It is also much faster than doing
reads and writes because the kernel does not need to copy the kernel buffer.

MMU

An abbreviation for memory management unit—the part of the computer that figures out
which physical page of memory corresponds to which virtual page and takes care of
keeping everything straight.

M otif

A description of what windows should look like, how mouse buttons work, etc. Motif is
the GUI that isthe basis for CDE. The word Motif is also used as the name of the libraries
that implement the Motif look and feel.

294

multitasking OS

NFS

An operating system that can run one process for awhile, then switch to another one,
return to the first, etc. UNIX, VMS, MVS, TOPS, etc., are al multitasking systems. DOS
and Microsoft® Windows™ are single-tasking operating systems. (Although MS-
Windows™ can have more than one program active on the desktop, it does not do any
kind of preemptive context switching between them.)

An abbreviation for network file system—a kernel program that makes it possible to
access files across the network without the user ever knowing that the network was
involved.

page fault

The process of bringing in a page from disk when it is not memory resident. When a
program accesses aword in virtual memory, the MMU must trandlate that virtual address
into a physical one. If that block of memory is currently out on disk, the MMU must load
that pagein.

pagetable

POSIX

A table used by the MMU to show which virtual pages map to which physical pages.

An acronym for portable operating system interface. This refersto a set of committeesin
the |EEE that are concerned with creating an API that can be common to all UNIX
systems. There is acommitteein POSIX that is concerned with creating a standard for
writing multithreaded programs.

Preemption

The act of forcing a thread to stop running.

preemptive scheduling

Scheduling that uses preemption. Time dlicing is preemptive, but preemption does not
imply time slicing.

295

Process

A running program and all the states associated with it.

process structure

A kernel structure that describes all the relevant aspects of a process.

program counter

A register in the CPU that defines which instruction will be executed next.

race condition

A situation in which the outcome of a program depends upon the luck of the draw—
which thread happensto run first.

realtime

Anything that istimed by awall clock. Typically, thisis used by external devices that
require servicing within some period of time, such as raster printers and aircraft autopilots.

Realtime does not mean any particular amount of time but is amost always used to refer
to sub-100-ms (and often sub-1-ms) response time.

reentrant

A function is reentrant when it is possible for it to be called at the same time by more than
one thread. Thisimplies that any global state be protected by mutexes. Note that thisterm

is not used uniformly and is sometimes used to mean either recursive or signal-safe.
These three issues are orthogonal.

shared memory

Memory that is shared by more than one process. Any process may write into this
memory, and the others will see the change.

SIGLWP

A signal that isimplemented in Solaris and used to preempt a thread.

296

signal

A mechanism that UNIX systems use to allow a process to be notified of some event,
typically asynchronous and external. It is a software analog to hardware interrupts.

signal mask

A mask that tells the kernel (or threads library) which signals will be accepted and which
must be put onto a"pending” queue.

SIGSEGV

A signal that is generated by UNIX systems when a user program attempts to access an
address that it has not mapped into its address space.

SIGWAITING

A signal that isimplemented in Solaris and used to tell athreaded process that it should
consider creating anew LWP.

SPEC
An organization that creates benchmark programs and monitors their use.

store buffer
A buffer in a CPU that caches writes to main memory, alowing the CPU to run without
waiting for main memory. It isa special case of cache memory.

SVR4
An abbreviation for System Five, Release 4—the merger of severa different flavors of
UNIX that was done by Sunand AT&T. SPEC 1170 merges SVR4, POSIX, and BSD—
the main UNIX "flavors'— to specify a common base for all future UNIX
implementations.

synchronous signal

297

A signal that is sent to a process "synchronously.” This meansthat it is the direct result of
something that process did, such as dividing by zero. Should a program do a divide-by-
zero, the CPU will immediately trap into a kernel routine, which in turn will send asignal
to the process (cf. asynchronous signal).

system call

A function that sets up its arguments, then traps into the kernel in order to have the kernel
do something for it. Thisisthe only means a user program has for communication with
the kernel.

time-sliced scheduling

An algorithm that allocates a set amount of time for a process (or LWP or thread) to run
beforeit is preempted from the CPU and another oneis given time to run.

Trap
Aninstruction that causes the CPU to stop what it is doing and jump to a specia routine
in the kernel (cf. system call).

user mode
An operating mode for a CPU in which certain instructions are not allowed. A user
program runs in user mode (cf. kernel mode).

user space

That area of memory devoted to user programs. The kernel sets up this space but
generally never looks inside (cf. kernel space).

virtual memory

The memory space that a program thinks it isusing. It is mapped into physical memory
by the MMU. Virtual memory allows a program to behave as if it had 100 Mbytes, even
though the system has only 32 Mbytes.

Xview

A library of routines that draws and operates Openlook GUI components on a screen. It is
based on the SunView™ library of the mid-1980s and has been superseded by CDE Motif.

298

299

	Table of Content
	Copyright
	Dedication

	Preface
	Who Should Use This Book
	How This Book Is Organized

	Acknowledgments
	Acknowledgments to the Threads Primer
	Acknowledgments to the Pthreads Primer

	Chapter 1. Introduction
	
	
	Figure 1-1. Performance for Digital's Alpha Servers (8400 5/625)

	Chapter 2. Concepts
	Background: Traditional Operating Systems
	
	Figure 2-1. Memory Layout for DOS-Style Operating Systems
	Figure 2-2. Memory Layout for Multitasking Systems
	Figure 2-3. Processes on a Multitasking System

	What Is a Thread?
	
	Figure 2-4. Relationship between a Process and Threads
	Figure 2-5. Process Structure and Thread Structures

	Kernel Interaction
	Concurrency vs. Parallelism
	Figure 2-6. Three Threads Running Concurrently on One CPU
	Figure 2-7. Three Threads Running in Parallel on Three CPUs

	System Calls
	Signals
	Synchronization
	Scheduling

	The Value of Using Threads
	Parallelism
	Figure 2-8. Different Threads Running on Different Processors

	Throughput
	Figure 2-9. Two Threads Making Overlapping System Calls

	Responsiveness
	Figure 2-10. Threads Overlapping Calculation and I/O

	Communications
	Figure 2-11. Different Clients Being Handled by Different Threads

	System Resources
	Distributed Objects
	Figure 2-12. Distributed Objects Running on Distinct Threads

	Same Binary for Uniprocessors and Multiprocessors
	Program Structure
	Figure 2-13. Simplified Flow of Control in Complex Applications

	What Kinds of Programs to Thread
	Inherently MT Programs
	Independent tasks
	Servers
	Repetitive tasks

	Not Obviously MT Programs
	Numerical programs
	Old code

	Automatic Threading
	Programs Not to Thread

	What About Shared Memory?
	Threads Standards
	POSIX Threads
	Win32 and OS/2 Threads
	DCE Threads
	Solaris Threads

	Performance
	Operating Systems
	NFS
	Figure 2-14. NFS Performance on MP Machines (SPEC '96)

	SPECfp 95
	Table 2-1. SPECfp95 Results for Alpha 4100 5/466 (SPEC '97)

	SPECint_rate95
	Figure 2-15. Running SPECrate_fp95 on an SGI Origin/200, 2000 (SPEC '96)

	Java Benchmarks

	Summary

	Chapter 3. Foundations
	Implementation vs. Specification
	Thread Libraries
	The Process Structure
	
	Figure 3-1. Process Structure in Traditional UNIX and in Solaris 2

	Lightweight Processes
	
	Figure 3-6. Operation of a System Call

	Digital UNIX
	Linux

	Threads and LWPs
	
	Figure 3-2. Contents of a Thread
	Figure 3-3. How the Threads Library Fits into a Process
	Figure 3-4. How Java Is Built on Lower-Level Threads Libraries

	The POSIX Multithreaded Model
	
	Figure 3-5. POSIX Multithreaded Architecture

	System Calls
	Signals
	Summary

	Chapter 4. Lifecycle
	Thread Lifecycle
	
	Example 4-1 Simple Call to Create and Exit a POSIX Thread
	Example 4-2 Simple Call to Create and Exit a Java Thread
	Example 4-3 Simple Call to Create and Exit a Win32 Thread

	Exiting a Thread
	The Runnable Interface
	Example 4-4 Simple Call to Run a Runnable in a Thread
	Figure 4-1. Creating a Thread via a Runnable
	Example 4-5 Defining run() via an Inner Class in a Thread

	Waiting for Threads
	Example 4-6 Waiting for Threads to Exit
	Figure 4-2. Using thread.join()

	Who Am I?
	Example 4-7 Getting the Current Thread's Identity
	Don't Wait for Threads, Don't Return Status

	Exiting the Process
	Suspending a Thread
	Cancellation
	Example 4-8 Cancellation in the Three Libraries
	Figure 4-3. Cancellation

	ThreadDeath
	Garbage Collecting Threads
	Zombies
	Figure 4-4. Java Thread Create and Join

	Is She Still Alive?
	Restarting Threads
	An Example: Create and Join
	The Main Thread Is Different
	Example 4-9 Java Create and Join
	Example 4-10 Output for Code Example 4-9
	Example 4-11 Construct and Start in a Single Line

	APIs Used in This Chapter
	The Class java.lang.Thread
	The Class Extensions.InterruptibleThread
	The Interface java.lang.Runnable

	Summary

	Chapter 5. Scheduling
	Different Models of Kernel Scheduling
	Many Threads on One LWP
	One Thread per LWP
	Many Threads on Many LWPs (Strict)
	The Two-Level Model
	Win32 Fibers

	Thread Scheduling
	
	Figure 5-1. The Two Basic Types of Scheduling

	Process Contention Scope
	Priority Levels
	Scheduling States
	Active:
	Runnable:
	Sleeping:
	Suspended:
	Zombie:
	Figure 5-2. Some Process Contention Scope Threads in Various States
	Figure 5-3. Simplified View of Thread State Transitions

	System Contention Scope
	Figure 5-4. Some System Contention Scope Threads in Various States

	Context Switching
	
	Figure 5-5. How a Context Switch Works
	Figure 5-6. How a Context Switch Works

	Preemption
	How Many LWPs?
	How to Get Those LWPs in Java
	Changing Scheduling Parameters for LWPs
	nice()

	Realtime LWPs
	Avoid Realtime

	Allocation Domains
	Binding LWPs to Processors
	Happiness Is a Warm Cache
	Figure 5-7. Processor Affinity

	Java Scheduling Summary
	How Many Threads in Java?

	When Should You Care About Scheduling?
	APIs Used in This Chapter
	The Class java.lang.Thread

	Summary

	Chapter 6. Synchronization
	Synchronization Issues
	
	Example 6-1 Why Synchronization Is Necessary

	Atomic Actions and Atomic Instructions
	Example 6-2 Pseudo-assembly Code for the Mutual Exclusion Lock

	Critical Sections
	Lock Your Shared Data!

	Synchronization Variables
	Mutexes
	Example 6-3 Using Mutexes in the Various Libraries
	Figure 6-1. Mutex with Several Threads Sleeping on It
	Figure 6-2. Execution Graph of the Operation of a Mutex
	Figure 6-3. Protecting a Shared List with a Mutex
	Example 6-4 Protecting a Shared List with a Mutex (POSIX)
	Figure 6-4. All Objects Have Their Own Mutex and Wait Set
	Example 6-5 Synchronized Statement
	Example 6-6 Using synchronized in Java
	Figure 6-5. Each Instance Has Its Own Mutex
	Example 6-7 Static Synchronized Methods Also Use the Class Lock
	Example 6-8 You May Use an Unrelated Object to Protect Static Data
	Example 6-9 You May Use the Class Itself to Protect Static Data
	Example 6-10 Protecting a Shared List with a Mutex (Java)

	Semaphores
	Example 6-11 Basic Use of Counting Semaphores
	Figure 6-6. How a Semaphore Operates
	Figure 6-7. Execution Graph of the Operation of a Semaphore
	Example 6-12 Classic Producer/Consumer Example (one_queue_problem.c)
	Example 6-13 Classic Producer/Consumer Example (OneQueueProblem)
	Using Barriers to Count Exiting Threads
	A Different View of Semaphores
	Figure 6-8. Flowchart for Semaphores

	Condition Variables
	Figure 6-9. Flowchart for Condition Variables
	Figure 6-10. Threads Using a Condition Variable
	Example 6-14 Using a Condition Variable (POSIX)

	Java wait/notify
	Example 6-15 Using wait/notify (Java)
	Extraneous Contention
	Figure 6-11. Extra Contention: When the Mutex Is Held by a Different Thread

	InterruptedException
	Example 6-16 Using wait/notify with InterruptedException

	Controlling the Queue Length
	Example 6-17 Classic Producer/Consumer Model (with a Tiny Bug)

	POSIX-Style Synchronization in Java
	Example 6-18 Classic Producer/Consumer in POSIX
	POSIX-Style Mutexes in Java
	Example 6-19 Implementing POSIX-Style Mutexes in Java
	POSIX-Style Condition Variables in Java
	Example 6-20 Implementing Condition Variables in Java
	Example 6-21 condWait() Done Wrong
	Example 6-22 Producer/Consumer Model Using POSIX-Style Synchronization
	A Stoppable Producer/Consumer Example
	Example 6-23 Stoppable Producer/Consumer Model
	Example 6-24 Stoppable Producer/Consumer Model (Stopper)
	Example 6-25 Stoppable Producer/Consumer Model (Starting Up and Shutting Down in main()

	APIs Used in This Chapter
	The Class java.lang.Object
	The Class Extensions.Semaphore
	The Class Extensions.Mutex
	The Class Extensions.ConditionVar

	Summary

	Chapter 7. Complexities
	Complex Locking Primitives
	Readers/Writer Locks
	Figure 7-1. How Readers/Writer Locks Work
	Figure 7-2. Execution Graph for Readers/Writer Locks
	Example 7-1 Readers/Writer Locks in Java

	Priority Inheritance Mutexes
	Figure 7-3. Priority Inversion

	FIFO Mutexes
	Figure 7-4. When FIFO Mutexes Are Valuable

	Recursive Mutexes
	Example 7-2 Recursive Locking Calls in POSIX and Java

	Nonblocking Synchronization
	Spin Locks
	Example 7-3 Simple Spin Lock
	Adaptive Spin Locks
	Java May Use Spin Locks

	Timeouts
	Elvis and the UFOs
	Example 7-4 Recalculating Timeouts

	Other Synchronization Variables
	Join
	Barriers
	Figure 7-5. Barriers

	Single Barriers
	Figure 7-6. Single Barriers
	Example 7-5 Implementing Single Barriers in Java

	Win32 Event Objects
	Win32 Critical Sections
	Multiple Wait Semaphores
	Interlocked Instructions
	Message Queues
	Win32 I/O Completion Ports
	Communicating via Streams

	Volatile
	Performance
	Condition Variables vs. wait/notify
	Coarse vs. Fine Grain Locking
	What to Lock
	Figure 7-7. Friends/Enemies with Only One Local Mutex Lock

	Double-Checked Locking
	Example 7-6 Double-Checked Locking

	Synchronization Problems
	Deadlocks
	Example 7-7 Deadlock in Java
	Figure 7-8. Typical Deadlock
	Example 7-8 Locking Mutexes Out of Order

	Race Conditions
	Example 7-9 Simplistic Race Condition

	Recovering from Deadlocks
	The Lost Wakeup
	Example 7-10 The Lost Wakeup Problem

	InterruptedException
	Example 7-11 Ignoring InterruptedException
	Example 7-12 Propagating InterruptedException
	Example 7-13 Ignoring InterruptedException

	APIs Used in This Chapter
	The Class Extensions.RWLock
	The Class Extensions.Barrier
	The Class Extensions.SingleBarrier

	Summary

	Chapter 8. TSD
	Thread-Specific Data
	
	Figure . Thread-Specific Data in POSIX
	Example 8-1 Use of POSIX TSD
	Example 8-2 Dynamic TLS in Win32

	Java TSD
	
	Example 8-3 Implementing TSD by Subclassing Thread
	Example 8-4 Using ThreadLocal in Java
	Example 8-5 Recording the Runnable in the Thread
	Example 8-6 Recording the Runnable in Thread Local Storage

	APIs Used in This Chapter
	The Class java.lang.ThreadLocal

	Summary

	Chapter 9. Cancellation
	What Cancellation Is
	
	Figure 9-1. Thread Cancellation
	Example 9-1 Asynchronous Thread Cancellation

	Polling for Cancellation
	Asynchronous Cancellation
	Deferred Cancellation
	Using interrupt() for Deferred Cancellation
	Progressive Shutdown

	interrupt()
	
	Example 9-2 Using thread.interrupt()

	Don't Call stop()
	ThreadDeath
	Using stop() to Implement Thread.exit()
	Example 9-3 Implementing exit()

	Never Exit a Thread!
	Don't Call destroy()
	Example 9-4 From ThreadedSwing Example: NumericButtonListener.java

	Defined Cancellation/Interruption Points
	The Problem with I/O

	Not Cancelling upon Interruption
	Handling Interrupts
	Disabling Interrupts
	Example 9-5 Testing a Variable from an Exception Handler
	Ignore Interrupts
	Example 9-6 Inventing an InterruptDisabled Protocol
	Exit on interrupt()
	Propagate InterruptedException
	Reinterrupt
	Example 9-7 Calling interrupt() upon Return
	Example 9-8 Naive Condition Variable and Readers/Writer Lock
	Example 9-9 Handling Interruptions from condWait() the Hard Way
	Example 9-10 The Right Way of Implementing condWait()

	Cancellation State

	A Cancellation Example
	
	Figure 9-2. Cancellation Example Program
	Example 9-11 Using interrupt() to Cancel Searcher Threads

	Using Cancellation
	Ensuring Bounded CPU Time
	Example 9-12 Deferred Cancellation as Polling
	Interrupting Computational Loops
	Example 9-13 Testing Once Every 1000 Iterations
	Interrupting Blocked Threads
	Interrupting Sockets
	What Should Throw InterruptedException?

	Interrupting Sleeping Threads
	Interruption in wait()
	Example 9-14 Interrupting a wait()

	The Morning After
	Example 9-15 From the main() Method for Searcher Example

	Cleanup
	
	Example 9-16 How POSIX Cleanup Handlers Are Used
	Example 9-17 How InterruptedException Handlers Clean Up

	Implementing enableInterrupts()
	
	Example 9-18 Implementing enableInterrupts()

	A Cancellation Example (Improved)
	
	Example 9-19 Cleaner Version of doDatabaseThing()

	Simple Polling
	
	Example 9-20 1Implementing the Searcher with Polling

	APIs Used in This Chapter
	The Class java.lang.Thread
	The Class Extensions.InterruptibleThread

	Summary

	Chapter 10. Details
	Thread Groups
	Thread Security
	
	Example 10-1 Checking for Security Violations
	Example 10-2 A Simple Security Exception
	Table 10-1. Thread Class Methods That May Cause a Security Check
	Table 10-2. ThreadGroup Class Methods That May Cause a Security Check

	Real-World Examples
	1. The garbage collector thread and the finalize() method
	2. Performance: Access to synchronized objects
	3. More problems with the garbage collection thread
	4. Make synchronized code sections as small as possible
	Example 10-3 Synchronizing Part of a Method>
	5. Threaded class downloads

	General Tips and Hints

	Daemon Threads
	Daemon Thread Groups
	Calling Native Code
	
	Example 10-4 Locking Monitors from C Code
	Figure 10-1. Java Thread Objects Use Native Threads

	A Few Assorted Methods
	Stack Size

	Deprecated Methods
	The Effect of Using a JIT
	Adaptive Compilers

	APIs Used in This Chapter
	The Class java.lang.Thread
	The Class java.lang.ThreadGroup

	Summary

	Chapter 11. Libraries
	The Native Threads Libraries
	Multithreaded Kernels
	
	Figure 11-1. Concurrency within the Kernel

	Symmetric Multiprocessing

	Are Libraries Safe?
	
	Figure 11-2. Using pread() and pwrite() to Keep Track of the File Pointer

	Window Systems
	Figure 11-3. Threads Using invokeLater() with the Swing Toolkit
	Figure 11-4. ThreadedSwing Window Example
	Example 11-1 Using Threads in Swing

	Working with Unsafe Libraries
	Example 11-2 Protecting a HashMap
	Example 11-3 Subclassing an Unsafe Object

	When Should a Class Be Synchronized?
	Synchronized Collections in Java 2
	Example 11-4 Making Synchronized Collections
	Example 11-5 Protecting an Iterator

	Java's Multithreaded Garbage Collector
	Locks during Finalization

	Summary

	Chapter 12. Design
	Making Libraries Safe and Hot
	Trivial Library Functions
	Example 12-1 Simple MT-Safe Implementation of rand(), Version 1

	Functions That Maintain State across Invocations
	Example 12-2 Implementing rand() with TSD, Version 2

	Making malloc() More Concurrent
	Figure 12-1. Current Solaris Implementation of malloc()
	Using Thread-Specific Data to Make malloc() More Concurrent
	Figure 12-2. Threads with Individual TSD malloc() areas
	Using Other Methods to Make malloc() More Concurrent
	Figure 12-3. Threads Using an Array of malloc() Areas.

	Manipulating Lists
	Figure 12-4. Friends/Enemies: Basic Design
	Basic Design

	Single, Global Mutex
	Figure 12-5. Friends/Enemies: Global Mutex Lock
	Example 12-3 Giving Friends Raises (from FriendThread.java)

	Global RWLock with Global Mutex to Protect Salaries
	Figure 12-6. Friends/Enemies: Global RWlock and Salary Lock
	Example 12-4 : giveRaise() (listGlobaRW.java)
	Example 12-5 Removing an Element from the List (ListGlobalRW2.java)

	Global RWLock with Local Mutex to Protect Salaries
	Figure 12-7. Friends/Enemies: Global RWlock and Local Salary Lock

	One Local Lock
	Figure 12-8. Friends/Enemies with Only One Local Mutex Lock
	Example 12-6 Searching Code (ListLocalLock.java)

	Two Local Locks
	Figure 12-9. Friends/Enemies: Two Local Locks

	Local RWLock with Local Mutex to Protect Salaries
	Figure 12-10. Friends/Enemies: Local Lock and RWlock

	Program Design
	Master/Slave
	Client/Server (Thread per Request)
	Example 12-7 Master/Slave Socket Design

	Producer/Consumer
	Example 12-8 Producer/Consumer Socket Design

	Pipeline
	Example 12-9 Pipeline Design

	Client/Server (Thread per Client)
	Example 12-10 Thread per Client Design

	Design Patterns
	Summary

	Chapter 13. RMI
	Remote Method Invocation
	
	Figure 13-1. A Simple RMI Call Sending and Receiving a String

	Sending Remote References
	Figure 13-2. A More Complex RMI Call Sending a Remote Object Reference
	Example 13-1 Simple RMI Server and Client
	Example 13-2 Running ServerRMI

	RMI's Use of Threads
	The Deadlock Problem with RMI
	Figure 13-3. Deadlock by Remote Callback

	Remote Garbage Collection

	Summary

	Chapter 14. Tools
	Static Lock Analyzer
	Using a Thread-Aware, Graphical Debugger
	
	Figure 14-1. Sun's Debugger [Program Stopped in sleep()]

	Proctool
	
	Figure 14-2. Proctool, Main Display Window
	Figure 14-3. Proctool, LWP Display Window

	TNFview
	
	Figure 14-4. Data Collection for TNF
	Figure 14-5. Main Data Display Window for TNF
	Figure 14-6. Histogram Display Window for TNF
	Example 14-1 Code Using TNF Probes in Java

	Summary

	Chapter 15. Performance
	Optimization: Objectives and Objections
	Time to Market
	Available Human Resources and Programming Costs
	Portability
	User Perception
	Competition
	Targeted Machine Configuration
	Algorithm

	CPU Time, I/O Time, Contention, Etc.
	CPU
	Memory Latency
	Memory Bandwidth
	I/O Latency
	Contention
	Throughput vs. Latency
	Figure 15-1. NFS Throughput vs. Latency on Some SGI Machines

	Limits on Speedup
	
	Figure 15-2. Parallel Speedup on Several Numerical Programs
	Figure 15-3. Program Behavior for Parallelized Benchmarks

	Superlinear Speedup
	Timing Threaded and Nonthreaded Programs

	Amdahl's Law
	
	Figure 15-4. Amdahl's Law: Time(total) = Time(serial) + Time(parallel) / Number_of_CPUs
	Figure 15-5. TPC-C Performance of a Sun UE6000

	Performance Bottlenecks
	
	Figure 15-6. Performance Bottlenecks and Capacities of Programs

	Benchmarks and Repeatable Testing
	Is It Really Faster?
	Table 15-1. Runtimes for Four Trials
	Table 15-2. Runtimes for Ten Trials

	General Performance Optimizations
	Best Algorithm
	Compiler Optimization
	C Compiler Optimization
	Java Compiler Optimization
	Buy Enough RAM
	Minimize I/O
	Minimize Cache Misses
	Any Other Loop Optimizations

	Thread-Specific Performance Optimizations
	Reducing Contention
	Minimizing MT Overhead
	Reducing Paging
	Figure 15-7. Using Threads to Optimize Paging
	Communications Bandwidth
	Right Number of Threads
	Short-Lived Threads

	Dealing with Many Open Sockets

	The Lessons of NFS
	
	Figure 15-8. NFS Throughput on a Series of Sun UE Machines (The performance improvement is somewhat exaggerated, as a two-way UE6000 will outperform a two-way UE 2.)

	Summary

	Chapter 16. Hardware
	Types of Multiprocessors
	Shared Memory Symmetric Multiprocessors
	The CPU
	The System
	Figure 16-1. SMP System Architecture
	Store Barriers

	Bus Architectures
	Direct-Switched Buses
	Figure 16-2. Direct-Switched Memory Bus

	Packet-Switched Buses
	Figure 16-3. Packet-Switched Memory Bus

	Crossbar Switches
	Figure 16-4. Cluster Using a Crossbar Switch

	Hierarchical Interconnects
	Figure 16-5. Hierarchical Design of the SGI Origin Series

	ccNUMA
	Packet-Switched Buses and ldstub
	Figure 16-6. Packet-Switched Memory Bus Running ldstub
	Example 16-1 Spin Locks Done Better

	The Thundering Herds
	LoadLocked/StoreConditional and Compare and Swap
	Example 16-2 Atomic Increment Using LoadLocked and StoreConditional
	Figure 16-7. SMP System Architecture
	Lock-Free Semaphores and Reference Counting

	Volatile: The Rest of the Story
	Atomic Reads and Writes
	Interlocked Instructions

	Memory Systems
	Reducing Cache Misses
	Table 16-1. Selected SPEC Benchmarks for Two UE 3500s
	Cache Blocking
	Data Reorganization
	Word Tearing
	False Sharing
	Example 16-3 False Sharing

	Summary

	Chapter 17. Examples
	Threads and Windows
	
	Example 17-1 ThreadedSwing Program
	Figure 17-1. ThreadedSwing Window Example

	Displaying Things for a Moment (Memory.java)
	
	Figure 17-2. The Memory Game
	Example 17-2 How to Display Something for a Short Time

	Socket Server (Master/Slave Version)
	Socket Server (Producer/Consumer Version)
	
	Example 17-3 Producer/Consumer Socket Program

	Making a Native Call to pthread_setconcurrency()
	
	Example 17-4 Setting the Concurrency Level in Solaris (TimeDiskSetConc.java)

	Actual Implementation of POSIX Synchronization
	
	Example 17-5 Correct Implementation of Mutexes and Condition Variables

	A Robust, Interruptible Server
	
	Example 17-6 A Robust Server

	Disk Performance with Java
	
	Example 17-7 Measuring Disk Access Throughput

	Other Programs on the Web
	Summary

	Appendix A. Internet
	Threads Newsgroup
	Code Examples
	Vendor's Threads Pages
	Threads Research
	Freeware Tools
	Other Pointers
	The Authors on the Net

	Appendix B. Books
	Threads Books
	Java Threads
	POSIX Threads
	Win32 Threads

	Related Books

	Appendix C. Timings
	Timings
	Mutex Lock/Unlock
	Table C-1. Timings of Various Thread-Related Functions on POSIX and Java (?s)

	Explicit Synchronized
	Implicit Synchronized
	Readers/Writer Lock/Unlock
	Semaphore Post/Wait
	notify()
	condSignal()
	Local Context Switch (unbound)
	Local Context Switch (bound)
	Process Context Switch
	Cancellation Disable/Enable
	Test for Deferred Cancellation
	Reference a Global Variable
	Reference Thread-Specific Data
	Reference "Fake" Thread-Specific Data

	Appendix D. APIs
	Function Descriptions
	The Class java.lang.Thread
	The Interface java.lang.Runnable
	The Class java.lang.Object
	The Class java.lang.ThreadLocal
	The Class java.lang.ThreadGroup
	Helper Classes from Our Extensions LibraryThe Class Extensions.InterruptibleThread
	The Class Extensions.Semaphore
	The Class Extensions.Mutex
	The Class Extensions.ConditionVar
	The Class Extensions.RWLock
	The Class Extensions.Barrier
	The Class Extensions.SingleBarrier

	Glossary

