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Preface 
Today, there are three primary sets of multithreading (MT) libraries: the POSIX threads library, 
the Win32 threads library (both native), and Java. Although the APIs[1] and implementations differ 
significantly, the fundamental concepts are the same. The ideas in this book are valid for all three; 
the details of the APIs differ. 

[1] "Applications Programming Interface." This is the set of standard library calls that an operating 
system makes available to applications programmers. For POSIX, this means all the threads library 
function calls. For Java, it's one keyword, three classes, and a few methods. 

All the specific discussion in this book focuses on the Java multithreading model, with 
comparisons to POSIX and Win32 throughout. Java threads are always implemented upon a low-
level library which does the real work. Hence Java on UNIX is generally based on POSIX, while 
Java on NT will be based on Win32 threads. 

Because these lower-level libraries have so much impact on the actual performance of a Java 
program, we will devote significant attention to the native libraries. Because POSIX threads are 
more primitive than Win32 threads, they will be our basis of comparison and explanation. This 
allows us to explain the inner workings of threads before jumping to the more intricate workings 
of Java. 

A frank note about our motivation is in order here. We have slaved away for countless hours on 
this book because we're propeller-heads who honestly believe that this technology is a superb 
thing and that the widespread use of it will make the world a better place for hackers like 
ourselves. 
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Your motivations for writing MT programs? You can write your programs better and more easily, 
they'll run faster, you'll get them to market more quickly, they'll have fewer bugs, and you'll have 
happier programmers, customers, and higher sales. The only losers in this game are the 
competitors, who will lag behind you in application speed and quality. 

MT is here today. It is now ubiquitous. As a professional programmer, you have an obligation to 
understand this technology. It may or may not be appropriate for your current project, but you 
must be able to make that conclusion yourself. This book will give you what you need to make 
that decision. 

Welcome to the world of the future! 

 

Who Should Use This Book 

This book aims to give the programmer or technical manager a solid understanding of threads—
what they are, how they work, why they are useful, and some of the programming issues 
surrounding their use. As an introductory text, it does not attempt a deep, detailed analysis of the 
most current research, but it does come close. After reading this book the reader should have a 
solid understanding of the fundamentals, be able to write credible, modestly complex, threaded 
programs, and have the understanding necessary to analyze their own programs and determine the 
viability of threading them. 

This book has been written with the experienced Java programmer in mind. There is a definite 
UNIX bias, but none of that is essential to understanding. A Java programmer who does not know 
C will find the POSIX code fragments mildly challenging, although possible to decipher. The 
concepts should be clear. A technically minded nonprogrammer should be able to follow most of 
the concepts and understand the value of threads. A nontechnical person will not get much from 
this book. 

This book does not attempt to explain the use of Win32 or POSIX APIs. It does contrast them to 
Java APIs to explain some of the higher-level Java behavior in lower-level terms. 

 

How This Book Is Organized 

Chapter 1, Introduction— In which we discuss the motivation for creating thread libraries, the 
advent of shared memory multiprocessors, and the interactions between threads and SMP 
machines. 

Chapter 2, Concepts— In which the reader is introduced to the basic concepts of multitasking 
operating systems and of multithreading as it compares to other programming paradigms. The 
reader is shown reasons why multithreading is a valuable addition to programming paradigms, and 
a number of examples of successful deployment are presented. 

Chapter 3, Foundations— In which we introduce the reader to the underlying structures upon 
which threads are built, the construction of the thread itself, and the operating system support that 
allows efficient implementation. 

Chapter 4, Lifecycle— In which the reader is treated to a comprehensive explanation of the 
intricacies in the life of a thread— birth, life, and death—even death by vile cancellation. A small 
program that illustrates all these stages concludes the chapter. 
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Chapter 5, Scheduling— In which we explain the myriad details of various scheduling models 
and alternative choices that could be made, describe context switching in detail, and delve into 
gruesome detail on various design options. There is light at the end of the tunnel, however. 

Chapter 6, Synchronization— In which the reader is led on a hunt for the intimidating 
synchronization variable and discovers that it is not actually as frightening as had been thought. 
Programs illustrating the basic use of the POSIX and Java primitives are shown. 

Chapter 7, Complexities— In which a series of more complex synchronization variables and 
options are presented and the trade-off between them and the simpler ones are discussed. 
Synchronization problems and techniques for dealing with them conclude the chapter. 

Chapter 8, TSD— In which explanations of thread-specific data, their use, and some 
implementation details are provided. 

Chapter 9, Cancellation— In which we describe the acrimonious nature of some programs and 
how unwanted threads may be disposed of. The highly complex issues surrounding bounded time 
termination and program correctness are also covered. A simple conclusion is drawn. 

Chapter 10, Details— In which a number of minor details are covered. 

Chapter 11, Libraries— In which we explore a variety of operating systems issues that bear 
heavily upon the usability of threads in actual programs. We examine the status of library 
functions and the programming issues facing them. We look at some design alternatives for library 
functions. 

Chapter 12, Design— In which we explore some designs for programs and library functions. 
Making both programs and individual functions more concurrent is a major issue in the design of 
these functions. We look at a variety of code examples and the trade-offs between them. 

Chapter 13, RMI— In which we examine RMI and see what it provides in terms of a distributed 
object programming model. We look at how threading interacts with it and how it uses threads. 

Chapter 14, Tools— In which we consider the kinds of new tools that a reader would want when 
writing a threaded program. An overview of the Solaris tool set is given, as representative of what 
should be looked for. 

Chapter 15, Performance— In which we make things faster, look at general performance issues, 
political performance issues, and thread specific performance issues. We conclude with a 
discussion of the actual performance of multithreaded NFS. 

Chapter 16, Hardware— In which we look at the various designs for SMP machines (cache 
architectures, interconnect topologies, atomic instructions, invalidation techniques) and consider 
how those designs affect our programming decisions. Some optimization possibilities are looked 
at. 

Chapter 17, Examples— In which several complete programs are presented. The details and 
issues surrounding the way they use threads are discussed, and references to other programs on the 
Net are made. 
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Chapter 1. Introduction 
In which we discuss the motivation for creating thread libraries, the advent of shared memory 
multiprocessors, and the interactions between threads and SMP machines. 

Multithreading (MT) is a technique that allows one program to do multiple tasks concurrently. 
The basic concept of multithreaded programming has existed in research and development labs for 
several decades. Co-routine systems such as Concurrent Pascal and InterLisp's Spaghetti stacks 
were in use in the mid-70s and dealt with many of the same issues. Ada's tasks are a language-
based construct that maps directly onto threads (so directly, in fact, that current Ada compilers 
implement tasks with threads). Burroughs shipped a commercial mainframe OS with co-routine-
style threads as early as 1960. 

The emergence of this concept in industry as an accepted, standardized programming paradigm is 
a phenomenon of the 1990s. As with many other concepts, the research and experimental use of 
threads have been widespread in specific industries, universities, and research institutes and are 
entering industry as a relatively well-formed whole on all fronts almost simultaneously. In 1991, 
no major commercial operating systems contained a robust user-level threads library. In 1999, 
every major player in the computer industry has one. 

Some of the motivation for this emergence can be ascribed to general good sense and the 
recognition of a technology whose time has come. Some can be related to the unification efforts 
surrounding UNIX. Probably the greatest push, especially when viewed from the point of view of 
the independent software vendor (ISV) and the end user, is the emergence of shared memory 
symmetric multiprocessors (SMPs). MT provides exactly the right programming paradigm to 
make maximum use of these new machines. 

Java was designed from the very beginning with threads in mind, and some of its functionality is 
based very directly on having threads. The ability to have applets is based in allowing them to run 
in different threads in a browser. Because of Java's high-level approach to programming, it is 
much easier to build a threaded program in Java than in POSIX or Win32. At the same time, the 
fundamental issues do not change. This may well lure many programmers into writing threaded 
programs before they truly understand all of the intricacies. Oh, well. 

The threading models we describe are strictly software models that can be implemented on any 
general-purpose hardware. Much research is directed toward creating better hardware that would 
be uniquely suited for threaded programming. We do not address that aspect in this book. 

To those of us concerned with the theoretical underpinnings of programming paradigms and 
language design, the true value of multithreading is significant and obvious. It provides a far 
superior paradigm for constructing programs. For those concerned with the practical details of 
getting real tasks done using computers, the value is significant and obvious as well. 
Multithreading makes it possible to obtain vastly greater performance than was ever before 
possible by taking advantage of multiprocessor machines. 

At whatever price point, the purchasers of workstations want maximum performance from their 
machines. The demands of computationally intensive users are always growing, and they 
invariably exceed the provisions of their wallets. They might want a "personal Cray," but they 
can't afford one. 

One of the solutions to this demand lies in the ever-increasing performance of CPUs. Along with 
the obvious technique of increasing the clock speed, a wide range of other methods is used to 
increase the performance of individual CPUs. The use of long instruction pipelines or superscalar 
techniques has allowed us to produce multiple-instruction-issue machines that can do a lot more in 
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a single clock tick. Finer compiler optimization techniques, out-of-order execution, predictive 
branching, VLIW, etc., allow us to obtain better and better performance from processors. However 
good these methods are, they still have their limits. 

One of the major limiting factors is the problem of limited bus, memory, and peripheral speeds. 
We can build CPUs today that operate at 600 MHz, but we can't build communications buses that 
operate at the same speed. RAM speeds are also falling further behind the demands of the CPUs. 
It is expensive to build 600-MHz CPUs, but as there are only a few in a system, it is affordable. 
To build memory that can keep up with these speeds would be prohibitively expensive. A great 
many machines today implement two- and even three-level caches to deal with this problem 
(single-level caches weren't enough!). Multilevel caches work effectively with well-behaved 
programs, where sequential data and instruction references are likely to be physically adjacent in 
memory. But truly random-access programs wreak havoc on this scheme, and we can point to any 
number of programs that run faster on slower machines that lack that second-level cache. 

None of the issues addressed above play favorites with any manufacturers. Sun, Intel, HP, IBM, 
SGI, DEC, etc., have come up with techniques for dealing with them. Some techniques have 
proven to be more effective than others, but none of them avoids the fundamental limitations of 
physics. Nature is a harsh mistress. 

This is where SMP comes into play. It is one more weapon in our arsenal for performance. Just as 
the foregoing techniques have allowed us to increase our single-CPU performance, SMP allows us 
to increase our overall system performance. And that's what we really care about—overall system 
performance. As one customer put it, "SMP, superscalar—buzzwords! I don't care if you have 
little green men inside the box! I want my program to run faster!" 

We can build 64-processor machines today (e.g., the Cray CS6400) that will yield 64 times the 
performance of a single-processor machine (on some problems). The cost of that 64-CPU machine 
is a fraction of the cost of 64 single-processor machines. In a 64-way SMP machine, all 64 
processors share the system costs: chassis, main memory, disks, software, etc. With 64 
uniprocessors, each processor must have its own chassis, memory, etc. This fact makes SMP 
highly attractive for its price/performance ratio. An additional attraction of SMP is that it is also 
possible to purchase a machine with a small number of CPUs and add more CPUs as demands 
(and budgets) increase. In Figure 1-1, these advantages of SMP are clear. 

Figure 1-1. Performance for Digital's Alpha Servers (8400 5/625) 
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The economics of purchasing an SMP machine are pretty much the same as the economics of 
purchasing any machine. There are some extra unknowns ("I have 600 different applications that I 
run from time to time; how much faster will they all run? How much time will I save in a day?"), 
but if we focus on the primary applications in use, we can get reasonable data upon which to make 
our decisions. The basic question is, "If my applications run an average of N% faster on a dual-
CPU machine that costs M% more, is it worth it?" 

Only you (or your customers) can answer this question, but we can give you some generalities. 
Here is a typical situation: The customer's major application is MARC Analysis's MARC Solver 
(for circuit simulation). The MARC Solver runs about 80% faster on a dual-processor 
SPARCstation™ 20 than it does on a single-processor SPARCstation 20. The single-processor 
machine costs $16,000; the dual-processor unit costs $18,000 (about 12% more). If the designers 
(who cost at least $100,000/year) are constantly waiting for the solver to complete its runs, is it 
worth it? Obviously, yes. You will save a lot of money on a minor investment. Indeed, MARC 
sells very well on SMP machines. 

If you are a program developer (either in-house or an ISV), your question is going to be, "Should I 
spend the time to write my program so that it will take advantage of SMP machines?" (This 
probably means threading, although there are other possibilities.) Your answer will be related to 
your anticipated sales. If your program runs 50% faster on a dual-processor machine, will your 
customers buy SMP machines and more of your software? Or, to pose the question differently, if 
you don't do it, will some competitor do it instead and steal your customers? 

The answer depends upon your program. If you write a simple text editor that is never CPU-bound, 
the answer is a clear "no." If you write a database that is always CPU-bound, it's "yes." If you 
write a page-layout program that is sometimes CPU-bound, the answer is "maybe." In general, if 
users ever have to wait for your program, you should be looking at threading and SMP. 

But there is more value to threading than just SMP performance. In many instances, uniprocessors 
will also experience a significant performance improvement. And that bit about programming 
paradigms? It really does count. Being able to write simpler, more readable code helps you in 
almost all aspects of development. Your code can be less buggy, get out there faster, and be easier 
to maintain. 

Multithreading is not a magic bullet for all your ills,[1] and it does introduce a new set of 
programming issues that must be mastered, but it goes a long way toward making your work 
easier and your programs more efficient. 

[1] If you have ever spent days debugging complex signal handling code, you may disagree. For 
asynchronous code, it is a magic bullet! 
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Chapter 2. Concepts 
• Background: Traditional Operating Systems 
• What Is a Thread? 
• Kernel Interaction 
• The Value of Using Threads 
• What Kinds of Programs to Thread 
• What About Shared Memory? 
• Threads Standards 
• Performance 

In which the reader is introduced to the basic concepts of multitasking operating systems and of 
multithreading as it compares to other programming paradigms. The reader is shown reasons why 
multithreading is a valuable addition to programming paradigms, and a number of examples of 
successful deployment are presented. 

 

Background: Traditional Operating Systems 

Before we get into the details of threads, it will be useful for us to have some clear understanding 
of how operating systems without threads work. In the simplest operating system world of single-
user, single-tasking operating systems such as DOS, everything is quite easy to understand and to 
use, although the functionality offered is minimal. 

DOS divides the memory of a computer into two sections: the portion where the operating system 
itself resides (kernel space[1]) and the portion where the programs reside (user space). The division 
into these two spaces is done strictly by the implicit agreement of the programmers involved—
meaning that nothing stops a user program from accessing data in kernel space. This lack of 
hardware enforcement is good, because it is simple and works well when people write perfect 
programs. When a user program needs some function performed for it by kernel code (such as 
reading a file from a disk), the program can call the DOS function directly to read that file. 

[1] Kernel space is UNIX lingo for this concept, but the concept is valid for all operating systems. 

Each program has some code that it runs (which is just a series of instructions, where the program 
counter points to the current instruction), some data (global and local) that it uses, and a stack 
where local data and return addresses are stored (the stack pointer designates the current active 
location on the stack). 

Figure 2-1 illustrates the traditional DOS operating system memory layout. Thus, as shown in 
Figure 2-1, the division between user space and kernel space is a division by agreement of the 
programmers; there is no hardware enforcement of the policy at all. The drawbacks to this 
technique are significant, however. Not all programs are written flawlessly, and a programming 
mistake (or virus!) here can bring down the entire machine or, worse, destroy valued data. Neither 
can a machine run more than one program at a time, nor can more than one user log in to the 
machine at a time. Dealing with networks from DOS machines is somewhat awkward and limited. 

Figure 2-1. Memory Layout for DOS-Style Operating Systems 
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In a typical multitasking operating system such as VMS, UNIX, Windows NT, etc., this dividing 
line between the user space and the kernel space is solid (Figure 2-2); it's enforced by the 
hardware. There are actually two different modes of operation for the CPUs: user mode, which 
allows normal user programs to run, and kernel mode, which also allows some special instructions 
to run that only the kernel can execute. These kernel-mode instructions include I/O instructions, 
processor interrupt instructions, instructions that control the state of the virtual memory subsystem, 
and, of course, the change mode instruction. 

Figure 2-2. Memory Layout for Multitasking Systems 

 

So a user program can execute only user-mode instructions, and it can execute them only in user 
space. The data it can access and change directly is also limited to data in user space. When it 
needs something from the kernel (say, it wants to read a file or find out the current time), the user 
program must make a system call. This is a library function that sets up some arguments, then 
executes a special trap instruction. This instruction causes the hardware to trap into the kernel, 
which then takes control of the machine. The kernel figures out what the user wants (based upon 
the data that the system call set up) and whether the user has permission to do so. Finally, the 
kernel performs the desired task, returning any information to the user process. 

Because the operating system has complete control over I/O, memory, processors, etc., it needs to 
maintain data for each process it's running. The data tells the operating system what the state of 
that process is—what files are open, which user is running it, etc. So, the concept of process in the 
multitasking world extends into the kernel (see Figure 2-2), where this information is maintained 
in a process structure. In addition, as this is a multitasking world, more than one process can be 
active at the same time, and for most of these operating systems (notably, neither Windows NT 
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nor OS/2), more than one user can log in to the machine independently and run programs 
simultaneously. 

Thus, in Figure 2-3, process P1 can be run by user Kim while P2 and P3 are being run by user Dan, 
and P4 by user Bil. There is also no particular restriction on the amount of memory that a process 
can have. P2 might use twice as much memory as P1, for example. It is also true that no two 
processes can see or change each other's memory unless they have set up a special shared memory 
segment. 

Figure 2-3. Processes on a Multitasking System 

 

For all the user programs in all the operating systems mentioned so far, each has one stack, one 
program counter, and one set of CPU registers per process. So each of these programs can do only 
one thing at a time. They are single threaded. 

 

What Is a Thread? 

Just as multitasking operating systems can do more than one thing concurrently by running more 
than a single process, a process can do the same by running more than a single thread. Each thread 
is a different stream of control that can execute its instructions independently, allowing a 
multithreaded process to perform numerous tasks concurrently. One thread can run the GUI while 
a second thread does some I/O and a third performs calculations. 

A thread is an abstract concept that comprises everything a computer does in executing a 
traditional program. It is the program state that gets scheduled on a CPU; it is the "thing" that does 
the work. If a process comprises data, code, kernel state, and a set of CPU registers, then a thread 
is embodied in the contents of those registers—the program counter, the general registers, the 
stack pointer, etc., and the stack. A thread, viewed at an instant of time, is the state of the 
computation. 

"Gee," you say, "That sounds like a process!" It should. They are conceptually related. But a 
process is a heavyweight, kernel-level entity and includes such things as a virtual memory map, 
file descriptors, user ID, etc., and each process has its own collection of these. The only way for 
your program to access data in the process structure, to query or change its state, is via a system 
call. 
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All parts of the process structure are in kernel space (Figure 2-4). A user program cannot touch 
any of that data directly. By contrast, all of the user code (functions, procedures, etc.), along with 
the data, is in user space and can be accessed directly. 

Figure 2-4. Relationship between a Process and Threads 

 

A thread is a lightweight entity, comprising the registers, stack, and some other data. The rest of 
the process structure is shared by all threads: the address space, file descriptors, etc. Much (and 
sometimes all) of the thread structure is in user space, allowing for very fast access. 

The actual code (functions, routines, signal handlers, etc.) is global, and it can be executed on any 
thread. In Figure 2-4 we show three threads (T1, T2, and T3), along with their stacks, stack 
pointers (SP), and program counters (PC). T1 and T2 are executing the same function. This is a 
normal situation, just as two different people can read the same road sign at the same time. 

All threads in a process share the state of that process (Figure 2-5[2]). They reside in exactly the 
same memory space, see the same functions, and see the same data. When one thread alters a 
process variable (say, the working directory), all the others will see the change when they next 
access it. If one thread opens a file to read it, all the other threads can also read from it. 

[2] From here on, we will use the squiggle shown in the figure to represent the entire thread—stack, 
stack pointer, program counter, thread structure, etc. 

Figure 2-5. Process Structure and Thread Structures 
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Let's consider a human analogy: a bank. A bank with one person working in it (traditional process) 
has lots of "bank stuff," such as desks and chairs, a vault, and teller stations (process tables and 
variables). There are lots of services that a bank provides: checking accounts, loans, savings 
accounts, etc. (the functions). With one person to do all the work, that person would have to know 
how to do everything, and could do so, but it might take a bit of extra time to switch among the 
various tasks. With two or more people (threads), they would share all the same "bank stuff," but 
they could specialize in their different functions. And if they all came in and worked on the same 
day, lots of customers could get serviced quickly. 

To change the number of banks in town would be a big effort (creating new processes), but to hire 
one new employee (creating a new thread) would be very simple. Everything that happened inside 
the bank, including interactions among the employees there, would be fairly simple (user space 
operations among threads), whereas anything that involved the bank down the road would be 
much more involved (kernel space operations between processes). 

When you write a multithreaded program, 99% of your programming is identical to what it was 
before—you spend your efforts in getting the program to do its real work. The other 1% is spent in 
creating threads, arranging for different threads to coordinate their activities, dealing with thread-
specific data, etc. Perhaps 0.1% of your code consists of calls to thread functions. 

 

Kernel Interaction 

We've now covered the basic concept of threads at the user level. As noted, the concepts and most 
of the implementational aspects are valid for all thread models. What's missing is the definition of 
the relationship between threads and the operating systems. How do system calls work? How are 
threads scheduled on CPUs? 

It is at this level that the various implementations differ significantly. The operating systems 
provide different system calls, and even identical system calls can differ widely in efficiency and 
robustness. The kernels are constructed differently and provide different resources and services. 

Keep in mind as we go through this implementation aspect that 99% of your threads programming 
will be done above this level, and the major distinctions will be in the area of efficiency. 

Concurrency vs. Parallelism 
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Concurrency means that two or more threads (or traditional processes) can be in the middle of 
executing code at the same time; it could be the same code or it could be different code (see 
Figure 2-6). The threads may or may not actually be executing at the same time, but rather, in the 
middle of it (i.e., one started executing, it was interrupted, and the other one started). Every 
multitasking operating system has always had numerous concurrent processes, even though only 
one could be on the CPU at any given time. 

Figure 2-6. Three Threads Running Concurrently on One CPU 

 

Parallelism means that two or more threads actually run at the same time on different CPUs (see 
Figure 2-7). On a multiprocessor machine, many different threads can run in parallel. They are, of 
course, also running concurrently. 

Figure 2-7. Three Threads Running in Parallel on Three CPUs 

 

The vast majority of timing and synchronization issues in multithreading (MT) are those of 
concurrency, not parallelism. Indeed, the threads model was designed to avoid your ever having to 
be concerned with the details of parallelism. Running an MT program on a uniprocessor (UP) does 
not simplify your programming problems at all. Running on a multiprocessor (MP) doesn't 
complicate them. This is a good thing. 

Let us repeat this point. If your program is written correctly on a uniprocessor, it will run correctly 
on a multiprocessor. The probability of running into a race condition is the same on both a UP and 
an MP. If it deadlocks on one, it will deadlock on the other. (There are lots of weird little 
exceptions to the probability part, but you'd have to try hard to make them appear.) There is a 
small set of bugs, however, which may cause a program to run as (naively) expected on a UP, and 
show its problems only on an MP (see Bus Architectures). 

System Calls 

A system call is basically a function that ends up trapping to routines in the kernel. These routines 
may do things as simple as looking up the user ID for the owner of the current process, or as 
complex as redefining the system's scheduling algorithm. For multithreaded programs, there is a 
serious issue surrounding how many threads can make system calls concurrently. For some 
operating systems, the answer is "one"; for others, it's "many." The most important point is that 
system calls run exactly as they did before, so all your old programs continue to run as they did 
before, with (almost) no degradation. 
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Signals 

Signals are the UNIX kernel's way of interrupting a running process and letting it know that 
something of interest has happened. (NT has something similar but doesn't expose it in the Win32 
interface.) It could be that a timer has expired, or that some I/O has completed, or that some other 
process wants to communicate something. 

Happily, Java does not use UNIX signals, so we may conveniently ignore them entirely! The role 
that signals play in UNIX programs is handled in Java either by having a thread respond to a 
synchronous request or by the use of exceptions. 

Synchronization 

Synchronization is the method of ensuring that multiple threads coordinate their activities so that 
one thread doesn't accidentally change data that another thread is working on. This is done by 
providing function calls that can limit the number of threads that can access some data 
concurrently. 

In the simplest case (a mutual exclusion lock—a mutex), only one thread at a time can execute a 
given piece of code. This code presumably alters some global data or performs reads or writes to a 
device. For example, thread T1 obtains a lock and starts to work on some global data. Thread T2 
must now wait (typically, it goes to sleep) until thread T1 is done before T2 can execute the same 
code. By using the same lock around all code that changes the data, we can ensure that the data 
remains consistent. 

Scheduling 

Scheduling is the act of placing threads onto CPUs so that they can execute, and of taking them 
off those CPUs so that others can run instead. In practice, scheduling is not generally an issue 
because "it all works" just about the way you'd expect. 

 

The Value of Using Threads 

There is really only one reason for writing MT programs—to get better programs more quickly. If 
you're an Independent Software Vendor (ISV), you sell more software. If you're developing 
software for your own in-house use, you simply have better programs to use. The reason you can 
write better programs is that MT gives your programs and your programmers a number of 
significant advantages over nonthreaded programs and programming paradigms. 

A point to keep in mind here is that you are not replacing simple, nonthreaded programs with 
fancy, complex, threaded programs. You are using threads only when you need them to replace 
complex or slow nonthreaded programs. Threads are just one more way to make your 
programming tasks easier. 

The main benefits of writing multithreaded programs are: 

• Performance gains from multiprocessing hardware (parallelism) 
• Increased application throughput 
• Increased application responsiveness 
• Replacing process-to-process communications 
• Efficient use of system resources 
• One binary that runs well on both uniprocessors and multiprocessors 
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• The ability to create well-structured programs 

The following sections elaborate further on these benefits. 

Parallelism 

Computers with more than one processor offer the potential for enormous application speedups 
(Figure 2-8). MT is an efficient way for application developers to exploit the parallelism of the 
hardware. Different threads can run on different processors simultaneously with no special input 
from the user and no effort on the part of the programmer. 

Figure 2-8. Different Threads Running on Different Processors 

 

A good example is a process that does matrix multiplication. A thread can be created for each 
available processor, allowing the program to use the entire machine. The threads can then compute 
distinct elements of the resulting matrix by performing the appropriate vector multiplication. 

Throughput 

When a traditional, single-threaded program requests a service from the operating system, it must 
wait for that service to complete, often leaving the CPU idle. Even on a uniprocessor, 
multithreading allows a process to overlap computation with one or more blocking system calls 
(Figure 2-9). Threads provide this overlap even though each request is coded in the usual 
synchronous style. The thread making the request must wait, but another thread in the process can 
continue. Thus, a process can have numerous blocking requests outstanding, giving you the 
beneficial effects of doing asynchronous I/O while still writing code in the simpler synchronous 
fashion. 

Figure 2-9. Two Threads Making Overlapping System Calls 
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Responsiveness 

Blocking one part of a process need not block the entire process. Single-threaded applications that 
do something lengthy when a button is pressed typically display a "please wait" cursor and freeze 
while the operation is in progress. If such applications were multithreaded, long operations could 
be done by independent threads, allowing the application to remain active and making the 
application more responsive to the user. In Figure 2-10, one thread is waiting for I/O from the 
buttons, and several threads are working on the calculations. 

Figure 2-10. Threads Overlapping Calculation and I/O 

 

Communications 

An application that uses multiple processes to accomplish its tasks can be replaced by an 
application that uses multiple threads to accomplish those same tasks. Where the old program 
communicated among its processes through traditional interprocess communications facilities (e.g., 
pipes or sockets), the threaded application can communicate via the inherently shared memory of 
the process. The threads in the MT process can maintain separate connections while sharing data 
in the same address space. A classic example is a server program, which can maintain one thread 
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for each client connection, such as in Figure 2-11. This program provides excellent performance, 
simpler programming, and effortless scalability. 

Figure 2-11. Different Clients Being Handled by Different Threads 

 

System Resources 

Programs that use two or more processes to access common data through shared memory are 
effectively applying more than one thread of control. However, each such process must maintain a 
complete process structure, including a full virtual memory space and kernel state. The cost of 
creating and maintaining this large amount of state makes each process much more expensive, in 
both time and space, than a thread. In addition, the inherent separation between processes may 
require a major effort by the programmer to communicate among the different processes or to 
synchronize their actions. By using threads for this communication instead of processes, the 
program will be easier to debug and can run much faster. 

An application can create hundreds or even thousands of threads, one for each synchronous task, 
with only minor impact on system resources. Threads use a fraction of the system resources 
needed by processes. 

Distributed Objects 

With the first releases of standardized distributed objects and object request brokers, your ability 
to make use of these will become increasingly important. Distributed objects are inherently 
multithreaded. Each time you request an object to perform some action, it executes that action in a 
separate thread (Figure 2-12). Object servers are an absolutely fundamental element in distributed 
object paradigm, and those servers are inherently multithreaded. 

Figure 2-12. Distributed Objects Running on Distinct Threads 
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Although you can make a great deal of use of distributed objects without doing any MT 
programming, knowing what they are doing and being able to create objects that are threaded will 
increase the usefulness of the objects you do write. 

Same Binary for Uniprocessors and Multiprocessors 

In most older parallel processing schemes, it was necessary to tailor a program for the individual 
hardware configuration. With threads, this customization isn't required because the MT paradigm 
works well irrespective of the number of CPUs. A program can be compiled once, and it will run 
acceptably on a uniprocessor, whereas on a multiprocessor it will just run faster. 

Program Structure 

Many programs are structured more efficiently with threads because they are inherently 
concurrent. A traditional program that tries to do many different tasks is crowded with lots of 
complicated code to coordinate these tasks. A threaded program can do the same tasks with much 
less, far simpler code, as in Figure 2-13. Multithreaded programs can be more adaptive to 
variations in user demands than single-threaded programs can. 

Figure 2-13. Simplified Flow of Control in Complex Applications 

 

This is quite some set of claims, and a bit of healthy skepticism is called for. Sure, it sounds good 
when we say it, but what about when you try to use it? We cannot guarantee that you will 
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experience the same wonderful results, but we can point out a number of cases where other folks 
have found MT programming to be of great advantage (see Performance). 

 

What Kinds of Programs to Thread 

There is a spectrum of programs that one might wish to thread. On one end, there are those that 
are inherently "MT-ish"—you look at the work to be done, and you think of it as several 
independent tasks. In the middle, there are programs where the division of work isn't obvious, but 
possible. On the far other end, there are those that cannot reasonably be threaded at all. 

Inherently MT Programs 

Inherently MT programs are those that are easily expressed as numerous threads doing numerous 
things. Such programs are easier to write using threads, because they are doing different things 
concurrently anyway. They are generally simpler to write and understand when threaded, easier to 
maintain, and more robust. The fact that they may run faster is a mere pleasant side effect. For 
these programs, the general rule is that the more complex the application, the greater the value of 
threading. 

Typical programs that are inherently MT include: 

Independent tasks 

A debugger needs to run and monitor a program, keep its GUI active, and display an interactive 
data inspector, dynamic call grapher, and performance monitor—all in the same address space, all 
at the same time. 

Servers 

A server needs to handle numerous overlapping requests simultaneously. NFS®, NIS, DBMSs, 
stock quotation servers, etc., all receive large numbers of requests that require the server to do 
some I/O, then process the results and return answers. Completing one request at a time would be 
very slow. 

Repetitive tasks 

A simulator needs to simulate the interactions of numerous different elements that operate 
simultaneously. CAD, structural analysis, weather prediction, etc., all model tiny pieces first, then 
combine the results to produce an overall picture. 

Not Obviously MT Programs 

Not obviously MT programs are those not inherently MT but for which threading is reasonable. 
Here you impose threads upon an algorithm that does not have an obvious decomposition, in order 
to achieve a speedup on an MP machine. Such a program is somewhat harder to write, a bit more 
difficult to maintain, etc., than its nonthreaded counterpart, but it runs faster. Because of these 
drawbacks, the (portions of) programs chosen are generally quite simple. 

Typical programs in this class include: 

Numerical programs 
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Many numerical programs (e.g., matrix operations) are made up of huge numbers of tiny, identical, 
and independent operations. They are most easily (well, most commonly) expressed as loops 
inside loops. Slicing these loops into appropriate-sized chunks for threads is slightly more 
complicated, and there would be no reason to do so, save for the order-N speedup that can be 
obtained on an N-way SMP machine. 

Old code 

These are the "slightly modified existing systems." This is existing code that makes you think to 
yourself: "If I just change a few bits here and there, add a few locks, then I can thread it and 
double my performance." 

It's true, it is possible to do this, and there are lots of examples. However, this is a tough situation 
because you will constantly be finding new interactions that you didn't realize existed before. In 
such cases (which, due to the nature of the modern software industry, are far too common), you 
should concentrate on the bottlenecks and look for absolutely minimal submodules that can be 
rewritten. It's always best to take the time to do it right: re-architect and write the program 
correctly from the beginning. 

Automatic Threading 

In a subset of cases, it is possible for a compiler to do the threading for you. If you have a program 
written in such a way that a compiler can analyze its structure, analyze the interdependencies of 
the data, and determine that parts of your program can run simultaneously without data conflicts, 
then the compiler can build the threads. 

With current technology, the capabilities above are limited largely to Fortran programs that have 
time-consuming loops in which the individual computations in those loops are obviously 
independent. The primary reason for this limitation is that Fortran programs tend to have very 
simple structuring, both for code and data, making the analysis viable. Languages like C, which 
have constructs such as pointers, make the analysis enormously more difficult. There are MP 
compilers for C, but far fewer programs can take advantage of such compiling techniques. 

With the different Fortran MP compilers,[3] it is possible to take vanilla Fortran 77 or 90 code, 
make no changes to it whatsoever, and have the compiler turn out threaded code. In some cases it 
works very well; in others, not. The cost of trying it out is very small, of course. A number of Ada 
compilers will map Ada tasks directly on top of threads, allowing existing Ada programs to take 
advantage of parallel machines with no changes to the code. 

[3] Digital's Fortran compiler, Sun® Fortran MP, Kuck and Associates' Fortran compiler, EPC's 
Fortran compiler, SGI's MP Fortran compiler, probably more. 

Programs Not to Thread 

Then there is a large set of programs that it doesn't make any sense to thread. Probably 99% of all 
programs either do not lend themselves easily to threading or run just fine the way they are. Some 
programs simply require separate processes in which to run. Perhaps they need to execute one task 
as root but need to avoid having any other code running as root. Perhaps the program needs to be 
able to control its global environment closely, changing working directories, etc. Most programs 
run quite fast enough as they are and don't have any inherent multitasking, such as an icon editor 
or a calculator application. 

In all truth, multithreaded programming is more difficult than regular programming. There are a 
host of new problems that must be dealt with, many of which are difficult. Threads are of value 
primarily when the task at hand is complex. 
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What About Shared Memory? 

At this time, you may be asking yourself, "What can threads do that can't be done by processes 
sharing memory?" The first answer is, "nothing." Most anything that you can do with threads, you 
can do with processes sharing memory. Indeed, a number of vendors implement a significant 
portion of their threads library in roughly this fashion. There are a few details, such as managing 
shared file descriptors, which are not supported on all systems. Nonetheless, the additional 
expense and complication of using multiple processes restricts the usefulness of this method. Java 
is defined in such a way that sharing memory between processes is not an option, so we will skip 
over this technique, which is sometimes interesting to C/C++ programmers. 

 

Threads Standards 

There are three different definitions for native thread libraries competing for attention today: 
Win32, OS/2, and POSIX. The first two are proprietary and limited to their individual platforms 
(Win32 threads run only under NT and Win95, OS/2 threads only on OS/2). The POSIX 
specification (IEEE 1003.1c, a.k.a. Pthreads) is intended for all computing platforms, and 
implementations are available or in development for almost all major UNIX systems (including 
Linux), along with VMS and AS/400—not to mention a freeware library for Win32. 

By contrast, Java threads are implemented in the JVM, which in turn is built on top of the native 
threads library for the specific platform.[4] Java does not expose the native threads' APIs, only its 
own, very small set of functions. This allows Java threads to be easier to use than the native 
libraries and more portable, but there are still some significant issues in making programs run 
uniformly across all platforms. 

[4] Actually, the JVM is allowed to implement threads any way it feels like. Indeed, the first 
implementations of Java used green threads, which were not native. Today, most JVMs are built on 
native threads. 

POSIX Threads 

The POSIX standard defines the API and behavior that all Pthreads libraries must meet. It is part 
of the extended portion of POSIX, so it is not a requirement for meeting XPG4, but it is required 
for X/Open UNIX 98, and all major UNIX vendors have implemented this standard. In addition, 
UNIX98 includes a small set of extensions to Pthreads. 

Win32 and OS/2 Threads 

Both the NT and OS/2 implementations contain some fairly radical differences from the POSIX 
standard—to the degree that even porting from one or the other to POSIX will prove moderately 
challenging. Microsoft has not announced any plans to adopt POSIX. There are freeware POSIX 
libraries for Win32, and OS/2 also has an optional POSIX library. 

DCE Threads 

Before POSIX completed work on the standard, it produced a number of drafts that it published 
for comment. Draft 4 was used as the basis for the threads library in DCE. It is similar to the final 
spec, but it does contain a number of significant differences. Presumably, no one is writing any 
new threaded DCE code. 
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Solaris Threads 

Also known as UI threads, this is the library that SunSoft used in developing Solaris 2 before the 
POSIX committee completed its work. It will be available on Solaris 2 for the foreseeable future, 
although we expect most applications writers will opt for Pthreads. The vast majority of the two 
libraries are virtually identical. 

 

Performance 

Even after reading all these wonderful things about threads, there's always someone who insists on 
asking that ever-so-bothersome question: "Does it work?" For an answer, we turn to some real, 
live shipping programs. Some of these are described in greater detail in the MT "Case Studies" 
(see Threads Newsgroup). 

Operating Systems 

OSs are large, complex, yet still highly efficient and robust programs. The various OSs have been 
in daily use by millions of users over the past couple of years and have endured the stress put on 
them by hundreds of thousands of programmers who are not known for their generosity toward 
operating system quirks. Mach, Windows NT, Windows 95, Solaris, IRIX, AIX, OS/2, and Digital 
UNIX are all threaded, and many of the other UNIX vendors are also moving toward a threaded 
kernel. 

NFS 

Under most UNIX systems, both the NFS client and server are threaded (Figure 2-14). There 
aren't any standardized benchmarks for the client side, so you'll have to take our word for it that 
it's faster. On the server side, however, there is the LADDIS benchmark from SPEC. A great deal 
of time has been spent optimizing NFS for multiple CPUs, quite successfully. 

Figure 2-14. NFS Performance on MP Machines (SPEC '96) 

 

SPECfp 95 
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The rule for the SPECfp benchmark is that a compiler is allowed to do pretty much anything it 
wants to, as long as that compiler is available to customers and nobody changes the source code at 
all. The various Fortran 77/90 MP compilers automatically multithread a program with no user 
intervention, so they are legal. You give the compiler the code, completely unchanged, and it 
looks to see if there is any possibility of threading it. It is possible to thread 6 of the 14 SPECfp 
programs automatically. The results are very impressive (Table 2-1). 

Table 2-1. SPECfp95 Results for Alpha 4100 5/466 (SPEC '97) 
Number of CPUs  Tomcatv  Swim Su2cor  Hydro2d  Mgrid  Turb3d  
1  23.8  25.4  10.1  10.0  17.5  19.1  
2  33.1  46.2  18.0  15.4  24.5  33.4  
4  40.3  83.8  30.3  21.3  34.6  54.9  

SPECint_rate95 

SPECfp 95 is a reasonable set of benchmarks for single-CPU machines, but it does not give a 
good picture of the overall performance potential of multiprocessor machines (Figure 2-15). The 
SPECrate is intended to demonstrate this potential by allowing the vendor to run as many copies 
of the program as desired (e.g., in one test with 30 CPUs, Sun ran 37 copies of each program). 
This benchmark does not use the MP compiler. 

Figure 2-15. Running SPECrate_fp95 on an SGI Origin/200, 2000 (SPEC '96) 

 

Java Benchmarks 

There are currently no Java benchmarks of interest to parallel processing. 

 

Summary 

Threads allow both concurrent execution in a single address space and parallel execution on 
multiple-processor machines, and they also make many complex programs easier to write. Most 
programs are simple and fast enough that they don't need threads, but for those programs that do 
need them, threads are wonderful. 
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Chapter 3. Foundations 
• Implementation vs. Specification 
• Thread Libraries 
• The Process Structure 
• Lightweight Processes 
• The POSIX Multithreaded Model 
• System Calls 
• Signals 

In which we introduce the reader to the underlying structures upon which threads are built, the 
construction of the thread itself, and the operating system support that allows efficient 
implementation. 

 

Implementation vs. Specification 

When writing a book of this nature, the authors are often faced with a difficult decision: How 
much should they restrict themselves to the pure specifications, and how much in the way of 
implementation should they allow to show through? By talking only about the specifications, the 
reader is given a pure rendition of what the library should do and is not misled into thinking that 
because a particular implementation did things one way, they all have to be like that. [1] 

[1] A specification is a description of what a program is supposed to do. An implementation is an 
actual program, which hopefully does what the spec says it should. The U.S. Constitution is a 
specification for a country. The United States is an implementation. 

Unfortunately, describing only the specification is rather akin to teaching the concepts of 
mathematics without ever mentioning the existence of numbers.[2] It's clean and pure, but terribly 
difficult to comprehend fully. So we have chosen to bring in implementation details when we 
think they will aid in comprehension. The implementation we refer to most is the Solaris 
implementation, largely because we know it best. 

[2] Yes, we are members of the "New Math" generation. 

Please keep in mind that these implementation details are included for your edification, but you 
should never write programs that depend upon them. They can change at any time, with no 
notification. Learn from the implementation; write to the specification. 

 

Thread Libraries 

There are two fundamentally different ways of implementing threads. The first is to write a user-
level library that is substantially self-contained. It will make calls to system routines, and it may 
depend upon the existence of certain kernel features, but it is fundamentally a user-level library 
and contains no "magic" hooks into secret kernel routines. All of the defining structures and code 
for the library will be in user space. The vast majority of the library calls will execute entirely in 
user space and make no more use of system routines than does any other user-level library. 
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The second way is to write a library that is inherently a kernel-level implementation. It may define 
all the same functions as in the first case, but these functions will be completely dependent upon 
the existence of kernel routines to support them and may well be almost entirely in kernel space. 
The user-level portion of the library will be relatively small compared to the amount of kernel-
level support it requires. The majority of library calls will require system calls. 

Both of these methods can be used to implement exactly the same API, and they overlap in the 
kinds of kernel support they require. Some implementations of the POSIX standard are of the first 
kind, while both OS/2 and Win32 threads are of the second type. When Java is implemented on 
these OSs it inherits the underlying behavior. 

In either case, the programmer will use an API that is implemented by a threads library. That 
library will provide a set of function calls (POSIX has about 50 calls, while Java has a dozen) that 
is the programmer's sole interface to threads. Everything not provided by those calls must come 
from the system's other libraries, meaning that 99% of writing a multithreaded program consists of 
writing regular, old-fashioned code almost the same way as before. 

As you read the descriptions of the APIs, you may be struck by the lack of fancy features. This is 
intentional. These libraries provide a foundation for writing MT programs, but not every detail 
you might like. They provide you the resources with which to build more elaborate functions. Spin 
locks, priority-inheriting mutexes, deadlock-recovery features, etc., can be built out of these 
primitives with relative ease. Thus, if you want very fast, minimal functionality constructs, they 
are provided. If you want the slower, more complex constructs, you can build them. 

We begin by talking about the parts of the system that are not inherently related to threads, but 
that do define a great deal about how threads must work. We use the specific example of how 
Solaris deals with the issues involved in building a viable interface between kernel-provided 
functionality and the user-level threads requirements. Other operating systems and other libraries 
have chosen different ways of providing this interface, and we do discuss them in general terms. 
We believe that by understanding one implementation in detail, you will acquire the background 
needed to fill in the gaps for the other implementations. 

 

The Process Structure 

The only thing the kernel knows about is the process structure. And the process structure has 
changed (slightly) since you last looked at it in traditional multitasking operating systems such as 
SunOS 4.x (see Figure 3-1). 

Figure 3-1. Process Structure in Traditional UNIX and in Solaris 2 
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It used to contain the memory map, the signal dispatch table, signal mask, user ID, group ID, 
working directory, etc., along with runtime statistics, CPU state (registers, etc.), and a kernel stack 
(for executing system calls). In Solaris 2, the last couple bits have been abstracted out and placed 
into a new structure called a lightweight process (LWP).[3] So a process contains all of the above, 
except for the runtime statistics, CPU state, and kernel stack, which are now part of the LWP 
structure. A process thus contains some number of LWPs (one for a "traditional" process, more for 
a multithreaded process). Just as the threads all share the process variables and state, the LWPs do 
the same. 

[3] The other operating systems that support user-level threads have different ways of dealing with 
the same issue. Some of them copy the entire process structure for each thread, some of them 
don't do anything. The concept of a separate, schedulable entity, such as the LWP, proves to be an 
excellent pedagogical concept, and the other designs can easily be described in terms of LWPs. 
LWP is, of course, a Solaris term. 

The process structure shown in Figure 3-1 is in kernel space—below the solid line in the figures. It 
is not directly accessible by any user code. User code can access it only via a system call. That 
restriction allows the kernel to check the legality of the call and prevent user code from doing 
things it shouldn't, either by intention or mistake. Because a system call is required to access the 
process structure information, it is a more costly operation than a function call. 

 

Lightweight Processes 

A lightweight process[4] can be thought of as a virtual CPU that is available for executing code. 
Each LWP is separately scheduled by the kernel. It can perform independent system calls and 
incur independent page faults, and multiple LWPs in the same process can run in parallel on 
multiple processors. 
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[4] SunOS 4.x had a library known as the LWP library. There is no relationship between Solaris 2 
LWPs and SunOS 4.x LWPs. 

LWPs are scheduled onto the available CPU resources according to their scheduling class and 
priority, as illustrated in Figure 3-6 . Because scheduling is done on a per-LWP basis, each LWP 
collects its own kernel statistics—user time, system time, page faults, etc. This also implies that a 
process with two LWPs will generally get twice as much CPU time as a process with only one 
LWP. (This is a wild generalization, but you get the idea—the kernel is scheduling LWPs, not 
processes.) 

Figure 3-6. Operation of a System Call 

 

An LWP also has some capabilities that are not exported directly to threads, such as kernel 
scheduling classes. A programmer can take advantage of these capabilities while retaining use of 
all the thread interfaces and capabilities by specifying that the thread is to remain permanently 
bound to an LWP (known as system contention scope scheduling and discussed further in 
Realtime LWPs). 

LWPs are an implementation technique for providing kernel-level concurrency and parallelism to 
support the threads interface. There is never a reason for you to use the LWP interface directly. 
Indeed, you should specifically avoid it. It gains you nothing but costs you your portability. 

Digital UNIX 

An interesting contrast to LWPs are the techniques that DEC takes. Digital UNIX has two kinds of 
"LWPs," one that is an execution engine (the thing that runs on the CPU) and the other is an I/O 
wait engine (which contains just enough state to move its thread back onto an execution engine). 
This is nice because it minimizes the impact on the kernel of expensive programs which would 
otherwise demand numerous LWPs. 

Linux 

In Linux, a low-level call to clone() creates a new kernel thread in the same fashion as fork() 
creates a process. It also allows kernel threads of varying functionality. They can share the address 
space but not file descriptors, they can share both of those but not signal handlers, etc. The one 
noticeable distinction is that these kernel threads will never share a process ID in the way that 
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UNIX and Win32 threads will. This is not a disaster, but it does make extra work for the library 
designer. 

 

Threads and LWPs 

In a typical, traditional, multitasking operating system, a process comprises memory, the CPU 
register state, and some system state (file descriptors, user ID, working directory, etc., all stored in 
the process structure). When it's time to context-switch two processes, the kernel saves the 
registers in the process structure, changes some virtual memory pointers, loads the CPU registers 
with data from the other process structure, and continues. 

When context-switching two threads, the registers are saved as before, but the memory map and 
the "current process" pointer remain the same. The idea is that you have a single program, in one 
memory space, with many virtual CPUs running different parts of the program concurrently. 

What actually makes up a thread are (see Figure 3-2) its own stack and stack pointer; a program 
counter; some thread information, such as scheduling priority, and signal mask, stored in the 
thread structure; and the CPU registers (the stack pointer and program counter are actually just 
registers). 

Figure 3-2. Contents of a Thread 

 

Everything else comes from either the process or (in a few cases) the LWP. The stack is just 
memory drawn from the program's heap. A POSIX thread could look into and even alter the 
contents of another thread's stack if it so desired. (Although you, being a good programmer, would 
never do this, your bugs might.) 

Putting all this together, we end up with a picture such as Figure 3-3. The threads, their stacks, the 
code they run, and the global data that they share are all in user space, directly under user control. 
The thread structures are also in user space, but completely under the control of the threads library. 
There is no legal way for a user program to access those structures directly. The library itself, like 
every other system library, is just regular user code that you could have written yourself. 

Figure 3-3. How the Threads Library Fits into a Process 
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The LWPs are part of the process structure, but we show them crossing the line because this is 
how we think of their use. They are the main vehicle for processing from the threads library's 
point of view, so we show them in illustrations crossing that boundary, although they are, strictly 
speaking, in kernel space. The actual process structure is completely in kernel space. 

As you can deduce, this definition of threads residing in a single address space means that the 
entire address space is seen identically by all threads. A change in shared data by one thread can 
be seen by all the other threads in the process. If one thread is writing a data structure while 
another thread is reading it, there will be problems (see Race Conditions ). 

As threads share the same process structure, they also share most of the operating system state. 
Each thread sees the same open files, the same user ID, the same working directory; each uses the 
same file descriptors, including the file position pointer. If one thread opens a file, another thread 
can read it. If one thread does a seek() while another thread is doing a series of reads on the 
same file descriptor, the results may be surprising. 

All of this is true no matter if you think of the running code as being native or as residing inside 
the JVM; the issues and consequences are the same. In some fashion, the JVM uses a threads 
library (possibly a native library such as POSIX or Win32, possibly its own library, green threads) 
to provide the infrastructure for your threads to run on. As far as you can tell, you're just running 
Java threads, but underneath you're running on the lower-level library (Figure 3-4). 

Figure 3-4. How Java Is Built on Lower-Level Threads Libraries 
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The POSIX Multithreaded Model 

In the POSIX multithreaded model (see Figure 3-5), threads are the portable application-level 
interface. Programmers write applications using the appropriate API. The underlying threads 
library schedules the threads onto LWPs. The LWPs in turn are implemented by kernel threads[5] 
in the kernel. These kernel threads are then scheduled onto the available CPUs by the standard 
kernel scheduling routine, completely invisible to the user. This picture is accurate for POSIX 
threads. It is equally applicable for Win32 and Java threads, save that there are some limitations 
regarding the binding of threads to LWPs (see Different Models of Kernel Scheduling). 

[5] All the kernels are implemented using a threads library, often similar to Pthreads (Solaris kernel 
threads are very similar; DEC's kernel threads were based on Mach and are quite different). These 
kernel threads are used to implement LWPs. The kernel also uses them for its own internal tasks, 
such as the page daemon. The term kernel thread is not used uniformly, and many people use it to 
refer to LWPs (or logical equivalent). We will not deal with kernel threads at all. 

Figure 3-5. POSIX Multithreaded Architecture 

 

 
 

System Calls 

A system call is the way that multitasking operating systems allow user processes to get 
information or request services from the kernel. Such things as "Write this file to the disk" and 
"How many users are on the system?" are done with system calls. We divide system calls into two 
categories, blocking and nonblocking calls. In a blocking system call, such as "Read this file from 
the disk," the program makes the call, the operating system executes it and returns the answer, and 
the program proceeds. If a blocking system call takes a long time, the program just waits for it. 
(Usually, another process will be scheduled while this one is waiting.) 

In a nonblocking system call, such as "Write this file to the disk without waiting," the program 
makes the call, the operating system sets up the parameters for the write, then returns, and the 
program continues. Exactly when the disk write actually occurs is not particularly important, and 
the program is able to continue working. A nonblocking system call may send the process a signal 
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to tell it that the write is completed. Asynchronous I/O is important for many nonthreaded 
applications, as it allows the application to continue to work, even while there is I/O pending. 

When a process makes a system call (see Figure 3-6), the following events occur: 

1. The process traps to the kernel. 
2. The trap handler runs in kernel mode and saves all the registers. 
3. The handler sets the stack pointer to the process structure's kernel stack. 
4. The kernel runs the system call. 
5. The kernel places any requested data into the user-space structure that the programmer 

provided. 
6. The kernel changes any process structure values affected. 
7. The process returns to user mode, replacing the registers and stack pointer, and returns the 

appropriate value from the system call. 

Of course, system calls don't always succeed. They can out-and-out fail or they can be interrupted. 
In C, when they fail they return a failure value and set errno. When interrupted by a signal the 
call is forced out of the kernel, the signal handler is run, and the system call returns EINTR. 
(Presumably, the program will see this value and repeat the system call.) The Java model for 
handling these situations is to throw exceptions (there are a variety of exceptions for failing 
system calls and a special exception, InterruptedException, for interruptions). 

What happens in a process with multiple LWPs? Almost exactly the same thing. The LWP enters 
the kernel, there's a kernel stack for each LWP, all the usual things happen, and the system call 
returns. And if several LWPs make system calls? They all execute independently and everything 
works as expected, with the usual caveats. 

If several calls affect the same data, things could turn ugly. For example, if two threads issue calls 
to change the working directory, one of them is going to get a surprise. Or if two threads do 
independent calls to read(), using the same file descriptor, the file pointer will not be 
coordinated by either one of them, resulting in one thread reading from a different place than it 
expected. We'll deal with these issues later. 

The really nice thing about different threads being able to execute independent system calls is 
when the calls are blocking system calls. Ten different threads can issue ten synchronous reads, all 
of which block, yet all the other threads in the process can continue to compute. Cool. 

 

Signals 

Signals are the mechanism that UNIX has always used to get asynchronous behavior in a program. 
With threads, we are able to get most asynchronous behavior without signals. Only interruptions 
need some signal-like mechanism in order to work. In Java, the UNIX signal model is not used at 
all (this is a good thing!) and interruptions are done by using the exception system. 

 

Summary 

Threads libraries can be implemented as self-contained user-level libraries or as kernel-based 
routines. The same program can be written in either, the difference often being quite minor. The 
main distinction of threads vs. processes is that threads share all process resources and data. The 
programming trade-offs, problems, and designs are the same for POSIX, Win32, and Java. 
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Chapter 4. Lifecycle 
• Thread Lifecycle 
• APIs Used in This Chapter 
• The Class java.lang.Thread 
• The Class Extensions.InterruptibleThread 
• The Interface java.lang.Runnable 

In which the reader is treated to a comprehensive explanation of the intricacies in the life of a 
thread—birth, life, and death— even death by vile cancellation. A small program that illustrates 
all these stages concludes the chapter. 

 

Thread Lifecycle 

The fundamental paradigm of threads is the same in all the libraries. In each, the program starts up 
in the same fashion as single-threaded programs always have—loading the program, linking in the 
dynamic libraries, running any initialization sections, and finally, starting a single thread running 
main() (the main thread). The main function will then be free to create additional threads as the 
programmer sees fit (Code Examples 4-1 to 4-3). 

In Pthreads and Win32, you call the create function with a function to run and an argument for the 
function to run on. Java follows the same paradigm, but the API is rather distinct. In Java you 
subclass Thread, defining a run() method for it, then instantiate an instance of it and call 
start(). You can see how this maps directly onto the POSIX model. It is important to 
distinguish between the thread object that you've just created with new Thread and the thread as 
we've described it, which is created in the start() method. 

Example 4-1 Simple Call to Create and Exit a POSIX Thread 

error = pthread_create(&tid, NULL, start_fn, arg); 
 
void *start_fn(void *arg) { 
   doWork(); 
   pthread_exit(status); 
} 

Example 4-2 Simple Call to Create and Exit a Java Thread 

Public class MyThread extends Thread { 
  public void run() { 
       doWork(); 
   } 
} 
 
Thread t = new MyThread(); 
t.start(); 

Example 4-3 Simple Call to Create and Exit a Win32 Thread 

handle = CreateThread(NULL, NULL, start_fn, arg, NULL, &tid); 
 
void *start_fn(void *arg) { 
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   doWork(); 
   ExitThread(status); 
} 

Exiting a Thread 

Conversely, a thread is exited by calling the appropriate thread exit function or simply returning 
from the initial function. Beyond the actual call to the create function, there is no parent/child 
relationship—any thread can create as many threads as it pleases and, after creation, there will be 
no relationship between the creator and createe. 

In Java there is no thread exit function as there is in the other libraries, and the only way of exiting 
a thread is to return from the run() method. This seems a bit odd, but it is intentional. The basic 
idea is that only the run() method should make the decision to exit. Other methods lower in the 
call chain may decide that they are done with what they are doing, or they may encounter an error 
condition, but all they should do is pass that information up the call stack. They may return unique 
values to indicate completion or they may propagate an exception, but they shouldn't exit the 
thread.[1] 

[1] In earlier programs we looked at this differently and even wrote a "thread exit" function for Java 
using thread.stop(). We recommend not doing that. 

Moreover, even the run() method shouldn't be exiting the thread explicitly because it doesn't 
"know" that it's running in a unique thread. It is perfectly reasonable for a program to call the 
run() method in a new thread sometimes, and from an existing thread other times. 

The Runnable Interface 

There is a second method of creating a Java thread. In this method you write a class that 
implements the Runnable interface, defining a run()method on it (Figure 4-1). You then create 
a thread object with this runnable as the argument and call start() on the thread object. In 
simple examples, either method is fine, but we'll soon discover that the latter method is superior, 
and we'll use it in all our code (see Code Example 4-4). You will probably never use the first 
method yourself. 

Example 4-4 Simple Call to Run a Runnable in a Thread 

public MyRunnable implements Runnable { 
    public void run(){ 
        doWork(); 
    } 
} 
 
Runnable r = new MyRunnable() 
Thread t = new Thread(r); 
t.start(); 

Figure 4-1. Creating a Thread via a Runnable 
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Finally, you can even use anonymous inner classes to define a thread's run() method (Code 
Example 4-5). You could even create a thread and pass it an inner class runnable, but that seems 
silly. We'll just define a run() method for the thread. 

Example 4-5 Defining run() via an Inner Class in a Thread 

new Thread() { 
    public void run() { 
        doWork(); 
    } 
}.start(); 

There are two reasons for using runnable. The first is that we are not changing the nature of the 
thread itself, we're only changing the run() method, so subclassing Thread isn't really 
appropriate. The second reason is that if we implement the Runnable interface, it's possible to 
subclass something else more useful. (True, it's unlikely that you'll ever subclass anything for your 
runnable; nonetheless, it's nice to have that option.) Still, the distinction between the two methods 
is quite minor. There are a few cases where we will subclass Thread, but in none of those will we 
ever define a run() method. 

Moreover, we can consider a Runnable to be the work to be done, while the thread is the engine 
to do the work. From this point of view, it makes no sense to include the work inside the engine. 
On top of this, there is no reason to insist that the work be done in a unique thread. It is perfectly 
reasonable to execute the run() method of a Runnable in the current thread. This is exactly 
what we do in Threads and Windows. 

What the run() method of Thread does by default is to look for a Runnable and call its run() 
method. You could both subclass Thread and define a run() method on it and then pass it a 
Runnable to run. In this case the run() method of the thread would be run. This would confuse 
the heck out of anyone reading your code. Don't do that. 

In Pthreads and Win32 each thread has a thread ID (TID), which may be used to control certain 
aspects (scheduling classes, cancellation, signals, etc.) of that thread. (Win32 also defines a thread 
handle, which is a different version of a TID.) In Java, all of this is more conveniently handled 
simply by invoking methods on the thread object. (You will probably never call any methods on 
the runnable yourself.) 

Waiting for Threads 

Sometimes you specifically want to wait for a thread to exit (see Figure 4-2 and Code Example 4-
6). Perhaps you've created 20 threads to do 20 pieces of a task, and you can't continue until they 
are all finished. One method is to call the wait function (called join in Pthreads and Java) on each 
of the desired threads. The caller will block until each of the specified threads has exited. The 
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other way is to use normal synchronization functions. (We'll talk about this in Using Barriers to 
Count Exiting Threads .) 

Example 4-6 Waiting for Threads to Exit 

POSIX Win32 Java 
pthread_join(T5,...) WaitForSingleObject(T5,...) T5.join() 
 

Figure 4-2. Using thread.join() 

 

In addition to waiting for the threads to exit, the caller can receive a status from the exiting threads 
in Win32 and POSIX. In Java there is no such concept, but it's easy enough to build an ad hoc 
method should you need to. (You probably won't.) To ensure that no deadlocks occur, it makes no 
difference if the waiting thread calls the join function first or if the exiting thread calls the exit 
function first. Calling return() from the run method implicitly calls the thread exit function. 
Obviously, you should join a thread only once. It is legal in Java to join a thread more than once, 
but you're probably making a mistake if you do. 

Who Am I? 

Sometimes you want to know the identity of the current thread. In production programs this is 
pretty rare; most commonly you just want to print out some debugging information about which 
thread is running when. In any case, it's easy to do. All the libraries have a "current thread" 
function (Code Example 4-7). In Java you may also wish to know which Runnable is being run. 
You cannot find this out unless you build in a mechanism for it yourself (see Java TSD). 

Example 4-7 Getting the Current Thread's Identity 

POSIX Win32 Java 
pthread_self() GetCurrentThread() Thread.currentThread()

 

Don't Wait for Threads, Don't Return Status 

When should you wait for a thread? Our opinion is never. Consider: Why do you care when a 
thread exits? Because you are waiting for that thread to complete some task, the results of which 
some other thread needs. By doing a join on that thread, you are implicitly assuming that the task 
will be complete when the thread exits. Although this may indeed be true, it would be 
conceptually cleaner if you simply waited for the task itself, using one of the synchronization 
variables discussed in Chapter 6. In many of our examples we simply count the number of threads 
that exit. 
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The only time you must join a thread is when you care about the thread itself (not the thread 
object). The only aspect of the thread that you have any kind of dependency on is the memory 
used for the thread's stack. In POSIX and Win32 it is possible to "touch" the stack directly. This is 
not possible in Java (a good thing), so the only possible interaction with the stack is the reuse issue. 
If you start a new thread, will it have to allocate new memory or can it use the newly freed 
memory from an exiting thread? Although it is possible to write a program where you can measure 
this effect, it would be quite artificial. 

POSIX and Win32 can return a status value and the same argument applies. It isn't the thread that 
has status to return, it's the task that the thread was executing that has status, and that status may 
be handled without calling join. In all honesty, there are plenty of programs that don't take our 
advice and work just fine. You don't have to take our advice either, but you should consider it 
before making your decision. 

Exiting the Process 

The semantics of exit() [in Java, System.exit()] are retained in MT programs in all the 
libraries. When any thread in a process calls exit(), the process exits, returning its memory, 
system resources, process structure, all LWPs, etc. In Java, if main() "falls off the bottom" of the 
initial thread, the other threads will continue to run. [In the POSIX and Win32, the main thread 
will make an implicit call to exit(), also killing the process. This is a requirement for them to 
maintain compatibility with existing programs, not to mention the ANSI C spec.] 

When any other thread in any of the libraries falls off the bottom of its initial function, it exits only 
that one thread. [In POSIX and Win32, if the main thread calls the thread exit function directly, 
that thread exits but does not call exit(), and the process continues.] 

Finally, should all normal user threads exit (the library may create threads for its own use and they 
will not be counted; see Daemon Threads), the thread library will detect this and call exit() 
itself. This situation is not typical, however, as you will generally know when it's time to exit your 
process. Instead of letting the threads die one by one, you should call System .exit() explicitly. 

Suspending a Thread 

Win32 and Java have a function to force a thread to suspend its execution for an arbitrary length 
of time and a second function to cause the thread to resume [thread.suspend() and 
thread.resume()]. These functions were included for the purpose of allowing such things as 
garbage collectors and debuggers to gain full control of a process. As such, they are useful; 
however, for almost any other purpose they are the wrong thing. Because a suspended thread may 
hold locks that a controller thread needs, it is almost impossible to use suspension effectively. In 
Java these methods have been deprecated in JDK 1.2. In POSIX and UNIX98, they don't exist at 
all.[2] 

[2] They were to be included in UNIX98, and you may see reference to them, but they were dropped 
out at the last minute. 

Cancellation 

It is possible for one thread to tell another thread to exit. This is known as cancellation in POSIX 
and simply as killing a thread in Java and Win32 (Code Example 4-8). In theory it's quite simple. 
T2 (Figure 4-3) tells T1 to exit, and it does. There is no relationship between the threads. Maybe 
T2 created T1, maybe T3 created both of them, maybe something else. 

Example 4-8 Cancellation in the Three Libraries 
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POSIX Java Win32 
pthread_cancel(T1); T1.stop(); TerminateThread(T1); 

 

Figure 4-3. Cancellation 

 

How to make cancellation work correctly, in bounded time, and without corrupting any data is a 
different story. That part is highly complex and handled in Chapter 9. Moreover, thread.stop() 
has been deprecated in JDK 1.2. We'll discuss this in Don't Call stop(). Although deprecated, 
stop() will continue to be supported in Java for an unspecified amount of time. (It may never 
disappear.) 

There is another technique that is more suitable for cancellation in Java. This is to interrupt the 
target thread and cause it to throw an InterruptedException. We can catch that exception 
and exit the thread on our own. This is what we'll do in An Example: Create and Join. 

ThreadDeath 

The stop() method is implemented by causing the target thread to throw an unchecked 
exception, ThreadDeath. That exception then percolates up to the run() method, where it 
causes the thread to exit. The original implementation of Java was not intended to expose 
ThreadDeath, but through some odd circumstances, it got out. You should consider it to be part 
of the implementation though, and not use it yourself. Yes, you could throw it yourself. You could 
even catch it yourself, but there are better ways of accomplishing whatever task you had in mind. 
Don't do that. 

Garbage Collecting Threads 

When do threads and thread objects get garbage collected? If you drop the last pointer to a thread, 
will it stop running and be garbage collected? No. When a thread is started, the thread object is 
entered into a thread group (see Thread Groups) and will remain there until it exits. The top-
level thread group is one of the root GC nodes, so it never disappears. 

As soon as a thread exits, its stack will be freed (this is an implementation detail), and some time 
after it exits and you drop the last pointer to the thread object, that thread object will be garbage 
collected. In other words, everything works the way you think it should and there's nothing to 
worry about. 

Zombies 

In POSIX, a zombie[3] thread is a dead thread whose memory has not yet been reclaimed. 
Reclamation occurs when that thread is joined. Java does not have this issue, so it is devoid of 
zombies; however, the underlying libraries may well use them to support Java. Nonetheless, 
imagining zombies in Figure 4-4 can help clarify the concept. 
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[3] In Haiti, a zombie is an "undead" person who has been cursed with vadoo. This inspired a classic 
American horror flick, The Night of the Living Dead, in which all these dead people crawl out of their 
graves and come after our heroes. This is the kind of thing that kernel hackers think about late at night. 

Figure 4-4. Java Thread Create and Join 

 

Is She Still Alive? 

If you wish to know if a given thread is still running, you can call the method 
thread.isAlive(). This will tell you if the thread was running when you called it, but by the 
time you get around to using the information, it may have changed. In other words, between the 
time you find out that the thread is alive and the time when you find something for it to do, the 
thread may have exited. This is OK, because you don't really want to know that anyway. (If you 
think you do, you're wrong. You really want to know something else.) 

If you want to know when a thread has exited, you join it. If you want to give a thread something 
new to do, you write the code so that the thread never exits, or so that the thread exits only on 
command. 

In short, the method isAlive() is pretty useless. Several other methods are similar. The 
activeCount() method tells you how many threads were running when you called it. The 
enumerate() method promises to fill an array you supply with as many of the currently running 
thread objects as fit. By the time you use any of the information these methods supply, it may be 
out of date. Don't do that. 

Restarting Threads 

Once a thread has exited, it is gone. The stack has been freed, the internal thread structures have 
been cleared, the underlying kernel resources have been returned. All that's left is the empty shell 
of the thread object. (If you extended the thread object and included your own instance variables, 
those will not be changed.) You cannot restart the thread; you cannot reuse the thread object. It's 
gone, dead, deceased, passed on, unrevivable. 
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If you created a thread using a Runnable, the Runnable is reusable. Indeed, if you did not 
specify any instance variables in the Runnable, you could simply create a single runnable object 
and create lots of threads that all used it. On the other hand, if you think you might change your 
program someday, or if someone else might end up maintaining it, this could be awkward. In all 
our programs we create a new Runnable for every thread. 

An Example: Create and Join 

In Figure 4-4 we show the operation of the program Multi.java, which makes a series of calls 
to create threads, stop them, and join them. The basic code is very simple and should require little 
explanation. A series of well-placed calls to sleep() arranges for the threads to execute in 
exactly the order we desire. Removing those calls (or setting breakpoints in the debugger) will 
cause the speed and order of execution to change, and some things will not work as intended. The 
program is not correct, per se, but it is a useful illustration of how to create and join threads 
without all that unsightly synchronization code. 

The Main Thread Is Different 

One slightly unusual aspect of this program is that we create a new thread which we call 
threadMain (Code Example 4-9, which follows). The actual main thread is identical to all the 
other threads, except for one thing. Because you did not create it, you do not know whether or not 
main() corresponds exactly to run(). In particular, just because main() returns does not imply 
that the main thread can then be joined. 

Example 4-9 Java Create and Join 

//  Multi/Multi.java 
 
/* 
  Simple program that just illustrates thread creation, thread 
  exiting, waiting for threads, and interrupting threads. 
 
  This program relies completely on the accuracy of the sleep() 
  method, something that is ill advised in a real program. 
  For this example, that's OK. When you write programs, 
  don't do that! 
*/ 
 
import java.io.*; 
import Extensions.*; 
 
public class Multi { 
    static Thread         threadA, threadB, threadC; 
    static Thread         threadD, threadE, threadMain; 
 
    public static void main(String[] args) throws Exception { 
        threadMain = new Thread(new MyMain(), "threadMain"); 
        threadMain.start(); 
    } 
} 
 
 
class MyMain implements Runnable { 
    static long startTime = 0; 
 
    public void run()  { 
        startTime = System.currentTimeMillis(); 
        System.out.println(); 
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        System.out.println("Time\tThread\t\tEvent"); 
        System.out.println("====\t======\t\t====="); 
        System.out.println(time() + "threadMain\tStarted "); 
 
        InterruptibleThread.sleep(1000); 
        Multi.threadA = new Thread(new RunnableA(), "threadA"); 
        Multi.threadA.start(); 
        System.out.println(time() + "threadMain\tCreated threadA"); 
 
        InterruptibleThread.sleep(1000); 
        Multi.threadC = new Thread(new RunnableC(), "threadC"); 
        Multi.threadC.start(); 
        System.out.println(time() + "threadMain\tCreated threadC"); 
 
        InterruptibleThread.sleep(2000); 
        System.out.println(time() + "threadMain\tCancelling threadD"); 
        Multi.threadD.interrupt(); 
 
        InterruptibleThread.sleep(1000); 
        System.out.println(time() + "threadMain\tExiting"); 
    } 
 
    public static String time() { 
        long time = (System.currentTimeMillis() - startTime) / 1000 + 
                     1000; 
        return(time + "\t"); 
    } 
} 
 
 
class RunnableA implements Runnable { 
    public void run() { 
        System.out.println(MyMain.time() + "threadA\t\tStarting..."); 
        InterruptibleThread.sleep(1000); 
        Multi.threadD = new Thread(new RunnableD(), "threadD"); 
        Multi.threadD.start(); 
        System.out.println(MyMain.time() + "threadA\t\tCreated 

threadD"); 
        InterruptibleThread.sleep(3000); 
        System.out.println(MyMain.time() + "threadA\t\tExiting "); 
    } 
} 
 
 
class RunnableB implements Runnable { 
    public void run() { 
        System.out.println(MyMain.time() + "threadB\t\tStarting... "); 
        InterruptibleThread.sleep(4000); 
 
        System.out.println(MyMain.time() + "threadB\t\tExiting "); 
    } 
} 
 
 
class RunnableC implements Runnable { 
    public void run() { 
        System.out.println(MyMain.time() + "threadC\t\tStarting... "); 
        InterruptibleThread.sleep(2000); 
 
        System.out.println(MyMain.time() + "threadC\t\tJoining 

threadMain"); 
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        try { 
            Multi.threadMain.join(); 
        } catch (InterruptedException e) { 
            System.out.println("CAN'T GET HERE."); 
        } 
 
        System.out.println(MyMain.time() + "threadC\t\tJoined 

threadMain"); 
        InterruptibleThread.sleep(1000); 
 
        Multi.threadB = new Thread(new RunnableB(), "threadB"); 
        Multi.threadB.start(); 
        System.out.println(MyMain.time() + "threadC\t\tCreated 

threadB"); 
        InterruptibleThread.sleep(4000); 
 
        System.out.println(MyMain.time() + "threadC\t\tExiting "); 
    } 
} 
 
 
class RunnableD implements Runnable { 
    public void run() { 
 
        try { 
            System.out.println(MyMain.time() + "threadD\t\tStarting... 

"); 
            InterruptibleThread.sleep(1000); 
 
            Multi.threadE = new Thread(new RunnableE(), "threadE"); 
            Multi.threadE.start(); 
            System.out.println(MyMain.time() + "threadD\t\tCreated 

threadE"); 
            Thread.sleep(5000); 
            System.out.println(MyMain.time() + "threadD\t\tSHOULDN'T 

REACH HERE!"); 
        } catch (InterruptedException e) { 
            System.out.println(MyMain.time() + 

"threadD\t\tInterrupted. Exiting"); 
        } 
    } 
} 
 
 
class RunnableE implements Runnable { 
    public void run() { 
        try { 
            System.out.println(MyMain.time() + "threadE\t\tStarting... 

"); 
            InterruptibleThread.sleep(3000); 
 
            System.out.println(MyMain.time() + "threadE\t\tJoining 

threadA"); 
            Multi.threadA.join(); 
            System.out.println(MyMain.time() + "threadE\t\tJoined 

threadA"); 
            InterruptibleThread.sleep(2000); 
 
            System.out.println(MyMain.time() + "threadE\t\tJoining 

threadC"); 
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            Multi.threadC.join(); 
            System.out.println(MyMain.time() + "threadE\t\tJoined 

threadC"); 
            InterruptibleThread.sleep(2000); 
 
            System.out.println(MyMain.time() + "threadE\t\tJoining 

threadD"); 
            Multi.threadD.join(); 
            System.out.println(MyMain.time() + "threadE\t\tJoined 

threadD"); 
            InterruptibleThread.sleep(1000); 
 
            System.out.println(MyMain.time() + "threadE\t\tExiting "); 
        } catch (InterruptedException e) { 
            System.out.println("CAN'T GET HERE."); 
        } 
    } 
} 

All code examples in this book are available from the Web (see Code Examples). They are all as 
nearly identical to the same programs written in C from Multithreaded Programming with 
PThreads as we could make them. In a few cases the Java code is a bit constrained because of this, 
but there are no significant issues. 

The output from Code Example 4-9 (see Code Example 4-10) shows that indeed all the calls occur 
exactly when we expect them to. 

Example 4-10 Output for Code Example 4-9 

bil@cloudbase[264]: java Multi 
 
Time  Thread                           Event 
====  ======                           ===== 
1000  threadMain                       Started  
1001  threadMain                       Created threadA 
1001  threadA                          Starting... 
1002  threadMain                       Created threadC 
1002  threadC                          Starting...  
1002  threadA                          Created threadD 
1002  threadD                          Starting...  
1003  threadD                          Created threadE 
1003  threadE                          Starting...  
1004  threadMain                       Cancelling threadD 
1004  threadD                          Interrupted. Exiting 
1004  threadC                          Joining threadMain 
1005  threadMain                       Exiting 
1005  threadC                          Joined threadMain 
1005  threadA                          Exiting  
1006  threadC                          Created threadB 
1006  threadB                          Starting...  
1006  threadE                          Joining threadA 
1006  threadE                          Joined threadA 
1008  threadE                          Joining threadC 
1010  threadC                          Exiting 
1010  threadE                          Joined threadC 
1010  threadB                          Exiting  
1012  threadE                          Joining threadD 
1012  threadE                          Joined threadD 
1013  threadE                          Exiting  
bil@cloudbase[265]: 
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There is nothing stopping you from starting the thread in the same line as the constructor (Code 
Example 4-11); we just don't do that very often. 

Example 4-11 Construct and Start in a Single Line 

new MyThread().start(); 
 
 

APIs Used in This Chapter 

The Class java.lang.Thread 

The class Thread defines thread objects. When the start() method is called, an actual running 
thread is created which the Thread object can control. It is important to distinguish between the 
object (which is just memory and a set of methods) and the running thread (which executes code). 
All static thread methods apply to the current thread. 

Thread 
   public Thread() 
   public Thread(String name) 
   public Thread(Runnable runObj) 
   public Thread(Runnable runObj, String name) 
               throws SecurityException, 
               IllegalThreadStateException 

These create a new thread object. 

References:  Chapters 4 and 10.  
 
start 
   public void start() 
         throws IllegalThreadStateException 

Calling the start() method on an instance of Thread will cause the appropriate run() method 
to execute in a new thread. 

Reference:  Chapter 4.  
 
run 
   public void run() 

This is the method you define that actually executes the code you want. The base method simply 
looks to see if there is a Runnable and calls its run() method. 

Reference:  Chapter 4.  
 
currentThread 
   public static Thread currentThread() 

This method returns the current thread object. 

Reference:  Chapter 4.  
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join 
   public final void join() 
   public final void join(long milliseconds) 
   public final void join(long milliseconds, long nanosec) 
        throws InterruptedException 

This waits for the thread to exit. 

Reference:  Chapter 4.  
Comment:  Rarely used.  
 
stop 
   public final stop() 
   public final stop(Throwable t) 

This kills the thread asynchronously. 

Reference:  Chapter 4.  
Comment:  It is deprecated in Java 2. Don't use it.  
 
sleep 
   public static void sleep(long milliseconds) 
   public static void sleep(long milliseconds, long nanosec) 
         throws InterruptedException 

This causes the current thread to go to sleep for the specified time. The precision of the wakeup is 
OS dependent. A typical minimum resolution is 10 ms. (Solaris defaults to 10 ms; root can set it to 
1 ms. On Digital UNIX it's a mibisecond, 1/1024 second, 0.9765 ms.) 

Reference:  Chapter 4.  
Comment:  Fine for test programs. Probably will never use this in a real program.  
 
destroy 
   public final void destroy() 

This causes the thread to exit immediately, running no finally sections, and releasing no locks. 
This was included in the Java spec to handle the extreme case of broken threads that ignore 
stop(). It is virtually impossible to use correctly and has never been implemented. 

Reference:  Chapter 4.  
 
isAlive 
   public final boolean isAlive() 

This returns true if the target thread is still alive. 

Reference:  Chapter 4.  
 
activeCount 
   public static final int activeCount() 

This returns the number of currently active threads. (Sleeping and blocked threads are active.) 

Reference:  Chapter 4.  
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Comment:  Deprecated in Java 1.1. See ThreadGroup.allThreadsCount().  
 
enumerate 
   public static final int enumerate(Thread tarray[]) 

This fills tarray with as many currently active threads as fit, returning that number. 

Reference:  Chapter 4.  
Comment:  Deprecated in Java 1.1. See ThreadGroup.allThreads().  
 
getName setName 
   public String getName() 
   public void setName(String name) 
               throws SecurityException 

This gets/sets the print name for the thread. 

Reference:  Chapter 4.  

The Class Extensions.InterruptibleThread 

This is one of the classes that we defined for this book to provide a consistent interface for dealing 
with certain problems. 

exit 
   public void exit() 

This causes the current thread to exit. It is syntactic sugar for 
Thread.currentThread().stop(). 

Reference: Chapter 4.  
Comment:  We wrote this method while trying to deal with the absence of such a 

function and the absence of any advice on this apparent oversight. We have 
subsequently been convinced that this is the wrong way to do things and that 
you should always return from the run() method (see Exiting a Thread).  

The Interface java.lang.Runnable 

This interface provides the building blocks for threads. You implement this interface, define a 
run() method on the class, and pass an instance of it to the thread. 

run 
   public void run() 

This is the method you define that actually executes the code you want. 

Reference:  Chapter 4.  
Comment:  This is the only way to start anything.  
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Summary 

The basic paradigm of thread creation in Java, POSIX, and Win32 is to build a new thread entity 
that will run a given function [in Java, run()] on a given argument (the implicit this argument). 
Threads can wait for each other, kill each other, or simply exit themselves. 
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Chapter 5. Scheduling 
• Different Models of Kernel Scheduling 
• Thread Scheduling 
• Context Switching 
• Java Scheduling Summary 
• When Should You Care About Scheduling? 
• APIs Used in This Chapter 
• The Class java.lang.Thread 

In which we explain the myriad details of various scheduling models and alternative choices that 
could be made, describe context switching in detail, and delve into gruesome detail on various 
design options. There is light at the end of the tunnel, however. 

 

Different Models of Kernel Scheduling 

There are three primary techniques for scheduling threads onto kernel resources (and indirectly, 
onto CPUs). Two of them involve the use of LWPs (or something similar). These are the 
techniques from which the designers of the various operating systems had to choose. They wanted 
a model that would adequately support the complexity of the operating system and still meet the 
various demands of dedicated programmers. All three models are perfectly reasonable and give 
the programmer different sets of trade-offs, simultaneously building programs that do exactly the 
same things with different levels of efficiency. All three of these models are in use by different 
vendors. 

Many Threads on One LWP 

 

The first technique is known as the many-to-one model. It is also known as co-routining.[1] 
Numerous threads are created in user space, and they all take turns running on the one LWP. 
Programming on such a model will give you a superior programming paradigm, but running your 
program on an MP machine will not give you any speedup, and when you make a blocking system 
call, the whole process will block. However, the thread creation, scheduling, and synchronization 
are all done 100% in user space, so they're done fast and cheap and use no kernel resources. This 
is how green threads[2] works. The DCE threads library also followed this model on HP-UX 10.20. 

[1] The exact use of this term varies from book to book, but in broad terms, this is accurate. 

[2] During the initial design phase of Java, Sun's native threading library wasn't complete and the 
"Green" group chose to implement a simpler library rather than wait. All of the early 
implementations of Java were based on green threads. 



 44

There is a clever hack[3] used for blocking system calls in some threads libraries (e.g., DCE 
threads in DEC OSF/1) that is worth mentioning. The library puts a jacket routine around each 
blocking system call. The jacket routine replaces the blocking system call with a nonblocking one. 
Thus, when a thread makes a blocking system call, the library can put that thread to sleep and 
allow another one to run. When the signal comes back from the kernel, saying that the system call 
is complete, the library figures out which thread made the call and wakes up that sleeping thread, 
and everything proceeds as if the thread had blocked in the first place. It's hassle-free async I/O! 

[3] "Hassle-free for YOU, maybe. I had to code and debug the monster and I still have to explain it to 
users."—Dave Butenhof, reviewing this section. 

 

One Thread per LWP 

 

The one-to-one model allocates one LWP[4] for each thread. This model allows many threads to 
run simultaneously on different CPUs. It also allows one or more threads to issue blocking system 
calls as the other threads continue to run—even on a uniprocessor. 

[4] Remember, when you read about how a vendor implements this model, the vendor may not 
distinguish between the thread and the (possibly conceptual) LWP. The vendor may simply refer to 
the thread and expect you to understand that it's a single entity containing everything. 

This model has the drawback that thread creation involves LWP creation; hence it requires a 
system call, as does scheduling and synchronization. In addition, each LWP takes up additional 
kernel resources, so you are limited in the total number of threads you can create. Win32 and OS/2 
use this model. Some POSIX implementations (DCE, IBM's early threads library, Xavier Leroy's 
LinuxThreads) also use it. Any JVMs based on these libraries also use this model, hence Java on 
Win32. (A JVM could build a two-level model on top of a one-to-one kernel model, but none 
currently do.) 

 

Many Threads on Many LWPs (Strict) 



 45

 

The third model is the strict many-to-many model. Any number of threads are multiplexed onto 
some (smaller or equal) number of LWPs. Thread creation is done completely in user space, as are 
scheduling and synchronization (well, almost). The number of LWPs may be tuned for the 
particular application and machine. Numerous threads can run in parallel on different CPUs, and a 
blocking system call need not block the entire process. As in the many-to-one model, the only 
limit on the number of threads is the size of virtual memory.[5] No native library actually uses this 
strict version, although Sun's implementations of Java 1.1 and 2 do use this. 

[5] On a 32-bit machine, this is roughly 2 GB (total virtual memory) / 8 kB (minimum stack size) = 
256,000 threads. 

 

The Two-Level Model 

 

The two-level model (known commonly as the many-to-many model) is a strict many-to-many 
model with the ability to specifically request a one-to-one binding for individual threads. This 
model is probably the best of the choices. Several operating systems now use this model (Digital 
UNIX, Solaris, IRIX, HP-UX, AIX). The JVMs on these OSs have the option of using any 
combination of bound and unbound threads. 

The choice of the threading model is an implementation-level decision for writers of the JVM. 
Java itself has no concept of LWPs or threading models. This is a very reasonable choice by the 
Java designers; Java programs shouldn't be looking at this kind of low-level detail. Unfortunately, 
it brings in a very significant area of possible platform behavior difference. 

Win32 Fibers  

Win32 has a fibers library, which sits on top of its threads and gives a rough approximation of the 
two-level model. However, fibers have a completely different API and require explicit context 
switching, so it's best not to consider them to be threads. Indeed, you probably never want to work 
with fibers at all. 
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Thread Scheduling 

As we have just seen, there are two basic levels to scheduling threads: process local scheduling 
(also known as process contention scope, or unbound threads—the many-to-many model) and 
system global scheduling (also known as system contention scope, or bound threads—the one-to-
one model). These scheduling classes are known as the scheduling contention scope, and are 
defined concepts only in POSIX. In Win32 and in Java there is no such concept defined in the 
specs, no functions to select different models, no method of changing the default behavior at all. 
This is a limitation in some Java implementations and forces the user to call some native methods 
in order to get to the desired behavior (see How to Get Those LWPs in Java). Certain things 
cannot be done at all. 

Process contention scope scheduling means that all of the scheduling mechanism for the thread is 
local to the process—the threads library has full control over which thread will be scheduled on an 
LWP. This also implies the use of either the many-to-one or many-to-many model. This is the 
scheduling method used for Java on Solaris. (Actually, POSIX allows PCS to be implemented as 
SCS, although we are not aware of any implementations that do so.) 

System contention scope scheduling means that the scheduling is done by the kernel (i.e., one-to-
one binding). POSIX allows both (it doesn't require both), whereas Win32 specifies only global 
scheduling. As it turns out, system contention scope scheduling is invariably what the programmer 
really wants on many platforms (e.g., Solaris). It provides the most predictable behavior and best 
performance. 

The entire subject of scheduling is fraught with problems. In all operating systems, both the 
scheduling of threads and the scheduling of processes themselves have problems that have never 
been resolved to everyone's satisfaction. In brief, there are two basic situations in which we find 
ourselves (see Figure 5-1). 

Figure 5-1. The Two Basic Types of Scheduling 

 

The first case (the independent case) occurs when two processes (or threads) are running almost 
completely independently—neither ever has anything it wants from the other, and both would 
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happily chew up every CPU cycle they could get. For example, consider two developers working 
on different projects on the same machine. Time slicing is necessary for both of them to get a fair 
share of the machine. 

The other situation (the dependent case) occurs when the two processes depend directly upon each 
other. One process needs another to perform some task before it can continue—a text editor 
cannot do anything until the file system has delivered files to it to work on, and the file system has 
nothing to do until the text editor requests some services from it. In such a case, time slicing is of 
no use at all. 

In Figure 5-1 we show two independent threads being time sliced and two dependent threads that 
require some resource. In the second case, T1 is allowed to run as long as it wants to. It could run 
forever if only it didn't need to exchange that resource with T2. A real machine is typically faced 
with both situations all the time, along with the judgments of users and system administrators as to 
the relative importance of the various processes. 

We will not attempt to solve these problems here. Suffice it to say that the use of these techniques 
results in less than perfect scheduling algorithms, but we have done fairly well with them over the 
past 30–40 years nonetheless. 

We will now go into some of the gory details of how scheduling is done. The major point we 
make is that most threaded programs are of the dependent case above, and scheduling is 
accomplished mainly by dependence upon the program's need for synchronization. 

Process Contention Scope 

PCS scheduling is done by the threads library. The library chooses which unbound thread will be 
put on which LWP. The scheduling of the LWP is (of course) still global and independent of the 
local scheduling. Although this does mean that unbound threads are subject to a funny, two-tiered 
scheduling architecture, in practice you can ignore the scheduling of the LWP and deal solely with 
the local scheduling algorithm. 

There are four ways to cause an active thread (say, T1) to context switch. Three of them require 
that the programmer has written code. These methods are largely identical across all the libraries. 

1. Synchronization. By far the most common means of being context switched (a wild 
generalization) is for T1 to request a mutex lock and not get it. If the lock is already being 
held by T2, then T1 will be placed on the sleep queue, awaiting the lock, thus allowing a 
different thread to run. 

2. Preemption. A running thread (T6) does something that causes a higher-priority thread 
(T2) to become runnable. In that case, the lowest-priority active thread (T1) will be pre-
empted, and T2 will take its place on the LWP. The ways of causing this to happen 
include releasing a lock, and changing the priority level of T2 upward or of T1 downward. 

3. Yielding. If the programmer puts an explicit call to the yield call [Thread.yield() 
sched_yield()] in the code that T1 is running, the scheduler will look to see if there is 
another runnable thread (T2). If there is one, that thread will be scheduled.[6] If there isn't 
one, T1 will continue to run. 

[6] There are no guarantees about the behavior of yield(). It is legal for it to do nothing! 

4. Time slicing. If the vendor's PCS allows time slicing (like Digital UNIX, unlike Solaris), 
T1 might simply have its time slice run out and T2 (at the same priority level) would then 
receive a time slice. 
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A bit of reflection will show the reader that two of the methods can be executed entirely in user 
space, with the thread-level context switch requiring about 10 ms on a 167-MHz UltraSPARC. 
Preemption, however, is a bit more involved and requires a system call to execute (see 
Preemption). 

In actual practice, you, the programmer, will spend very little time thinking about issues of 
scheduling. When a thread needs a common resource, it uses a lock. If it doesn't get the lock, it 
blocks, and another thread runs. Sooner or later the owner will release the lock and the first thread 
will become runnable again. 

Priority Levels 

The scheduler for unbound threads has a simple algorithm for deciding which thread to run. Each 
thread has an associated priority number. The runnable threads with the highest priorities get to 
run. These priorities are not adjusted by the JVM. The only way they change is if the programmer 
writes an explicit call to do so [thread.setPriority()]. This priority is an integer in Java, 
with value between MIN_PRIORITY (1) and MAX_PRIORITY (10). 

There are all sorts of details and exceptions related to Java priorities. On Windows NT there are 
only seven priority levels to which the ten Java priority levels must be mapped. Native POSIX 
libraries that use unbound threads don't necessarily propagate those priority numbers up to the 
LWPs. Java does not guarantee any behavior related to priority levels. 

By default, Java threads will start with NORM_PRIORITY (5). You can change that value as you 
please. We don't give you any advice on how to choose the value, as we find that we don't use it 
much ourselves. You probably won't, either. We are not aware of any significant programs that set 
priority levels! 

Nonetheless, there are plenty of programmers who love priorities. They carefully raise and lower 
levels to meet some criteria, expecting to control the program's behavior closely. They are almost 
certainly fooling themselves. Don't use priorities. 

Scheduling States 

The natural consequence of the discussion above on scheduling is the existence of four scheduling 
states for threads. (The astute reader who has already figured this all out may skip this section.) 

A thread may be in one of the following states: 

Active:  

It is on an LWP.[7] 

[7] Whether or not the LWP is on a CPU is irrelevant. 

Runnable:  

It is ready to run, but there just aren't enough LWPs for it to get one. It will remain here until an 
active thread loses its LWP or until a new LWP is created. 

Sleeping:  

It is waiting for a synchronization variable. 
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Suspended:  

A call to the suspension function [thread.suspend()] has been made. It will remain in this 
state until another thread calls the resume function on it. 

Zombie:  

It is a dead thread and is waiting for its resources to be collected. (This is not a recognizable state 
to the user, although it might appear in the debugger. This state does not appear in Java threads at 
all, although it may appear in the underlying native library. It is sometimes useful to use this 
concept for explaining behavior.) 

Figure 5-2 shows a process with eight PCS threads and three LWPs. Five of the threads want to 
run, but only three can do so. They will continue to run as long as they want or until one of them 
makes a threads library call that changes conditions, as noted above. The two runnable threads are 
of equal or lower priority than the three active ones, of course. Should one of the sleeping or 
stopped threads be made runnable, whether they actually become active will be a question of 
priority levels. If the newly runnable thread is of higher priority than one of the active threads, it 
will displace the lowest-priority active thread. If it is of lower priority than all of them, it won't. If 
it is of equal priority, we make no guarantees. You should not write a program assuming anything 
about this condition. (It would actually be very difficult to write one that did depend on this.) 

Figure 5-2. Some Process Contention Scope Threads in Various States 

 

The LWPs that are to be used by the unbound threads are set up in a pool and are identical in all 
respects. This setup allows any thread to execute on any of the LWPs in this pool. You should not 
change any attributes of these LWPs (e.g., scheduling class, "nice" level), as you don't know 
which thread will be running on them at any given time. Should you want a special LWP, you'd 
want a bound thread to run on it (not an option in Java). 

When an unbound thread exits or goes to sleep (Figure 5-3), and there are no more runnable 
threads, the LWP that was running the thread goes to sleep in the kernel. When another thread 
becomes runnable, the idling LWP wakes up and runs it. Should an LWP remain idle for an 
extended length of time (5 minutes for Solaris 2.5), the threads library may kill it. You will never 
notice this. Should your application become more active later, more LWPs will be created for you. 

Figure 5-3. Simplified View of Thread State Transitions 
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When a bound thread blocks on a synchronization variable, its LWP must also stop running. The 
LWP does so by making a system call that puts it to sleep. When the synchronization variable is 
released, the thread must be awakened. This is done by making a system call to wake up the LWP. 
The LWP then wakes up, and the thread resumes running. Much the same thing happens when a 
locally scheduled thread blocks on a cross-process synchronization variable. In both cases the 
LWP goes to sleep in the kernel until the synchronization variable is released. This description is 
pretty much the same for Win32. Only the names are different. 

System Contention Scope 

An SCS thread is nothing more than a typical thread that is permanently bound to a specific LWP. 
The LWP runs only that thread and that thread runs only on that LWP. This means that this thread 
is never merely runnable, waiting for an LWP. It is always on an LWP, and that LWP is either 
sleeping on a synchronization variable, suspended, or active (Figure 5-4). 

Figure 5-4. Some System Contention Scope Threads in Various States 

 

Win32 has only SCS scheduling, and it is handled completely by the normal kernel scheduler. 
There are a number of different scheduling classes for the different operating systems (batch, time 
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sharing, interactive, realtime, etc.), which we will touch on later. Suffice it to say that with a SCS 
thread, you can set the kernel-level scheduling class and priority using the process-level API. 

The primary conclusion in both cases is that you should see no particular differences between 
locally and globally scheduled threads as long as there are sufficient LWPs. 

 

Context Switching 

Context switching is a rather complicated concept and has many details of significance, so it is 
difficult to explain in just a few paragraphs. Nonetheless, we shall try. If you don't feel that you 
have a firm grasp of how it works, you should go bug a friend to explain all of the subtle nuances. 
Threads or no threads, you should understand this concept thoroughly. 

A context switch is the act of taking an active thread off its LWP and replacing it with another one 
that is waiting to run. This concept extends to LWPs and traditional processes on CPUs also. We 
will describe context switching in traditional, process/CPU terms. 

The state of a computation is embodied in the computer's registers—the program counter, stack 
pointer, and general registers—along with the MMU's (memory management unit) page tables. 
These, plus the memory contents, disk files, and other peripherals, tell you everything about the 
computer. When it's time to context switch two traditional processes, the register state must be 
changed to reflect the new process that we wish to run. It works approximately like this: 

• All the current registers are stored into the process structure for P1. 
• All the stored register values from the process structure for P2 are loaded into the CPU's 

registers. 
• The CPU returns to user mode, and voila! P1 is context switched out and P2 is context 

switched in and running. 

All the other data in the process structure (working directory, open files, etc.) remain in the 
process structure where it belongs. If a process wishes to use that data, it will reference it from the 
process structure. When two LWPs in the same process context switch, all of the above happens in 
much the same fashion. 

Notice also that a context switch must be done by the CPU itself. One CPU cannot do the context 
switch for another. CPU1 can send an interrupt to CPU2 to let it know that it should context 
switch, but CPU1 cannot actually change the registers in CPU2. CPU2 has to want to context 
switch. 

Finally, context switching for PCS threads involves much the same procedure. A thread (T1) 
decides that it has to context switch (perhaps it is going to sleep on a synchronization variable). It 
enters the scheduler. The CPU stores its register state into the thread structure for T1, then it loads 
the registers from another thread (T2) into the CPU and returns from the scheduler as T2. No 
system calls need be involved. It is possible that it happens completely in user space and is very 
fast. 

It may be a bit unclear what the role of the LWP is when threads context switch. The role is 
invisible. The threads save and restore CPU registers with no regard to the LWP at all. The threads 
scheduler does not do anything to the LWP structure. Should the operating system decide to 
context switch the LWP, it will do so completely independently of what the LWP happens to be 
doing at that time. Should two threads be in the middle of context switching when the kernel 
decides to context switch the LWP, it still makes no difference. The threads' context switch will 
just take a little longer. 
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In Figure 5-5 we describe how context switching works for POSIX threads. (Java threads work 
exactly the same way, but the Java vocabulary for describing locks is a bit less clear for our 
purpose.) Three threads are runnable on two LWPs at time 0. Thread T1 holds a lock. Clearly, T1 
and T2 will be the active threads, as they have the highest priorities. We'll imagine that T1 is on 
LWP1, T2 on LWP2 , and T3 on the runnable queue. 

Figure 5-5. How a Context Switch Works 

 

Approaching time 1, T2 attempted to lock the lock and failed. So, as part of the code for 
pthread_mutex_lock(), T2 put itself onto the sleep queue for the lock, then called the 
scheduler. The scheduler code ran (still as T2) and decided to run T3. Next, the scheduler stored 
away the CPU registers into T2's thread structure and loaded the registers from T3's. (At this 
particular instant, it's not defined which thread is running on LWP2, and it's not important, either.) 
At time 1, the scheduler code finishes its work and returns with T3 running on LWP2. 

At time 2 (see Figure 5-6), T1 releases the mutex. As part of the code for 
pthread_mutex_unlock(), it takes the first thread off the lock's sleep queue (T2) and makes 
it runnable and releases the mutex. Finally, it calls the scheduler. 

Figure 5-6. How a Context Switch Works 

 

The scheduler notices that there's a runnable thread (T2) that has a higher priority than one of the 
active threads (T3). The scheduler then sends a signal in order to preempt the thread on LWP2. 
Now the scheduler has done its work. It returns, and T1 continues to run. This is the state of the 
world at time 2 (with a signal pending). 
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For some short period of time, T3 continues to run. When the signal arrives from the kernel, T3 is 
interrupted and forced to run the signal handler. That, in turn, calls the scheduler, which context 
switches T3 out and T2 in. And that's it! At time 3, T1 and T2 are both active, T3 is runnable, and 
T2 holds the lock. 

There are a couple things to notice here. There's no guarantee that T2 will get the lock. It's 
possible that T1 could have reclaimed it; it's even possible that T3 could have snatched it away 
just before the signal arrived. If either of these events occurred, the net result is that a bit of time 
would have been wasted, but they would both work perfectly. This scenario works as described, 
irrespective of the number of CPUs. If this runs on a multiprocessor, it will work exactly the same 
way as it does on a uniprocessor, only faster. 

In this example we have described two context switches. The first one was voluntary—T2 wanted 
to go to sleep. The second was involuntary (preemptive)—T3 was perfectly happy and only 
context switched because it was forced to. 

Preemption 

Preemption is the process of rudely kicking a thread off its LWP (or an LWP off its CPU) so that 
some other thread can run instead. (This is what happened at time 3.) For SCS threads, preemption 
is handled in the kernel by the kernel scheduler. For PCS threads, it is done by the thread library. 
Preemption is accomplished by sending the LWP in question a signal specifically invented for that 
purpose.[8] The LWP then runs the handler, which in turn realizes that it must context switch its 
current thread and does so. (You will notice that one LWP is able to direct a signal to another 
specific LWP in the case in which they are both in the same process. You should never do this 
yourself. You may send signals to threads but never to LWPs.) 

[8] In Solaris 2.5 and below, it was SIGLWP. This is a kernel-defined signal that requires a system 
call to implement. Digital UNIX uses a slightly different mechanism, but the results are the same. 

Preemption requires a system call, so the kernel has to send the signal, which takes time. Finally, 
the LWP, to which the signal is directed, must receive it and run the signal handler. Context 
switching by preemption is involuntary and is more expensive than context switching by 
"voluntary" means. (You will never have to think about this while programming.) 

The discussion of context switching and preemption above is accurate for all the various libraries. 
It is accurate for threads on LWPs and for LWPs (or traditional processes) on CPUs, substituting 
the word interrupt for signal. 

How Many LWPs? 

The UNIX98 threads library has a call, pthread_setconcurrency(), which tells the library 
how many LWPs you'd like to have available for PCS threads. If you set the number to ten and 
you have nine threads, then when you create a tenth thread, you'll get a tenth LWP. When you 
create an eleventh thread, you won't get another LWP. Now the caveat. This is a hint to the library 
as to what you'd like. You may not get what you ask for! You might even get more. Your program 
must run correctly without all the LWPs you want, although it may run faster if it gets them. In 
practice, this becomes an issue only when your program needs a lot of LWPs. 

You've got the power, but how do you use it wisely? The answer is totally application-dependent, 
but we do have some generalities. (N.B.: Generalities. If you need a highly tuned application, 
you've got to do the analysis and experimentation yourself.) We assume a dedicated machine. 

• If your program is completely CPU bound, one LWP per CPU will give you maximum 
processing power. Presumably, you'll have the same number of threads. 
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• If your program is highly CPU bound and you do some I/O, one LWP per CPU and 
enough to cover all simultaneous blocking system calls[9] is called for. 

[9] Blocking system calls include all calls to the usual system calls such as read(), but 
any thread that blocks on a cross-process synchronization variable should also be counted. 
Bound threads are independent of this, as they each have their own LWP. 

• If your program is only I/O bound, you'll want as many LWPs as simultaneous blocking 
system calls. 

How to Get Those LWPs in Java 

And now we get to the specifics. This is the one area where things get very implementation and 
platform dependent. This is also an issue that has aroused great debate in the halls of 
comp.programming.threads. Voices have been raised, enormous volumes of argument have been 
written, veritable fisticuffs have been exchanged over this! 

First let's consider what we really want from our scheduler. We want all of our runnable threads to 
run as much as possible. We want to make as many blocking system calls as we feel like making, 
and we want them to execute concurrently. 

One implementational technique for getting this effect is to use bound threads. Another is to 
ensure that the library creates a sufficient number of LWPs and guarantees that the runnable 
threads will be time sliced. 

In Windows NT there is no issue with the number of LWPs available for a Java program. NT uses 
bound threads for everything, so you get all the LWP equivalents you need. Digital UNIX 
implements its library in such a fashion that you get one "virtual processor" (LWP equivalent) for 
each actual CPU and one more for every outstanding I/O request. So there are no such problems 
with Digital UNIX. 

If you are running on a system that implements only PCS scheduling for Java threads (e.g., Solaris) 
there is no portable mechanism for specifying how many LWPs you'd like. Moreover, it is 
possible that you will want more LWPs than the system will give you automatically. This is one of 
those (very few) unfortunate places where the default is not what you want and you are forced to 
make a call to native code. 

In Solaris you are provided with only one LWP by default. If all the LWPs in a process are 
blocked, waiting for I/O, Solaris will add another LWP if needed. This ameliorates the problem 
partially but still does not provide the full complement of LWPs if you either have multiple CPUs 
or don't make enough blocking calls. In most typical cases you will not get as many LWPs as 
you'd like. In Solaris, you are forced to make a native call to pthread_setconcurrency() to 
obtain the "expected" level of kernel concurrency. Obviously, this is not a good thing and makes a 
mess of your 100% pure Java program, but it is necessary for most high-performance MT 
programs. The technique for doing this is straightforward and shown in Making a Native Call to 
pthread_setconcurrency(). 

Changing Scheduling Parameters for LWPs 

Just because a thread is bound to an LWP does not imply that the LWP is going to be scheduled 
on a CPU immediately. Depending upon the nature of your application requirements, you may 
need to alter the kernel-level scheduling priority of that LWP. If you need merely to ensure that it 
gets a CPU within a second, then relying upon the normal time-slicing scheduler is probably 
sufficient. 
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nice() 

If response is required on the order of 100 ms, the default may be sufficient, but it may not should 
there be a lot of contention for the CPU. In this case, simply raising the time-sharing class priority 
of the LWP is probably sufficient. The UNIX system call nice() will do this for you. Basically 
what nice() will do is add (or subtract) a fixed priority number to the level calculated by the 
kernel for an LWP, effectively making the LWP in question more "important" and ensuring that it 
gets the CPU when it wants it. In UNIX98, nice() is defined to act on the entire process. It is 
entirely implementation dependent and only gives you some vague control. In any case, this 
technique cannot be used with Java, as there is no way to bind a thread to any particular LWP. 

Realtime LWPs 

It's when you require response in the 2–100 ms range that things get interesting. You will need to 
put the LWP into the realtime scheduling class. You do all the typical realtime tricks—no 
blocking system calls, probably no I/O,[10] no paging (you'll need to lock down all the memory that 
your thread will use: functions, stack, data.), etc. ("Etc." means that there is plenty more involved 
that we haven't thought about, but that you'd better. Realtime processing is a tricky thing; be very 
careful!) Java does not have realtime scheduling classes. 

[10] For I/O, you'd typically set up the buffers in the realtime thread but then allow a normal thread to 
execute the I/O call on those buffers. 

Avoid Realtime 

You might require a realtime thread when you have the undivided attention of a user and are doing 
constant updating (e.g., mouse tracking, video or audio playback) or when you are doing machine 
feedback and control (e.g., autonomous vehicle navigation, robotics). Other instances include 
when you are doing realtime data collection with analysis. 

You might think that you need a realtime thread, but don't, when you update displays with the 
divided attention of a human being (if you're 100 ms late in seeing the latest from the stock ticker, 
no big deal). Avoid using the realtime class if you possibly can. 

Allocation Domains 

POSIX recognizes the desire of some programmers for closer control over the scheduling of 
LWPs onto CPUs. Unfortunately, there is little convergence on the methods of doing so by the 
vendors, so there is little that POSIX can say about it. Basically, POSIX defines allocation 
domains, which are sets of CPUs. The programmer then specifies that certain LWPs are allowed 
to execute on the CPUs in the chosen domains. All of these functions are implementation specific. 

Do allocation domains really gain you anything? In certain realtime applications, yes. Otherwise, 
probably not. Our opinion is that you are more likely to bog your program down with excessive 
complexity than to improve it if you use them in most programs. Java has no interface for 
allocation domains. 

Binding LWPs to Processors 

It's often possible to ensure that a given LWP will always run on a selected processor. It's also 
possible to ensure that a given LWP will run to the exclusion of all other LWPs in all processes by 
putting it into the realtime class. Doing both effectively binds the processor to the LWP as long as 
the LWP wants to run. 
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The question of when these things are useful has a somewhat tricky answer, and it changes with 
new operating system releases. If schedulers worked perfectly and had ESP, you would never bind 
an LWP to a CPU. In practice, it's sometimes otherwise. Java has no interface for binding LWPs to 
CPUs. 

Happiness Is a Warm Cache 

The main issue is that of cache memory latency. The current batch of PCs and workstations have 
external caches of significant size (typically, 1–4 megabytes). To replace the contents of such a 
cache completely can take a very long time (upwards of 100 ms, depending upon individual 
architecture). If an LWP is running on CPU 0 and it is context switched off for a short time, the 
vast majority of that cache will still be valid. So, it would be much better for that LWP to go back 
onto CPU 0. 

The normal schedulers in the various OSs endeavor to do precisely that via processor affinity 
(Figure 5-7). Solaris, for example, will delay running an LWP on CPU 1, should that LWP 
previously have been on CPU 0. If CPU 0 becomes available relatively quickly (currently, 30 
ms—three clock ticks), that LWP will be put back on CPU 0. If CPU 0 does not become available 
within that time frame, the LWP will be scheduled on whatever CPU is available. 

Figure 5-7. Processor Affinity 

 

We know of some instances where it has proven valuable to do processor binding of LWPs. If you 
are considering this, test first. You should not even consider processor binding unless you already 
know that there's a clear problem of this nature. And you must be aware that everything may be 
different on a different architecture or different OS release. The details of these issues are well 
beyond the scope of this book, and we wish to caution you that it is rare for anyone to have to 
address these issues. 

 

Java Scheduling Summary 

Java was designed for writing portable application code across many different types of systems—
various types of UNIX (Solaris, SCO, AIX, Ultrix), Win32, Macintosh, OS/400, MVS, realtime 
systems, etc. Consequently, when it came to defining the threading and scheduling model to be 
used in Java, it needed to be one that could be supported relatively easily on all platforms. If we 
look at what all the primary Java platforms have in common with regard to thread scheduling, we 
find almost nothing! Other than having threads and thus needing to schedule them, all the systems 
are very different. This resulted in Java defining a very loose scheduling model: 

• All Java threads have a priority and the scheduler will generally give preference to 
executing the highest-priority runnable thread (i.e., it is notionally priority preemptive). 
However, there is no guarantee that the highest-priority thread is always running. 

• A system may apply time slicing to threads, but it is not required to. If time slicing does 
exist, whether it applies across all threads or only within priority levels, is not defined. 
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Given such a loose specification for scheduling, how can we write portable code? The answer is to 
never make optimistic assumptions about scheduling behavior but always assume the worst: 

• You must assume that threads could be interleaved at any point in time. 
• You must not require that threads be interleaved at some time. If you need to guarantee 

that different threads make progress, you will have to explicitly code things such that 
progress can occur. 

How Many Threads in Java? 

The Java spec does not state how many threads an implementation must support. The actual 
number is completely implementation dependent. Presumably, the number will be the same as the 
limit on the underlying native library. For JVMs based on POSIX threads (most UNIX 
implementations, Linux, VMS, AS/400), this will be a minimum of 64. The actual maximum is 
undefined, but probably at least 1000. On Solaris, for example, the limitation is strictly the amount 
of virtual memory you have, hence about 4000 threads on 32-bit Solaris, assuming minimal 
program and data size and the default 500k stack. On Windows NT the number of threads is more 
limited, as small as 64. (See NT documentation for details.) One implementation, BulletTrain 
from Natural Bridge Inc., actually builds a two-level model on top of NT, allowing Java to have 
more than 8000 threads simultaneously. 

If you want more than a few hundred threads, be careful! You are probably doing something 
wrong. 

 

When Should You Care About Scheduling? 

There are times when you will want to deal with scheduling directly, but those times are few and 
far between for any of the libraries. If you find yourself thinking about this a lot, you're probably 
doing something wrong. Some examples follow. 

It is possible to design a server program where each thread runs forever, picking up requests off 
the net, processing them, and returning for more. It is possible for an unbound thread to get starve 
for CPU time in this situation. In this case you should add LWPs for the purpose of effecting a 
time-slicing scheme. 

A program that used a set of threads to produce data and another single thread to push that data 
out to some device in realtime needs to ensure that the output thread runs when it needs to. Here a 
higher priority would be in order. In the Delphax/Uniq case study (see Vendor's Threads Pages), 
where they built a high-speed printer driver, they found it worthwhile to make a bound thread and 
put the LWP into the realtime class. 

In spite of all the attention we just paid to explaining it, you will not write much (if any!) code to 
deal with it. If the library writers did their job well, everything will "just work," without any effort 
on your part. In most MT programs, the different threads all depend upon one another, and it 
doesn't really matter which one runs first. Sooner or later, the running threads will need something 
from the other threads, and they will be forced to sleep until those other threads have produced 
that something. 

 

APIs Used in This Chapter 
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The Class java.lang.Thread 

yield 
   public static void yield() 

This causes the current thread to give up its LWP (or CPU) to another thread at the same or a 
higher priority level (if any). It is legal for yield() to do nothing, so you must not rely on it. 

Reference: Chapter 5. 
Comment: You probably will never use this function. 
 
setPriority getPriority 
   public final void setPriority(int newPriority) 
         throws SecurityException, IllegalArgumentException 
   public final int getPriority() 

These change (return) the priority level of the thread. The priority level must be between 
MIN_PRIORITY and MAX_PRIORITY if the thread group to which this thread belongs may set a 
lower bound than MAX_PRIORITY. 

Reference: Chapter 5. 
Comment: You probably will never use these functions. 
 
suspend 
   public final void suspend() 

This causes the thread to stop running and wait until you call thread.resume(). Because 
suspension is asynchronous, you have no idea what the target thread was doing when you 
suspended it. For example, it may hold some locks that your other threads need. This makes it 
virtually impossible to use. 

Reference: Chapter 5. 
Comment: It has been deprecated in Java 2. 
 
resume 
   public final void resume() 

This causes a suspended thread to resume. 

Reference: Chapter 5. 
Comment: It has been deprecated in Java 2. 
 
MIN_PRIORITY MAX_PRIORITY NORM_PRIORITY 
   public final static int MIN_PRIORITY = 1; 
   public final static int MAX_PRIORITY = 10; 
   public final static int NORM_PRIORITY = 5; 

These are the minimum, maximum, and default priorities for normal threads. 

Reference: Chapter 5. 
Comment: You will probably never use these functions. 
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Summary 

Several scheduling models exist, most of which are overkill. For all but truly exceptional 
programs, the normal vendor scheduler does a fine job and that, along with proper synchronization, 
means that we don't have to worry about scheduling at all. Realtime folks are on their own. 
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Chapter 6. Synchronization 
• Synchronization Issues 
• Synchronization Variables 
• APIs Used in This Chapter 
• The Class java.lang.Object 
• The Class Extensions.Semaphore 
• The Class Extensions.Mutex 
• The Class Extensions.ConditionVar 

In which the reader is led on a hunt for the intimidating synchronization variable and discovers 
that it is not actually as frightening as had been thought. Programs illustrating the basic use of the 
POSIX and Java primitives are shown. 

 

Synchronization Issues 

To write any kind of concurrent program, you must be able to synchronize the different threads 
reliably. Failure to do so will result in all sorts of ugly, messy bugs. Without synchronization, two 
threads will start to change some data at the same time; one will overwrite the other. To avoid this 
disaster, threads must reliably coordinate their actions. 

In Code Example 6-1, your bank has one thread running, calculating the dividends on your bank 
account. If you're like me, that's about $10 @ 1%, giving a newBalance of $10.10. At exactly 
this instant, the end of the month arrives and a second thread decides to deposit your paycheck. As 
a well-paid, highly skilled programmer, that's probably about $20,000. The thread deposits the 
check and updates your account to $20,010. One microsecond later the first thread completes its 
work, overwriting your bank balance with $10.10. Too bad. 

Example 6-1 Why Synchronization Is Necessary 

Thread 1 Thread 2 
temp = your.bankBalance; temp = your.bankBalance; 
dividend = temp * InterestRate; newBalance = deposit + temp; 
newBalance = dividend + temp; your.bankBalance = newBalance; 
your.bankBalance = newBalance;  
 

Atomic Actions and Atomic Instructions 

Implementation of synchronization requires the existence of an atomic test and set instruction in 
hardware. This is true for both uniprocessor and multiprocessor machines. Because threads can be 
preempted at any time, between any two instructions, you must have such an instruction. Sure, 
there might be only a 10-ns window for disaster to strike, but you still want to avoid it. 

A test and set instruction tests (or just loads into a register) a word from memory and sets it to 
some value (typically, 1), all in one instruction, with no possibility of anything happening in 
between the two halves (e.g., an interrupt or a write by a different CPU). If the value of the target 
word is 0, it gets set to 1 and you are considered to have ownership of the lock. If it already is 1, it 
gets set to 1 (i.e., no change) and you don't have ownership. All synchronization is based upon the 
existence of this instruction. 
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In SPARC machines, the test and set instruction is ldstub ("load and store unsigned byte"), 
which loads a byte into a register while setting that byte to all ones. Code Example 6-2 shows how 
it can be used to create a basic lock. The important thing to understand here is that no matter how 
many different threads on how many different CPUs call ldstub at the same time, only one of 
them will get ownership. Exactly how the go_to_sleep function works is unimportant. Indeed, 
even if it did nothing at all and just jumped right back to try_again, the locking code would still 
work (see Spin Locks). Notice that there is no guarantee that a thread that goes to sleep will get 
the lock when it wakes up. 

Example 6-2 Pseudo-assembly Code for the Mutual Exclusion Lock 

try_again:   ldstub address -> register 
             compare register, 0 
             branch_equal got_it 
             call go_to_sleep 
             jump try_again 
got_it:      return 

Other types of atomic instructions are used on other machines, most of which are logically 
equivalent. The one type of instruction that is substantially different is the compare and swap 
instruction, which compares one word of main memory with a register and swaps the contents of 
that word with a second register when equal. This type of instruction allows some other types of 
atomic actions which are qualitatively distinct (see LoadLocked/StoreConditional and Compare 
and Swap), giving significantly superior performance for specific situations. 

Critical Sections 

A critical section is a section of code that must be allowed to complete atomically with no 
interruption that affects its completion. 

We create critical sections by locking a lock (as in Code Example 6-2), manipulating the data, 
then releasing the lock afterward. Such things as incrementing a counter or updating a record in a 
database need to be critical sections. Other things may go on at the same time, and the thread that 
is executing in the critical section may even lose its processor, but no other thread may enter the 
critical section. Should another thread want to execute that same critical section, it will be forced 
to wait until the first thread finishes. 

Critical sections are typically made as short as possible and often carefully optimized because they 
can significantly affect the concurrency of the program. As with all the code in this book, we rely 
upon the programmer to obey the rules for using critical sections. There is no external 
enforcement that prevents a sloppy programmer from manipulating data without holding the 
proper lock. 

Lock Your Shared Data! 

All shared data must be protected by locks. Failure to do so will result in truly ugly bugs. Keep in 
mind that all means all. Data structures that are passed to other threads and global variables are the 
obvious examples.[1] All data structures that can be accessed by multiple threads are included. 
Static variables are included. 

[1] It is, of course, possible to have global variables that are not shared, but this would be rather 
unusual. Be very careful if you think you have one. If you're wrong, you're going to be unhappy 
when something breaks. 



 62

Statics in Java are just global variables that are associated with a specific class. It was somewhat 
convenient to use these in the single-threaded programs of yore, but in MT programs they are 
disasters waiting to strike. You should reconsider your use of statics very carefully. If you do use 
'em, lock 'em first! 

 

Synchronization Variables 

To provide synchronization, a system includes special data structures, and a set of functions 
manipulate them. POSIX defines three synchronization variables and the function 
pthread_join() to provide this functionality. (UNIX98 makes it four.) Win32 provides 
synchronization variables of a slightly different nature. Java provides the same functionality by 
encapsulating synchronization variables within every object. These synchronization variables are 
manipulated by means of a keyword (synchronized), thread.join(), and several methods 
on Object. In all the libraries, these provide the only reliable means of coordinating the 
interactions of your threads. There are other tricky things you can do to coordinate your threads, 
but they won't work reliably because the hardware is designed assuming that you will be using 
synchronization variables (see Bus Architectures). 

There are two basic things you want to do. The first is that you want to protect shared data. This is 
what locks do. The second is that you want to prevent threads from running when there's nothing 
for them to do. You don't want them spinning, wasting time. This is what semaphores, condition 
variables, wait sets, join(), barriers, etc., are for. Once again, we will describe how the simpler 
primitives in POSIX work, then show how Java maps onto them. 

Mutexes 

The mutual exclusion lock is the simplest and most primitive synchronization variable. It provides 
a single, absolute owner for the section of code (thus a critical section) that it brackets between the 
calls to pthread_mutex_lock() and pthread_mutex_unlock() (Code Example 6-3). The 
first thread that locks the mutex gets ownership, and any subsequent attempts to lock it will fail, 
causing the calling thread to go to sleep. When the owner unlocks it, one of the sleepers will be 
awakened, made runnable, and given the chance to obtain ownership. It is possible that some 
other thread will call pthread_mutex_lock() and get ownership before the newly awakened 
thread does. This is perfectly correct behavior and must not affect the correctness of your 
program.[2] It's unusual to write code that would be affected by this behavior (see FIFO Mutexes). 

[2] In the absurd case of two threads trying to increment a counter, it is possible that only one of 
them will ever run, even though the program was written "correctly." The probability of T1 failing to 
get the mutex 1000 times in a row is normally tiny and is only of interest to the rarest of non-
realtime programs. 

Example 6-3 Using Mutexes in the Various Libraries 

POSIX Win32 Java 
pthread_mutex_lock(m) WaitForSingleObject(m) synchronized(o) { 
... ...   ... 
pthread_mutex_unlock(m) ReleaseMutex(m) } 

In Figure 6-1, three threads all need a mutex. They have different priorities ("P:"), which 
determine the order in which they go onto the sleep queue. The threads have requested the lock in 
the order T1, T2, T3. As the first to try, T1 owns the lock, and T3 will be awakened as soon as T1 
releases it, even though T2 requested the lock before T3. 
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Figure 6-1. Mutex with Several Threads Sleeping on It 

 

Note that the mutex doesn't know who owns it.[3] Because mutexes protect sections of code,[4] it is 
not legal for one thread to lock a mutex and for another thread to unlock it. Depending upon the 
library implementation, this might not result in a runtime error, but it is illegal. The locking may 
occur in one function while the unlocking occurs in another; locks may overlap in their use (lock 2, 
unlock 1, lock 3, unlock 2, etc.), but under no circumstances should you ever release a lock from 
the wrong thread. If you think you need this kind of behavior, you should (1) think really hard 
about what you're doing, and (2) look at semaphores. This problem does not arise with Java 
synchronized sections, but we will be implementing a Mutex class a bit later for which this caveat 
applies. 

[3] POSIX doesn't prevent a mutex from recording its owner, it just doesn't require it. Some 
implementations can be much faster if ownership is not recorded. 

[4] To be more precise, a mutex protects itself. We trick it into protecting sections of code by placing 
the lock and unlock functions judiciously. By restricting data access to those functions, we manage 
to have mutexes protect our shared data, which is what we really want. 

In the execution graph for mutexes shown in Figure 6-2, we see the timing behavior of locks. The 
graph is shown for two threads on two CPUs, but for a uniprocessor the behavior will be identical, 
save that there will be gaps in each time line as the CPU context switches. Those gaps will affect 
neither the correctness of the code nor the probability of encountering race conditions in correctly 
locked code (see Race Conditions). 

Figure 6-2. Execution Graph of the Operation of a Mutex 

 

Figure 6-3 and Code Example 6-4 show the proper way to use mutexes while putting items onto a 
list (as thread 1 is doing) and taking them off (thread 2). Should two threads call remove() at the 
same time, one of them will get mutex ownership while the other will have to go to sleep. When 
the mutex is released, the sleeper will be awakened, but it is possible that either thread 1 or a third 
thread could slip in at just the right instant and get the lock. In this case the new thread, instead of 
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the sleeper, would remove Request2 from the list. Presumably all the threads will be executing 
the same code, so it won't make any difference which thread actually gets to process the request. 

Figure 6-3. Protecting a Shared List with a Mutex 

 

Example 6-4 Protecting a Shared List with a Mutex (POSIX) 

Thread 1 Thread 2 
add(request_t *request) {  
  pthread_mutex_lock(&lock);  
  request->next = requests; request_t *remove() { 
  requests = request;   pthread_mutex_lock(&lock); 
  pthread_mutex_unlock(&lock);   ...sleeping... 
}  
   request = requests; 
   requests = requests->next; 
  
   pthread_mutex_unlock(&lock) 
   return(request); 
 } 

The same lock must be used uniformly to protect data. Using one lock to protect the list in add() 
and a different lock in remove() would be a disaster, of course. Don't do that. 

Now let's look at how Java implements mutual exclusion. The computational logic for Java is 
identical; the coding technique is different. In Java, a block of code marked synchronized will 
be protected by a mutex. 

In Java every object has a mutex associated with it implicitly (Figure 6-4). There is no direct 
access to this mutex; rather, it is locked and unlocked through the use of synchronized statements. 
A synchronized statement has the form shown in Code Example 6-5. 

Figure 6-4. All Objects Have Their Own Mutex and Wait Set 
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Example 6-5 Synchronized Statement 

synchronized(foo){ 
    // code to execute with foo's mutex held 
} 

When you enter the synchronized statement the mutex belonging to the object referred to by foo 
will be locked for you, and when you leave the statement, whether normally or via an exception, 
the mutex will be unlocked for you. Should the mutex already be locked, the thread will block, as 
with POSIX. This syntax makes it impossible to forget to unlock a mutex but also requires that all 
uses of mutexes are nested (i.e., you always release mutexes in the reverse order to which you 
acquire them). Unlike POSIX, in Java there is no defined wakeup order; even priority levels are 
ignored. 

As a shorthand notation we can define a method to be synchronized, which has the same effect as 
placing the entire body of the method in a synchronized statement using the current object as the 
object to lock. The two bits of code shown in Code Example 6-6 behave identically. 

Example 6-6 Using synchronized in Java 

Explicit Synchronization Implicit Synchronization 
public MyClass() { public MyClass() { 
  int count = 0;   int count = 0; 
  
  void frob() {   void synchronized frob() { 
    synchronized(this) {  
      count++;     count++; 
    }   } 
  } } 
}  

The mutex that will be used is gotten from the object referenced, either the object the method is 
running on (for the implicit case) or from the object specifically mentioned (for the explicit case). 
The class Object (and hence any subclass, that is, every class) has two private instance 
variables.[5] One is a mutex, the other is a wait set, which we'll discuss soon. Primitive types (int, 
char, etc.) do not inherit from Object and hence do not have associated mutexes and wait sets. 

[5] It may seem rather expensive to allocate a few dozen bytes for every single object, especially 
when very few mutexes or wait sets ever get used. It would be if they were actually allocated every 
time. Clever systems programmers avoid this space overhead by a couple of tricks. 

It is important to realize that the mutex and wait set are per object, not per class; thus two different 
instances of class Foo will have two different mutexes (see Figure 6-5) and locking one will not 
protect data used by the other. So the code in Code Example 6-5 is correct because each instance 
of MyClass will have its own instance of count. If count had been declared to be static, the 
code would not have worked. 

Figure 6-5. Each Instance Has Its Own Mutex 
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The class object itself is a subclass of Object; hence it too has a mutex and wait set. This mutex 
can be used to protect static data. It is used for static synchronized methods (see Code Example 6-
7). The class lock may be used to protect class internals during instance creation, but this should 
not be an issue unless you're holding onto it for unusually long periods of time. In that case you 
may wish to use a different object (Code Example 6-8) to protect your static variables (probably 
not). 

Example 6-7 Static Synchronized Methods Also Use the Class Lock 

public class Foo { 
    static int count = 0; 
 
    static public synchronized void inc(int i) { 
        count = count + i; 
    } 
} 

Example 6-8 You May Use an Unrelated Object to Protect Static Data 

public class Foo { 
    static int count = 0; 
    static Object o = new Object(); 
    public void inc(int i) { 
        synchronized (o) { 
            count = count + i; 
        } 
    } 
} 

Notice that in Code Example 6-9 we use Foo.class to obtain the class object for Foo. Should 
you later define Bar, which subclasses Foo, a call to Bar.inc() will of course increment the 
same count variable as Foo.inc() (static variables are inherited by subclasses) and the lock 
from the Foo class will be locked, not the lock from Bar. This is, of course, what we want. If we 
had called getClass() instead of Foo.class, we would have locked the lock for Bar. That 
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would have been a mistake and we would have been using two different locks to protect the same 
static variable. Don't do that. 

Example 6-9 You May Use the Class Itself to Protect Static Data 

public class Foo { 
    static int count = 0; 
 
    public void inc(int i) { 
        synchronized (Foo.class) { 
            count = count + i; 
        } 
    }   // cf: getClass() 
} 

Now let's look at that shared list example implemented in Java (Code Example 6-10). No surprise, 
the code looks virtually identical to the POSIX code. (The two methods are part of a class 
Workpile, which we'll see a bit later.) 

Example 6-10 Protecting a Shared List with a Mutex (Java) 

Thread 1 Thread 2 
synchronized void add(Request r) 
{ 

 

  r.next = requests; synchronized Request remove() { 
  requests = r;  
}   ...sleeping... 
   r = requests; 
   requests = requests.next; 
   return(r); 
 } 

For the (rare) situation when you do not want to go to sleep, a trylock function is included in 
POSIX and Win32. In POSIX, pthread_mutex_trylock() returns 0 if you get the lock and 
EBUSY if you don't. (Win32 functions have timeouts for the same purpose.) If you get EBUSY, 
you'll have to figure out something else to do, as entering the critical section anyway would be 
highly antisocial. This function is used very rarely, so if you think you want it, look very carefully 
at what you're doing![6] [See Making malloc() More Concurrent.] There is no such functionality in 
Java. This is not a particular problem, as Java does not address itself to the kinds of low-level, 
realtime problems that trylock is useful for. 

[6] We apologize if these warnings seem a bit much. We realize that you understand the issues 
involved. We just want to make it clear for that other programmer. 

It is important to realize that although locks are used to protect data, what they really do is to 
prevent more than one thread from running the section of code they bracket (assuming that the 
same mutex is being used). There's nothing that forces another programmer (who writes another 
function that uses the same data) to lock his code—nothing but good programming practice. 

Moreover, there is no automatic connection between the object's lock and the object's instance 
variables. Although it seems obvious that one would use the lock from object1 to protect the 
instance variables of object1, it isn't a requirement and there are situations where you want to 
use the lock from object2 to protect the data of object1! Nonetheless, it is a nice feature of 
object-oriented programming for the lock to be encapsulated with the data, making it that much 
less likely for you to make a mistake. 
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Win32 provides a mutex (which is a kernel object), along with a critical section,[7] which is more 
like a POSIX mutex. Win32 mutexes are recursive—meaning that the same thread can lock the 
mutex multiple times. Java-synchronized sections are also recursive. We'll discuss this in more 
detail in Recursive Mutexes. 

[7] We find it is somewhat confusing to use a generic term like critical section, which refers to a 
concept, for the name of a specific synchronization variable. 

Semaphores 

In the nineteenth century, when trains were still advanced technology and railroad tracks were 
exotic and expensive, it was common to run single sets of tracks and restrict the trains to travel in 
only one direction at a time. Semaphores were invented to let the trains know if other trains were 
on the rails at the same time. A semaphore was a vertical pole with a metal flag adjusted to hang at 
either 45 or 90 degrees to indicate the existence of other trains. 

In the 1960s, E. W. Dijkstra, a professor in the Department of Mathematics at the Technological 
University, Eindhoven, Netherlands, extended this concept to computer science. A counting 
semaphore[8] (a.k.a. PV semaphore) is a variable that can increment arbitrarily high but decrement 
only to zero. A POSIX sem_post() operation (a.k.a. "V"—verhogen in Dutch) increments the 
semaphore, while a sem_wait() (a.k.a. "P"—proberen te verlagen) attempts to decrement it. If 
the semaphore is greater than zero, the operation succeeds; if not, the calling thread must go to 
sleep until a different thread increments it. 

[8] The word semaphore has come to take on other meanings in computer science. System V 
semaphores, for example, are much more elaborate objects than counting semaphores. 

A semaphore is useful for working with "trainlike" objects, that is, what you care about is whether 
there are either zero objects or more than zero. Buffers and lists that fill and empty are good 
examples. Semaphores are also useful when you want a thread to wait for something. You can 
accomplish this by having the thread call sem_wait() on a semaphore with value zero, then 
have another thread increment the semaphore when you're ready for the thread to continue (Code 
Example 6-11). 

Example 6-11 Basic Use of Counting Semaphores 

POSIX Win32 Java 
  (from 

Semaphore.java) 
sem_wait(&s); WaitForSingleObject(s,...); s.semWait(); 
sem_post(&s); ReleaseSemaphore(s,...); s.semPost(); 

In Figure 6-6 the semaphore started with a value of zero. The threads have executed their 
respective operations in the order T1, T2, T3, T4, T5. After T1 executed its sem_wait(), it had 
to wait (as the value was zero). When T2 did the sem_post(), T1 was awakened and 
decremented the value back to zero. T3 did a sem_post(), incrementing the value to one. When 
T4 did its sem_wait() it could continue without waiting at all. Finally, T5 called sem_wait(), 
and is still waiting. 

Figure 6-6. How a Semaphore Operates 



 69

 

Although there is a function sem_getvalue() which will return the current value of a 
semaphore, it is virtually impossible to use correctly because what it returns is what the value of 
the semaphore was. By the time you use the value it returned, it may well have changed. If you 
find yourself using sem_getvalue(), look twice; there's probably a better way to do what you 
want. 

Java does not include semaphores as one of its base classes, but they are easily implemented and 
we have done so in our extensions package. Our Semaphore class behaves exactly as POSIX 
semaphores do (ignoring UNIX signal issues). Win32 implements counting semaphores with 
similar definitions. 

In the execution graph (Figure 6-7) we see the operation of Code Example 6-11. Notice that when 
T1's decrement attempt fails, it simply goes to sleep and tries it again later. Another thread could 
jump in and decrement the value just as thread T1 was waking up, in which case T1 would have to 
go back to sleep. As with mutexes, this is usually not a problem. 

Figure 6-7. Execution Graph of the Operation of a Semaphore 

 

A typical use of semaphores is in Code Example 6-12. This is a producer/consumer example in 
which one thread is continually receiving requests from the net, which it adds to a list, while the 
other thread is busy removing items from that list and processing them. It is particularly 
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interesting to notice that the number of items on the list is contained in the semaphore, but the 
program never actually gets to look at that number. Should the producer place twenty items on the 
list all at once, the consumer function will be able to call sem_wait() twenty times without 
blocking. The twenty-first time, the semaphore will be zero, and the consumer will have to wait. 
Because the critical sections are so small, the chance of any thread ever blocking on the mutex in 
get_request() is very small. 

In Code Example 6-12, the main things to notice are that get_request() must allocate the 
memory for the request structure that will be appended to the list, while process_request() is 
responsible for freeing it. This code may safely be run by any number of threads running the 
producer and any number running the consumer. In no case will a consumer ever attempt to 
remove a request from an empty list. The semaphore actually encodes the minimum length of the 
list. During the brief moments between the time a producer places a request onto the list and the 
time the semaphore is incremented, the semaphore value is one less than the actual length of the 
list. For now, this is fine. 

Example 6-12 Classic Producer/Consumer Example (one_queue_problem.c) 

producer() { 
    request_t *request; 
    while(TRUE) { 
        request = get_request(); 
        add(request); 
        sem_post(&requests_length); 
    } 
} 
 
consumer() { 
    request_t *request; 
    while(TRUE) { 
        SEM_WAIT(&requests_length); 
        request = remove(); 
        process_request(request); 
    } 
} 

The same problem done in Java (Code Example 6-13) is quite similar again. Unlike C, there will 
be no issues surrounding allocating and freeing memory (ain't garbage collection great?). 

Example 6-13 Classic Producer/Consumer Example (OneQueueProblem) 

public class Consumer implements Runnable { 
    Workpile workpile; 
    Server server; 
 
    public void run() { 
        Item item; 
 
        while (true) { 
            s.semWait(); 
            item = workpile.remove(); 
            server.process(item); 
        } 
    } 
 
    public class Producer implements Runnable { 
        Workpile workpile; 
        Server server; 
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        public void run() { 
            Item item; 
 
            while (true) { 
                item = server.get(); 
                workpile.add(item); 
                s.semPost(); 
            } 
    } 
} 

The list in both examples is unbounded and may continue to grow longer until memory is 
exhausted. This is a problem with our example code that must be solved. You should be able to 
come up with a solution yourself now. We'll get to it a bit later. 

Using Barriers to Count Exiting Threads 

Sometimes we do want to know when a set of threads have completed their work. One way of 
doing this is to use a single barrier (distinct from the Barriers). Each exiting thread will increment 
the barrier's value, and the thread waiting for them will wait until the value is the number of 
threads being waited for. This gives a convenient replacement for calling thread.join(). We'll 
be using single barriers regularly for this purpose. 

We'll show the code in Single Barriers , but the gist of it is that worker threads call 
barrier.barrierPost() as they exit and the master thread calls barrier.barrierWait() 
(barrier has been initialized to the number of worker threads). Thus the master thread will wait 
until all the workers are done. (We don't actually care exactly when the worker threads exit.) 

A Different View of Semaphores 

Now let's look at a different picture of how a semaphore works. Figure 6-8 depicts the actual 
operation of semWait() and semPost() in our extensions package. As the value of the 
semaphore is a shared data item, it must be protected in a synchronized section (or logical 
equivalent). The first thing semWait() does is enter that synchronized section (locks the mutex). 
Then it checks the value. If it is greater than zero, the value is decremented, the mutex is released, 
and semWait() returns. 

Figure 6-8. Flowchart for Semaphores 
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If the value of the semaphore is zero, the mutex will be released, and the thread will then go to 
sleep. Upon waking up, the thread must repeat the operation, reacquiring the mutex and testing the 
value. 

The operation of semPost() is quite simple. It locks the mutex, increments the value, releases 
the mutex, and wakes up one sleeper (if there is one). The results are exactly what you expect. 
Even though you have no idea what the scheduling order might be, it is impossible to accidentally 
decrement the value below zero, and no thread can ever get "stuck" on the sleep queue when the 
value is greater than zero. There are timing gaps where things look momentarily inconsistent, and 
it is possible for a thread to be awakened by mistake, but the end results are always correct. 

A semaphore is perfect for situations where you want to count things and have threads sleep when 
some limit is hit. If you wish to count up to some number, say for a list limited to ten items, you 
simply view the semaphore as counting the number of "spaces" in the list, initialize it to ten, and 
count down. 

There are occasions when you want the same kind of sleeping behavior as with semaphores, but 
your test is more complex than just "Is v > 0?" 

Condition Variables 

Figure 6-9 shows a flowchart for a generalization on semaphores. Here the mutex is visible to the 
programmer and the condition is arbitrary. The programmer is responsible for locking and 
unlocking the mutex, testing and changing the condition, and waking up sleepers. Otherwise, it is 
exactly like a semaphore. We'll look at POSIX condition variables first, then see how Java 
implements the same concept. 

Figure 6-9. Flowchart for Condition Variables 
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Perhaps you want a thread to execute some code only if X > 17, Y is prime, and grandmother is 
visiting next Thursday. As long as you can express the condition in a program, you can use it in a 
condition variable. A condition variable creates a safe environment for you to test your condition, 
sleep on it when false, and be awakened when it might have become true. 

It works like this: A thread obtains a mutex (condition variables always have an associated mutex) 
and tests the condition under the mutex's protection. No other thread should alter any aspect of the 
condition without holding the mutex. If the condition is true, your thread completes its task, 
releasing the mutex when appropriate. If the condition isn't true, the mutex is released for you, and 
your thread goes to sleep on the condition variable. When some other thread changes some aspect 
of the condition (e.g., it reserves a plane ticket for granny), it calls 
pthread_cond_signal(),[9]waking up one sleeping thread. Your thread then reacquires the 
mutex,[10] reevaluates the condition, and either succeeds or goes back to sleep, depending upon the 
outcome. 

[9] The term signal here is distinct from UNIX signals (SIGINT, etc.). Wakeup might be a better term. 

[10] Obviously, when a thread sleeps on a condition variable, the mutex must be released (so other 
threads can acquire it) and reacquired upon waking. All of this is handled for you by 
pthread_cond_wait(). 

You must reevaluate the condition! First, the other thread may not have tested the complete 
condition before sending the wakeup. Second, even if the condition was true when the wakeup 
was sent, it could have changed before your thread got to run. Third, condition variables allow for 
spurious wakeups. They are allowed to wake up for no discernible reason whatsoever![11] 

[11] Due to some arcania in the hardware design of modern SMP machines, it proves to be highly 
convenient to define them like this. The hardware runs a little faster, and the programmer needs to 
reevaluate the condition anyway. 

In Figure 6-10, T1, T2, and T3 all evaluated the condition, determined it to be false, and went to 
sleep on the condition variable. T4 then came along, changed the condition to true, and woke up 
the first of the sleeping threads. T3 was awakened, reevaluated the condition, found it to be true, 
and did its thing, releasing the mutex when done. We'll assume that T3 also changed the condition 
back to false, so there was no reason to wake any other threads. If T3 hadn't changed the condition, 
it should have woken up another thread. 

Figure 6-10. Threads Using a Condition Variable 
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Depending upon your program, you may wish to wake up all the threads that are waiting on a 
condition. Perhaps they were all waiting for the right time of day to begin background work or 
were waiting for a certain network device to become active. A pthread_cond_broadcast() 
is used exactly like pthread_cond_signal() (Code Example 6-14). It is called after some 
aspect of the condition has changed. It then wakes all of the sleeping threads (in an undefined 
order), which then must all hurry off to reevaluate the condition. This may cause some contention 
for the mutex, but that's OK. 

Example 6-14 Using a Condition Variable (POSIX) 

Thread 1 Thread 2 
pthread_mutex_lock(&m);  
while (!my_condition)  
  pthread_cond_wait(&c, &m);  
 pthread_mutex_lock(&m); 
... sleeping ... my_condition = TRUE; 
 pthread_mutex_unlock(&m); 
 pthread_cond_signal(&c); 
 /* pthread_cond_broadcast(&c); */ 
do_thing();  
pthread_mutex_unlock(&m);  

Presumably you are calling signal or broadcast any time that the condition has been changed such 
that it may have become true. In most cases you will have evaluated the condition completely 
before you signal or broadcast, but you do not have to. You certainly would want to signal any 
time that the condition became true. 

There are several things you can do with condition variables that the compiler won't complain 
about but are guaranteed trouble. You could use the same condition variable with different 
mutexes (some POSIX implementations will detect this at runtime). You could have several 
functions that use one condition variable but that evaluate different conditions. (This latter is not 
illegal and is sometimes even useful, but not very often.) Be careful! 

Java wait/notify 

The Java equivalent to condition variables is wait/notify (Code Example 6-15). The behavior is 
virtually identical. You enter a synchronized section, evaluate a condition, continue on if true, and 
wait (releasing the synchronized section) if not. Another thread will enter a synchronized section, 
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change the condition, and send you a wakeup. You reacquire the synchronized section, retest the 
condition, etc. 

Example 6-15 Using wait/notify (Java) 

Thread 1 Thread 2 
synchronized (object) {  
  while (!object.my_condition)  
    object.wait();  
 synchronized (object) { 
   object.my_condition = true; 
   object.notify(); 
   // object.notifyAll(); 
 } 
  do_thing();  
}  

Whereas in POSIX mutexes and condition variables exist as separate data types that must be 
associated together by the programmer, in Java they are tightly integrated with each object. As we 
mentioned, every Java object has associated with it a mutex, and additionally every Java object 
has associated with it a condition variable. The class Object defines the methods wait(), 
notify(), and notifyAll() to manipulate the condition variable associated with that object. 
These correspond directly to pthread_cond_wait(), pthread_cond_signal(), and 
pthread_cond_broadcast(). 

An object's condition variable is always associated with the object's mutex. Hence, before you can 
invoke wait() on the object, you must hold the mutex—that is you must be in a synchronized 
statement referring to that object. Unlike POSIX, Java also requires that you hold the object's 
mutex before doing a notify() or notifyAll(). This may make notify() and 
notifyAll() slightly less efficient due to the extraneous contention for the mutex (see below), 
but the extra cost is minimal. 

It is legal to call notify() at any time whatsoever (as long as the mutex is held). It's not very 
useful to call it unless you have changed some aspect of the condition being tested, but it's never 
wrong. It will never cause a bug in your program. Moreover, it is always legal to call 
notifyAll() instead of notify(). (The opposite is not true.) At worst, it will waste a bit of 
time while the extra threads wake up, realize there's nothing for them to do, and go back to sleep. 
We'll have more to say about this soon (see Condition Variables vs. wait/notify). 

As with synchronized sections, there is no defined wakeup order for wait/notify. And also as with 
synchronized sections, it doesn't matter. You have a job and you want some thread to wake up and 
do that job—you don't care which thread. 

Extraneous Contention 

Because of the kind of interaction that exists between the condition variable and its associated 
mutex, it is possible to get some unwanted contention for the mutex. This is most evident when 
calling broadcast. Unfortunately, there is not much you can do about it, and your program may 
well suffer dozens of microseconds in wasted mutex blocks. 

Figure 6-11 illustrates the problem. In the "Desired Behavior" case, the little bit of extra time it 
takes for T2 to wake up and try for the mutex is just long enough for T1 to release it. In the 
"Possible Behavior" case, the waiting threads wake up, try for the mutex, and have to go right 
back to sleep because the mutex hasn't been released yet. The most obvious solution for at least 
some of this problem is to make the call to signal or broadcast outside the critical section. This is 
what all of our POSIX code does. 
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Figure 6-11. Extra Contention: When the Mutex Is Held by a Different Thread 

 

InterruptedException 

Now we need to deal with a little detail. For reasons we'll go into later (see Defined 
Cancellation/Interruption Points), a number of methods throw a special exception, 
InterruptedException. One of those methods is object.wait(), another is 
Thread.sleep(). We don't want to do anything with it yet, so we'll simply include a try/ catch 
block and ignore it. Our code is shown in Code Example 6-16. In production code you should 
never ignore any exceptions. 

Example 6-16 Using wait/notify with InterruptedException 

try { 
    synchronized (object) { 
        while (!object.my_condition) 
            object.wait(); 
    } 
} catch (InterruptedException(e) {}          // Ignore for now 

Controlling the Queue Length 

So how do we prevent the queue from growing in the producer/ consumer example? The simplest 
way is to initialize a second semaphore to the maximum allowed length and count it down.[12] This 
works quite well for simple programs, but you will probably never actually use this in a 
production program. 

[12] One way to imagine this inverse use of a semaphore is to consider the queue to have some 
number of slots available. The semaphore encodes this number. When a producer places a new 



 77

request onto the queue, there is one less available slot, so we decrement the semaphore. When a 
consumer takes a request off, there is one more, so we increment it. 

Often, you will find that you have more extensive demands on the program and will need to use a 
condition variable (wait/notify). Code Example 6-17 shows this situation. We will use the lock 
from workpile to protect both the length of the list and the list itself,[13] so we remove the 
locking from add() and remove() and do it in the producer and the consumer directly. (This 
code now looks a little bit ugly with so many references to workpile, but we'll deal with that 
later.) There is another little problem with this code, however. 

[13] We are using one lock to protect two things that must be changed atomically with respect to 
each other. Any time we use either of those things, we must lock the same lock. You can never 
protect a variable using two different locks. 

Example 6-17 Classic Producer/Consumer Model (with a Tiny Bug) 

public class Consumer implements Runnable { 
    ... 
 
    public void run() { 
        Item item; 
 
        try { 
            while (true) { 
                synchronized (workpile) { 
                    while (workpile.empty()) 
                        workpile.wait(); 
 
                    item = workpile.remove(); 
                    workpile.notify();               // Not quite 
right 
                } 
 
                server.process(item); 
            } 
        } catch (InterruptedException e) {}  // Ignore for now 
    } 
} 
 
 
public class Producer implements Runnable { 
    public void run() { 
        Item item; 
 
        try { 
            while (true) { 
                item = server.get(); 
 
                synchronized (workpile) { 
                    while (workpile.full()) 
                        workpile.wait(); 
 
                    workpile.add(item); 
                    workpile.notify();      // Not quite right 
                } 
            } 
        } catch (InterruptedException e) {}  // Ignore for now 
    } 
} 
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You see, in this design, both consumers and producers will be sleeping on the same synchronized 
object. It would be unfortunate should a consumer take an item off the list and wake up another 
consumer instead of a producer, as intended.[14] With the right combination of list lengths, and 
number of producers and consumers, this code is likely to be inefficient, and it is even possible 
that it will deadlock. 

[14] This is not an obvious situation and requires some careful analysis to figure out. Moreover, it is 
possible that this program will work well on one platform while hanging on another. Part of the logic 
here relies on the order of wakeup for sleeping threads, something that is not guaranteed by the 
JVM. This, by the way, is a good thing, as the programmer should never rely on wakeup order. 

The solution is simple: Consumers should only wake up producers, and producers should only 
wake up consumers. Unfortunately, the Java method notify() is linked specifically to the 
synchronized object, so there's no way to direct wakeups as we'd like. We could wake up 
everybody by calling notifyAll(). That would definitely give us a correctly working program, 
but it could[15] be abysmally inefficient. Let's consider a POSIX-style alternative. 

[15] Would it be abysmally inefficient? We'll take up this issue in Condition Variables vs. wait/ notify . 

POSIX-Style Synchronization in Java 

What we're going to do is implement POSIX-style mutexes and condition variables in Java. 
Because POSIX mutexes and condition variables are separate, independent objects, it is possible 
to construct exactly the program logic that we really want. First, let's look at the classic POSIX 
solution to this problem, shown in Code Example 6-18. 

Example 6-18 Classic Producer/Consumer in POSIX 

void *producer(void *arg) { 
    request_t *request; 
 
    while(1) { 
        request = get_request(); 
        pthread_mutex_lock(&requests_lock); 
 
        while (length >= 10) 
            pthread_cond_wait(&producerCV, &requests_lock); 
 
        add_request(request); 
        length++; 
        pthread_mutex_unlock(&requests_lock); 
        pthread_cond_signal(&consumerCV); 
    } 
} 
 
void *consumer(void *arg) { 
    request_t *request; 
 
    while(1) { 
        pthread_mutex_lock(&requests_lock); 
 
        while (length == 0) 
            pthread_cond_wait(&consumerCV, &requests_lock); 
 
        request = remove_request(); 
        length--; 
        pthread_mutex_unlock(&requests_lock); 
        pthread_cond_signal(&producerCV); 
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        process_request(request); 
    } 
} 

The mutex protects both the list itself and the variable length. The distinction is that when the list 
is empty, the consumers will go to sleep on one condition variable (consumerCV) while the 
producers will go to sleep on another (producerCV) when the list is full. In this fashion the 
producers can be confident that they are waking up a consumer when they put a new item on the 
list, and the consumers know they are waking up a producer when they take one off. This is the 
behavior we want. Let's see how we can do this in Java. 

POSIX-Style Mutexes in Java 

Implementing mutexes is a snap. We need an object with one boolean and two methods, lock() 
and unlock(). To lock it, if the mutex is held by another thread, we wait. Otherwise, we set 
owned to true (Code Example 6-19). (Later we will use a slightly more elaborate version of 
mutexes which record the name of the owner, but right now we'll be simple.) To unlock, we'll just 
set owned to false, then call notify() to wake up one sleeper (if any). (A slightly more 
efficient version would count the sleepers.) 

A sufficiently intelligent compiler could optimize this down to be identical to Pthread mutexes 
with identical performance. (I do not know of any compilers sufficiently intelligent, however, and 
the best code currently imaginable would be many times slower than Pthreads. A mutex class as 
part of the JVM would be a very good thing.) 

Code Examples 6-19 and 6-20 are simplified and should not be used. We'll show the full, working 
versions of mutexes and condition variables in Actual Implementation of POSIX Synchronization. 

Example 6-19 Implementing POSIX-Style Mutexes in Java 

// Don't use this code, it ignores exceptions. 
 
public class Mutex { 
    boolean owned = false; 
 
    public synchronized void lock() { 
        while (owned) { 
            try { 
                wait(); 
            } catch (InterruptedException ie) { 
                // Ignore interrupts for now 
            } 
        } 
 
        owned = true; 
    } 
 
 
    public synchronized void unlock() { 
        owned = false; 
        notify(); 
    } 
} 

POSIX-Style Condition Variables in Java 
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Implementing a condition variable in Java is not particularly difficult, but there are a few subtle 
nuances (Code Example 6-20). The ConditionVar class itself requires just two methods, 
condWait() [equivalent to Java's wait()] and condSignal() [Java's notify()]. [Adding 
notifyAll() and a timed wait() is a simple exercise left to the reader.] The subtleties are in 
the condWait() method. The mutex must be released and the thread sent to sleep atomically 
with respect to the condSignal(), hence the synchronized section. 

Consider what would happen if these were not done atomically. With a bit of (bad) luck, thread 1 
could call condWait(), release the mutex, and at just that instant thread 2 could be running on a 
different CPU. Thread 2 could then lock the mutex, change the condition to true, and call 
condSignal(). Thread 1 would not yet be asleep, so it wouldn't be awakened. It would 
subsequently go to sleep even though the condition is now true, and the wakeup from thread 2 
would be lost. Having done its work, thread 2 might never send another wakeup (it might be 
waiting for thread 1 to finish!) and the entire program would hang. This would be a bad thing. It's 
known as the "lost wakeup problem" (see The Lost Wakeup). 

Example 6-20 Implementing Condition Variables in Java 

// Don't use this code, it ignores exceptions. 
 
public class ConditionVar { 
    public void condWait(Mutex mutex) { 
        try { 
            synchronized (this){ 
                mutex.unlock(); 
                wait(); 
            } 
        } catch (InterruptedException ie) {      // Ignore for now 
        } finally { 
            mutex.lock(); 
        }           // *Always* lock before returning! 
    } 
 
    public synchronized void condSignal() { 
        notify(); 
    } 
} 

The synchronized section in condWait() does not include the relocking of the mutex. This is 
also essential. Consider what could happen if it did (Code Example 6-21). 

Example 6-21 condWait() Done Wrong 

public void condWait(Mutex mutex) throws InterruptedException { 
    synchronized (this) { 
        mutex.unlock(); 
        wait(); 
        mutex.lock(); 
    } 
} 

Running the producer/consumer code shown in Code Example 6-22, thread 1 might call 
condWait(), release the mutex, and go to sleep. Thread 2 could then lock the mutex and call 
condSignal(), waking up thread 1. Thread 1 could then reacquire the synchronized section for 
the condition variable and call mutex.lock(). At this time, thread 2 has released the mutex, 
hurried back to the top, and relocked that mutex. Thread 1 would have to go to sleep to wait for 
thread 2 to release it. Thread 2, however, needs to call condSignal() before it releases the 
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mutex. To run condSignal(), it needs to obtain the synchronization for the condition variable, 
which is still held by thread 1. Deadlock.[16] 

[16] By moving the condSignal() call in the P/C code outside the call to mutex.unlock(), this particular 
version of the problem could be resolved, but slightly more subtle versions of it would still be there 
for other situations. Consider having two consumers and one producer. 

Code Example 6-22 shows how we'll write our producer/ consumer model using condition 
variables. This code is perfectly correct and will work correctly on all platforms for any number of 
producers, consumers, and size limits. Note that we now are forced to use explicit mutexes instead 
of synchronized methods. The reason is that the data must be protected by the same lock in every 
instance. If we tried to use synchronized methods, we'd be unable to have our two condition 
variables both release that synchronization. 

Example 6-22 Producer/Consumer Model Using POSIX-Style Synchronization 

public class Consumer implements Runnable { 
    ... 
 
    public void run()  { 
        Item item; 
 
        while (true) { 
            workpile.mutex.lock(); 
            while (workpile.empty()) { 
                workpile.consumerCV.condWait(workpile.mutex); 
            } 
 
            item = workpile.remove(); 
            workpile.producerCV.condSignal();  // Normally unlock 
first 
            workpile.mutex.unlock(); 
        } 
 
        server.process(item); 
    } 
} 
 
 
public class Producer implements Runnable { 
    ... 
 
    public void run()  { 
        Item item; 
 
        while (true) { 
            item = server.get(); 
            workpile.mutex.lock(); 
            while (workpile.full()) { 
                workpile.producerCV.condWait(workpile.mutex); 
            } 
 
            workpile.add(item); 
            workpile.consumerCV.condSignal();  // Normally unlock 
first 
            workpile.mutex.unlock(); 
        } 
    } 
} 
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A Stoppable Producer/Consumer Example 

Let's use the ideas above to deal with a more complex situation. Say you like the operation of the 
producer/consumer model but you want to be able to start and stop at will. We'll use a shared 
variable, workpile.stop, which will control the threads. If it is true, all the producers and 
consumers will finish what they're doing and exit. Let's say further that we don't want the queue to 
be emptied at stop time. When we decide to start up the producers and consumers again, we'll 
require that the consumers empty the queue before any producers are started. 

The only tricky part of this exercise is that some of the threads may be sleeping at the time we set 
stop to true, and we must ensure that they are awakened so that they can exit. We must also 
have the main thread sleep until the new consumers have emptied the queue. By having the 
threads wait on the condition (workpile.full() && (!workpile.stop)), they can be 
awakened on a change of state for either the length or stop (Code Example 6-23). 

Example 6-23 Stoppable Producer/Consumer Model 

public class Consumer implements Runnable { 
    ... 
 
    public void run() { 
        Item item; 
 
        while (true) { 
            workpile.mutex.lock(); 
            while (workpile.empty() && !workpile.stop) { 
                workpile.consumerCV.condWait(workpile.mutex); 
 
            } 
 
            if (workpile.stop) 
                break; 
 
            item = workpile.remove(); 
            workpile.mutex.unlock(); 
            workpile.producerCV.condSignal();       // OUTSIDE the CS 
            server.process(item); 
        } 
 
        workpile.mutex.unlock();                  // Unlock! 
        barrier.barrierPost();                    // We're exiting 
    } 
} 
 
 
public class Producer implements Runnable { 
    ... 
 
    public void run() { 
        Item item; 
 
        while (true) { 
            item = server.get(); 
            workpile.mutex.lock(); 
            while (workpile.full() && !workpile.stop) { 
                workpile.producerCV.condWait(workpile.mutex); 
            } 
 
            workpile.add(item); 
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            if (workpile.stop) 
                break;           // Put the Item on the list! 
 
            workpile.mutex.unlock(); 
            workpile.consumerCV.condSignal();    // OUTSIDE the CS 
        } 
 
        workpile.mutex.unlock();                 // Unlock! 
        barrier.barrierPost();                   // We're exiting 
    } 
} 
 

Notice that we've moved the call to condSignal() outside the critical section. This is its normal 
position. 

When we set stop to true, we will need to wake up all threads that might be sleeping. In Code 
Example 6-24, we spawn a thread to set stop true after 4 seconds. After it's set, the thread calls 
condBroadcast() to wake up all the worker threads. We would do the same if it were a button 
we were using, or any other method. Notice that we must lock the mutex before changing the 
value of stop; otherwise, we'll be subject to the lost wakeup problem. 

Example 6-24 Stoppable Producer/Consumer Model (Stopper) 

public class Stopper implements Runnable { 
    ... 
 
    public void run() { 
        InterruptibleThread.sleep(delay); 
        System.out.println("Stopping..."); 
        workpile.mutex.lock(); 
        workpile.stop = true; 
        workpile.mutex.unlock(); 
        workpile.consumerCV.condBroadcast(); 
        workpile.producerCV.condBroadcast(); 
    } 
} 

Finally, in this bit of code from main() (Code Example 6-25), we see how we can synchronize 
on the exiting of the threads and the emptying of the queue. First we start them all up. Then we 
wait for all the threads to complete their work [they'll probably exit a couple of microseconds after 
they call semPost(); however, we don't really care]. After they have all completed their work, 
we can set stop back to false. (What if we didn't wait for all the threads to finish?) Then we 
create the consumers and wait for them to empty the queue. (Notice how we reuse the condition 
variable producerCV here. We could have used a third condition variable, but the extra 
efficiency we'd get would be absurdly small.) Once the queue is empty, we start up the producers 
again. 

Example 6-25 Stoppable Producer/Consumer Model (Starting Up and Shutting 
Down in main() 

public static void main(String argv[]) { 
    ... 
 
    barrier = new SingleBarrier(nConsumers + nProducers); 
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    for (int j = 0; j < 3; j++) { 
        System.out.println("Starting consumers...  List length: " + 

workpile.length()); 
        for (int i = 0; i < nConsumers; i++) { 
            t = new Thread(new Consumer(workpile, s, barrier)); 
            t.start(); 
        } 
 
        workpile.mutex.lock(); 
 
        while (!workpile.empty()) 
            workpile.producerCV.condWait(workpile.mutex); 
 
        workpile.mutex.unlock(); 
 
        System.out.println("Starting producers...List length: " + 

workpile.length()); 
 
        for (int i = 0; i < nProducers; i++) { 
            t = new Thread(new Producer(workpile, s, barrier)); 
            t.start(); 
        } 
 
        new Thread(new Stopper(workpile, 5000)).start(); 
 
        barrier.barrierWait(); 
        System.out.println("Stopped! List length:" + 
workpile.length()); 
        workpile.stop = false; 
        InterruptibleThread.sleep(2000); 
    } 
 
    System.out.println("Finished!  Produced: " + s.pcounter 
          + " Consumed: " + s.ccounter 
          + " items. List length: " + workpile.length()); 
    System.exit(0); 
} 

A minor point: When we set stop = false, we don't have to lock the mutex. Why can we get 
away with this? 

We can do this because we wrote the program and we happen to know that there are no other 
threads running by the time we get to this line, so for one brief moment, stop is not a shared 
variable. In production code it would be well advised to protect it anyway— no sense in making 
someone else wonder about it. 

 

APIs Used in This Chapter 

The Class java.lang.Object 

synchronized 
           synchronized 

This language keyword causes the current thread to obtain the hidden lock for the object. If the 
lock is already held by the current thread, it will essentially increment a counter for that lock (it's a 
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recursive lock). If the lock is held by a different thread, this thread will go to sleep waiting for it to 
become available. 

Reference:  Chapter 6.  
 
wait 
            public void wait() 
              throws InterruptedException 

This causes the current thread to block until it is awakened by either a call to notify(), 
interruption, or by a spurious wakeup. It will release the synchronization lock for the object as it 
goes to sleep and reacquire it before returning. 

Reference:  Chapter 6.  
 
notify notifyAll 
            public void notify() 
            public void notifyAll() 

These cause (one/all) of the threads that are in a wait() call for this object to wake up and return. 

Reference:  Chapter 6.  

The Class Extensions.Semaphore 

This is one of our classes. It implements POSIX-style semaphores. It is probably not useful except 
for demo programs. 

semWait 
             public void semWait() 

This attempts to decrement the value of the semaphore. If it succeeds, it simply returns. If the 
value is zero, this will cause the current thread to go to sleep until another thread increments it. 

Reference:  Chapter 6.  
 
semPost 
              public void semPost() 

This increments the value of the semaphore, waking up one thread (if any are sleeping). 

Reference:  Chapter 6.  

The Class Extensions.Mutex 

This is one of our classes. It implements POSIX-style (non-recursive) mutex locks. Use only when 
synchronized sections won't work, such as chained locking. 

lock 
               public void lock() 

This locks the mutex. If the lock is held by a different thread, this thread will go to sleep, waiting 
for it to become available. 
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Reference:  Chapter 6.  
 
unlock 
                 public void unlock() 

This unlocks the mutex, waking up one thread (if any are sleeping). 

Reference:  Chapter 6.  

The Class Extensions.ConditionVar 

This is one of our classes. It implements POSIX-style condition variables. Use only when 
synchronized sections and wait/notify won't work. 

condWait 
             public void condWait(Mutex m) 

This causes the current thread to block until it is awakened by either a call to condSignal() or 
by a spurious wakeup (not by interruption). It will release the mutex lock for the object as it goes 
to sleep, and reacquire it before returning. 

Reference:  Chapter 6.  
 
condSignal condBroadcast 
            public void condSignal() 
            public void condBroadcast() 

These cause (one/all) of the threads that are in a condWait() call to wake up and return. 

Reference:  Chapter 6.  
 
 

Summary 

The main issue in writing MT programs is how to get threads to work together. Locks 
(synchronized sections) and condition variables (wait/notify) are the fundamental building blocks 
from which anything can be built. Although there are many nonintuitive aspects of 
synchronization, most of them can be ignored, as things "just work." 
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Chapter 7. Complexities 
• Complex Locking Primitives 
• Timeouts 
• Other Synchronization Variables 
• Volatile 
• Performance 
• Synchronization Problems 
• APIs Used in this Chapter 
• The Class Extensions.RWLock 
• The Class Extensions.Barrier 
• The Class Extensions.SingleBarrier 

In which a series of more complex synchronization variables and options are presented and the 
trade-off between them and the simpler ones are discussed. Synchronization problems and 
techniques for dealing with them conclude the chapter. 

 

Complex Locking Primitives 

There are times when a simple mutex does not provide enough functionality. There are situations 
in which you can improve your program's efficiency or fairness by implementing more complex 
locking primitives. Keep in mind that the locks described below are more complex and therefore 
slower than normal mutex locks, generally by a factor of 2 or more. They are not generally useful, 
so be advised to consider your requirements closely before using them. 

Readers/Writer Locks 

Sometimes you will find yourself with a shared data structure that gets read often but written only 
seldom. The reading of that structure may require a significant amount of time (perhaps it's a long 
list through which you do searches). It would seem a waste to put a mutex around it and require all 
the threads to go through it one at a time when they're not changing anything. Hence, 
readers/writer locks. 

With an RWlock, you can have any number of threads reading the data concurrently, whereas 
writers are serialized. The only drawback to RWlocks is that they are more expensive than 
mutexes. So you must consider your data structure, how long you expect to be in it, how much 
contention you expect, and choose between a mutex and an RWlock on those bases. As a rule of 
thumb, a simple global variable will always be locked with a mutex, while searching down a 
1000-element, linked list will often be locked with an RWlock. 

The operation of RWlocks is as follows: The first reader that requests the lock will get it. 
Subsequent readers also get the lock, and all of them are allowed to read the data concurrently. 
When a writer requests the lock, it is put on a sleep queue until all the readers exit. A second 
writer will also be put on the writer's sleep queue. Should a new reader show up at this point, it 
will be put on the reader's sleep queue until all the writers have completed. Further writers will be 
placed on the same writer's sleep queue as the others (hence, in front of the waiting reader), 
meaning that writers are always favored over readers. (Writer priority is simply a choice we made 
in our implementation; you may make a different choice.) 

The writers will obtain the lock one at a time, each waiting for the previous writer to complete. 
When all writers have completed, the entire set of sleeping readers are awakened and can then 
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attempt to acquire the lock. Should another writer show up before the readers get the lock, that 
writer will get priority. 

"But," you may ask, "won't writer priority lead to starvation of readers in some cases?" Yup. And 
you can make a case for nonpreferential RWlocks, or even reader-priority. However, we are 
concerned primarily with producing practical, well-performing programs, not proving theorems 
about degenerate cases. RWlocks are used primarily in situations where there are a great many 
read requests and very few write requests. If you have a large number of write requests, you 
shouldn't be using RWlocks. 

In Figure 7-1, five threads all need an RWlock. They have different priorities, which determine the 
order in which they go onto the writers' sleep queue. The threads have requested the lock in the 
order T1, T2, T3, T4, T5. T1 and T2 own the lock, and T5 will be awakened as soon as they both 
release it, even though T3 and T4 requested the lock before T5. In Figure 7-2 we see exactly this 
happening. Note the overlapping read sections for T1 and T2. 

Figure 7-1. How Readers/Writer Locks Work 

 

Figure 7-2. Execution Graph for Readers/Writer Locks 
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In the UNIX98 implementation of RWlocks, blocked threads are placed on the writer's sleep 
queue in priority order. (Priorities are uninteresting for readers.) We ignore priorities in our 
implementation, which is the right thing to do for most cases—better a faster, slightly unfair 
RWlock than a slower, fairer one. 

You will be disappointed to discover that none of the three libraries define RWlocks. However, all 
is not lost. They can be built out of the primitives already available to you—mutexes and 
condition variables. We build them in our extensions library. RWlocks are also defined in 
UNIX98. A good example of using RWlocks is in Global RWLock with Global Mutex to Protect 
Salaries. 

In our sample Java implementation (shown in Code Example 7-1), we use the explicit condition 
variables and mutexes. This allows us to send wakeups to only that set of waiters (either one 
writer or all readers) when we need to. If we had used native Java wait/ notify, we would have had 
to wake up all sleepers at every wakeup point. In the vast majority of cases, that would not be a 
problem, as we've already assumed that writers are rare. 

Example 7-1 Readers/Writer Locks in Java 

//  Extensions/RWLock.java 
 
package Extensions; 
 
import java.io.*; 
 
public class RWLock { 
    Thread       owner = null; 
    int          nCurrentReaders = 0; 
    int          nWaitingWriters = 0; 
    int          nWaitingReaders = 0; 
    Mutex        m =  new Mutex(); 
    ConditionVar readersCV = new  ConditionVar(); 
    ConditionVar writersCV = new  ConditionVar(); 
 
 
    public String toString() { 
        String name; 
 
        if (owner == null) 
            name = "null"; 
        else 
            name = owner.getName(); 
 
        return "<RWLock: o:" + name + " r:" + nCurrentReaders + " 
ww:" 
            + nWaitingWriters + " wr:" + nWaitingReaders + m +">"; 
    } 
 
 
    public void readLock() { 
        m.lock(); 
        nWaitingReaders++; 
 
        while ((owner != null) || (nWaitingWriters > 0)) { 
            readersCV.condWait(m); 
        } 
 
        nWaitingReaders--; 
        nCurrentReaders++; 
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        m.unlock(); 
    } 
 
 
    public void writeLock() { 
        m.lock(); 
        nWaitingWriters++; 
 
        while ((owner != null) || (nCurrentReaders > 0)) { 
            writersCV.condWait(m); 
        } 
 
        nWaitingWriters--; 
        owner = Thread.currentThread(); 
        m.unlock(); 
    } 
 
 
    public void unlock() { 
        m.lock(); 
        if (owner != null) { 
            owner = null; 
        } else 
            nCurrentReaders--; 
 
        if ((nWaitingWriters > 0) && (nCurrentReaders == 0)) { 
            writersCV.condSignal(); 
        } else { 
            if ((nWaitingWriters == 0) && (nWaitingReaders > 0)) { 
                readersCV.condBroadcast(); 
            } 
        } 
 
        m.unlock(); 
    } 
} 

Priority Inheritance Mutexes 

Should a high-priority thread (T2 in Figure 7-3) be blocked, waiting for a lock that is held by 
another thread of lower priority (T1), it may have to wait a longer time than seems reasonable, 
because a third thread (T3) of middling priority might be hogging the CPU. To do justice to 
overall system performance, it would be reasonable to elevate the scheduling priority of T1 to the 
level of the blocked thread (T2). This is not done for normal Pthread mutexes, so user programs 
may suffer from priority inversion. In POSIX, priority inheritance is an option during mutex 
initialization and is probably useful only in realtime situations. Java, by contrast, is very 
specifically not designed for realtime work, rendering the question of PI mutexes moot. You could 
write them, but it's very doubtful that they would be useful. 

Figure 7-3. Priority Inversion 
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FIFO Mutexes 

Every now and then, you come upon a program where you want to ensure that the thread that is 
blocked on a mutex will be the next owner of the mutex—something which is not in the definition 
of simple POSIX mutexes. Typically, this situation occurs when two threads both need a mutex to 
do their work: They hold the mutex for a significant length of time, they do their work 
independently of each other, and they have very little to do when they don't hold it. Thus, what 
happens is that T1 grabs the mutex and does its work (see Figure 7-4), while T2 tries for the mutex, 
and blocks. T1 then releases the mutex and wakes up T2. Before T2 manages to obtain the mutex, 
T1 reacquires it. This is illustrated in case 2. 

Figure 7-4. When FIFO Mutexes Are Valuable 
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Case 3 assumes that you have implemented FIFO mutexes, where the owner of the mutex 
automatically hands ownership over to the first waiter when releasing the mutex. 

This is a rare situation, and it merits reconsidering your algorithm before dealing with it. (If you 
contrast case 2 and case 3 against case 1, you will notice that the two threads are spending a lot of 
time sleeping on the job. This might run better with fewer threads!) But should you find yourself 
stuck with this kind of problem, it is a simple programming effort for you to implement 
guaranteed FIFO mutexes yourself. Once again, you almost certainly don't want FIFO mutexes. 

Recursive Mutexes 

Win32 mutexes are recursive—they can be locked multiple times from the same thread without 
deadlocking. POSIX mutexes cannot. Building a recursive mutex with POSIX is not at all difficult 
(an excellent exercise!) and indeed recursive mutexes are part of UNIX98. The real question is not 
if you can build them, but whether it's a good idea. 

The chances are very high that if you have a situation where you want to use recursive mutexes in 
C, you'd be better off redesigning your code so that you don't need them. Why are you locking this 
mutex? To protect some shared data. Once you've done so, why would you ever want to lock it 
again? Because your code is structured poorly. Fix your code. 

Once you've locked a recursive mutex three times, you will need to unlock it three times before 
any other thread can lock it. You could write an "unlock_all" routine, but it would probably just 
make your code even more confusing and very likely lead you to make mistakes. 

In Java, synchronized sections are also recursive (Code Example 7-2). One synchronized method 
may call another synchronized method of the same object from the same thread without 
deadlocking.[1] A call to wait() will release the lock and when wait() returns, the lock will be 
reacquired at the same depth. The usual programming Java style almost makes it a requirement to 
have recursive mutexes. It would probably be a better thing if people wrote code such that they 
had public methods which were synchronized, which in turn simply called internal methods to do 
the real work, but this is unlikely to happen. Indeed, if we had a perfect programming language, 
this issue would not even come up. 

[1] Java does not actually specify that locks are recursive, merely that synchronized calls may be 
made recursively. A sufficiently clever compiler could optimize most code so as to avoid actual 
recursive mutexes. I don't know of any such compilers. 

Example 7-2 Recursive Locking Calls in POSIX and Java 

POSIX Java 
void foo(){ public synchronized void foo() {
  pthread_mutex_lock(&m);  
  bar();   bar(); 
  pthread_mutex_unlock(&m);   ... 
}  
  
void bar() { public synchronized void bar() {
  pthread_mutex_lock(&m); // Deadlock  
  ...   wait();   // works fine! 
  pthread_mutex_unlock(&m);  
} } 
  

Nonblocking Synchronization 
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All the POSIX synchronization variables have nonblocking calls associated with them. [For 
POSIX, pthread_mutex _trylock() and sem_trywait(). In Win32 there are timeouts 
associated with each call.] These functions can be used for things such as spin locks and 
complicated methods of coordinating threads while avoiding deadlock. It is very rare to ever use 
these functions. Java doesn't have nonblocking synchronized sections; however, it is a simple 
matter to write a nonblocking version of POSIX-style mutexes. But you probably don't want to do 
that. 

Spin Locks 

Normally, you should hold a lock for the shortest time possible, to allow other threads to run 
without blocking. There will occasionally be times (few and far between) when you look at the 
blocking time for a mutex (about 42 µs on an SS4, see Appendix C, Timings) and say to yourself 
"42 µs?! The other thread is only going to hold the mutex for 5 µs. Why should I have to block 
just 'cause I stumbled into that tiny window of contention? It's not fair!" 

You don't. You can use a spin lock and try again. It's simple. You initialize a counter to some 
value and do a pthread_mutex_trylock()—that takes about 2 µs. If you don't get the lock, 
decrement the counter and loop. Another 2 µs. Repeat. When the counter hits zero, give up and 
block. If you get the mutex, you've saved a bunch of time. If you don't, you've only wasted a little 
time. 

In Code Example 7-3 we show the construction of a simple spin lock. Although this is a good 
description of a spin lock, it's actually a poor implementation. We will discuss the issues and show 
a better implementation in Chapter 16. 

Example 7-3 Simple Spin Lock 

/* Don't use this code! */ 
 
spin_lock(mutex_t *m) { 
    int i; 
    for ( i = 0; i < SPIN_COUNT; i++) { 
        if (pthread_mutex_trylock(m) != EBUSY) 
            return;           /* got the lock! */ 
    } 
 
    pthread_mutex_lock(m);     /* give up and block. */ 
    return;                    /* got the lock after blocking! */ 
} 

Spin locks can be effective in very restricted circumstances. The critical section must be short, you 
must have significant contention for the lock, and you must be running on more than one CPU. If 
you do decide you need a spin lock, test that assumption. Set the spin count to zero and time your 
standardized, repeatable test case (you must have one!). Then set the spin count to a realistic value, 
and time the test again. If you don't see a significant improvement, go back to regular mutex locks. 
Spin locks are almost always the wrong answer, so be careful! 

Adaptive Spin Locks 

A refinement of spin locks, called adaptive spin locks, is used in many kernels. You can't build 
them yourself and they are not generally provided by the vendor, but you might be interested in 
knowing what they are. 

If you could find out whether the thread holding the desired mutex was in fact currently running 
on a CPU, you could make a more reasoned judgment as to whether or not to spin. An adaptive 
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lock can do this. If the mutex owner is running, the requestor spins. If the owner isn't, the 
requestor doesn't. 

Unfortunately, in the user-level threads library, you generally cannot find out which thread holds a 
mutex, and even if you could, the system call required to find out whether the thread in question 
was on a CPU would be more expensive than just blocking. A clever trick in some operating 
systems does make this possible. 

A fair (and unanswered) question is: "Will the time saved by not spinning make up for the extra 
time to use adaptive locks?" If you are using spin locks, you should know exactly how long a 
critical section can be held. It may well prove faster to spin for the known time and ignore run 
state entirely! 

Java May Use Spin Locks 

As the JVM is based on the underlying native threads library, it will use whatever type of mutex is 
provided. For example, on Digital UNIX, and on Solaris 2.6 and above, all mutexes are actually 
adaptive spin locks,[2] hence you will get them automatically. It is unlikely that you will ever 
notice the difference. 

[2] If we claim that spin locks are not very useful, why do the OSs make them the default? Because 
a few programs will benefit a great deal and most programs don't really care. 

 
 

Timeouts 

Condition variables and wait/notify also allow you to limit the sleep time. By calling 
pthread_cond_timedwait() [object.wait(timeout)], you can arrange to be awakened 
after a fixed amount of time, in case you're the impatient type. Should you know that the condition 
ought to change within some time frame, you can wait for that amount of time and then figure out 
what went wrong. 

You can also use it simply as a thread-specific timer, although the standard timer functions 
[sleep(), nanosleep(); Thread.sleep()] are more appropriate and easier to use. Be 
aware that the system clock will limit the precision of the wakeup. A 10-ms resolution is typical. 
If you want 100-µs precision, you'll probably have to use something highly vendor specific, and 
you may have trouble getting such precision at all. 

Once the wait time expires, the sleeping thread will be moved off the sleep queue and the wait will 
return. For POSIX, pthread_cond_timedwait() will return a value, ETIMEDOUT, so you 
know that it has timed out. In Java, there is no such indication and you are forced to keep track of 
the time yourself to determine that wait() timed out as opposed to having been awakened 
normally. (This is a bit of a hassle, and a wrapper function such as the one in Code Example 7-4 is 
quite convenient.) 

Indeed, in Java it is impossible to know if you've actually timed out. You can find out if the 
current time is later than the timeout, but it's always possible that you received a spurious wakeup 
before the timer expired but didn't see the wakeup until after expiration. This shouldn't be a 
problem. 

Elvis and the UFOs 
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In Code Example 7-4 we are faced with a serious situation. Evil space aliens are trying to kidnap 
Elvis in order to breed him with other Earthlings. To save him, we must eliminate the aliens 
quickly. If we fail to do so within a short time (10 seconds), they will escape with him and rock 
and roll will be lost. 

Example 7-4 Recalculating Timeouts 

public synchronized void saveElvis() throws InterruptedException { 
    long timeRemaining, time = 10000;     // 10 seconds 
 
    while (!eliminatedAliens()) { 
        timeRemaining = timedWait(time); 
        if (timeRemaining == 0) 
            return false;       // Too late. Elvis kidnapped. 
 
        time = timeRemaining; 
    } 
 
    return true; // Elvis lives! 
} 
 
 
public long timedWait(long waitTime) throws InterruptedException { 
    long now, timeSoFar, startTime; 
 
    startTime = System.currentTimeMillis(); 
 
    wait(waitTime); 
    now = System.currentTimeMillis(); 
    timeSoFar = now - startTime; 
    if (timeSoFar > waitTime) { 
        return 0; 
    } 
 
    waitTime =  (waitTime - timeSoFar); 
    return waitTime; 
} 

Our main method [saveElvis()] will sit in a while loop, waiting for us to eliminate the aliens. 
If we succeed, we'll return true from saveElvis(). If we time out, we'll return false. If our 
wait call returns before the time-out period and the aliens are not eliminated (perhaps some new 
aliens hatched from evil alien pods, perhaps we just suffered a spurious wakeup), we will go back 
and wait again. When this happens, we want to calculate the correct remaining time (instead of 
starting over with a new 10 seconds). Our timedWait() method will do this for us by returning 
the remaining time. 

This method does the majority of the work. It records the starting time and calls wait() with the 
appropriate timeout. When wait() returns, it calculates how much time has elapsed. If it's more 
than the original timeout period, timedWait() returns ø. If it is less, timedWait() 
recalculates how much time is remaining and returns that, leaving it up to the caller to decide what 
to do. If the caller calls it again, it will wait again for the appropriate amount of remaining time. 
This is a bit awkward, but it does give the desired results. 

It doesn't make any difference should another thread wake up the sleeper 1 ms after it has timed 
out. It also makes no difference should it subsequently take the ex-sleeper 16 hours to become 
active or acquire the lock. On the other hand, once the sleeper is awakened, it is taken off the sleep 
queue and the timer is turned off. If it takes another week before the wait function can get the 
required lock and returns, too bad. You will not get a timeout. 
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None of the wait functions will ever return without the lock being held—not on normal wakeups, 
not on timeouts, not on spurious wakeups, not even on cancellation or interruption. It is possible 
that right after waking up, a thread must go back to sleep because the lock is held by another 
thread! 

 

Other Synchronization Variables 

Join 

The join functions are similar to synchronization variables in that they allow you to synchronize 
threads on the event of another thread exiting. You almost never actually care when a thread exits, 
and almost everything you do with join, you can do with the other synchronization variables (see 
Don't Wait for Threads, Don't Return Status). 

Barriers 

A barrier allows a set of threads to sync up at some point in their code. It is initialized to the 
number of threads using it, then it blocks all the threads calling it until it reaches zero, at which 
point it unblocks them all. The idea is that you can now arrange for a set of threads to stop when 
they get to some predefined point in their computation and wait for all the others to catch up. If 
you have eight threads, you initialize the barrier to eight. Then, as each thread reaches that point, it 
decrements the barrier and then goes to sleep. When the last thread arrives, it decrements the 
barrier to zero, and they all unblock and proceed (Figure 7-5). 

Figure 7-5. Barriers 

 

Barriers are not part of any of the libraries, but they are easily implemented. They are also 
implemented in our extensions package and are part of the proposed extensions to POSIX. 

Single Barriers 

A single barrier is similar to a barrier, except that one (possibly more) thread will be waiting for 
the others (Figure 7-6). This is the synchronization technique we use in our programs to count 
threads as they exit (instead of joining them all). Basically, each thread increments the single 
barrier as it completes its work, while a single thread waits for them. When the last thread posts, 
the sleeper is awakened. 

Figure 7-6. Single Barriers 
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It's interesting to look at the design of a single barrier (Code Example 7-5). Notice in particular 
that the barrier must account for the situation where one waiter has been released but hasn't 
finished. (It's been awakened but hasn't gotten the CPU yet.) If one of the posters hurries around 
its loop and tries to use the single barrier again (before the waiter is done), there could be trouble! 
This is handled by counting both the number of posters and the number of waiters that have 
completed the code. When you write your own synchronization variables, you should carefully 
consider how those synchronization variables will work the second time around. Also notice how 
interrupted exceptions are handled. (We'll talk about this in detail in Defined 
Cancellation/Interruption Points.) 

Example 7-5 Implementing Single Barriers in Java 

//  Extensions/SingleBarrier.java 
 
/* 
  Unlike a Barrier, where all threads wait until all are ready, with  
  this Threads may indicate that they've completed their job by doing 
a 
  barrierPost() and then continue.  Later, other threads (or the same) 
  may wait until everyone has done a barrierPost() by doing a 
  barrierWait(). 
 
  By default, assume a single waiter.  You must know the number of 
  threads that will be posting and the number that will be waiting. 
*/ 
 
 
package Extensions; 
 
import java.io.*; 
 
public class SingleBarrier { 
    int currentPosters = 0, totalPosters = 0; 
    int passedWaiters = 0, totalWaiters = 1; 
 
 
    public SingleBarrier (int i) { 
        totalPosters = i; 
    } 
 
 
    public SingleBarrier (int i, int j) { 
        totalPosters = i; 
        totalWaiters = j; 
    } 
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    public SingleBarrier () { 
    } 
 
 
    public synchronized void init(int i) { 
        totalPosters = i; 
        currentPosters = 0; 
    } 
 
 
    public synchronized void barrierSet(int i) { 
        totalPosters = i; 
        currentPosters = 0; 
    } 
 
 
    public synchronized void barrierWait() { 
        boolean interrupted = false; 
 
        while (currentPosters != totalPosters) { 
            try { 
                wait(); 
            } catch (InterruptedException ie) { 
                    interrupted=true; 
            } 
        } 
 
        passedWaiters++; 
 
        if (passedWaiters == totalWaiters) { 
            currentPosters = 0; 
            passedWaiters = 0; 
            notifyAll(); 
 
        } 
 
        if (interrupted) 
            Thread.currentThread().interrupt(); 
    } 
 
 
    public synchronized void barrierPost() { 
        boolean interrupted = false; 
 
        // In case a poster thread beats barrierWait, 
        // keep count of posters. 
        while (currentPosters == totalPosters) { 
            try { 
                wait(); 
            } catch (InterruptedException ie) { 
                interrupted = true; 
            } 
        } 
 
        currentPosters++; 
 
        if (currentPosters == totalPosters) 
            notifyAll(); 
 
        if (interrupted) 
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            Thread.currentThread().interrupt(); 
    } 
} 

Win32 Event Objects 

Win32 defines event objects, which are intended to handle the same things as condition variables. 
Event objects have a "signaled" state associated with them, however, making them somewhat 
problematic to use. There is an interesting paper showing the issues involved in constructing 
POSIX-style condition variables from event objects (see Threads Research). This paper also 
highlights the difficulties in using event objects correctly. 

Win32 Critical Sections 

In Win32 the term critical section is used to describe a simple mutex. The major distinction 
between Win32's mutexes and Win32's critical sections is that the former can be defined to be 
cross-process, whereas the latter cannot. All Win32 synchronization variables other than critical 
sections are kernel objects. Their handles must be closed before the kernel structures are released. 
They are also much slower than critical sections by about two orders of magnitude (!). 

Multiple Wait Semaphores 

In Win32 it is possible to wait for (1) any one of a set of synchronization variables or (2) all of 
that set. In POSIX and Java you would write the program differently and simply have a condition 
variable (wait/notify) waiting on a complex condition. 

Interlocked Instructions 

In Win32, several special functions are defined: InterlockedIncrement(), 
InterlockedDecrement(), and InterlockedExchange(). As their names suggest, they 
perform their tasks automatically without the need of an explicit lock. This makes them quite fast 
but limits their usefulness greatly. (Sure, you've incremented the value, but you don't know if 
someone else incremented it a microsecond later.) These are implemented by the Digital compiler 
as intrinsics using LockedLoad/ StoreConditional instructions (see LoadLocked/StoreConditional 
and Compare and Swap. 

The things you can do with them include reference counting, semaphores, and not much else. 
These types of operations are not part of either POSIX or Java, and the requisite instructions are 
not on all CPU architectures. 

Message Queues 

A question asked fairly often is how one can build message queues for threads—queues where one 
thread can line up requests for another thread to process. If this is truly what you need in your 
program, the answer is quite simple: Build a producer/ consumer model with a queue as shown 
earlier. This gives you both complete control over your program and a simple programming model. 
What more could you ask for? 

Win32 implements a kernel-level message queue that you can use for the same purpose. As it is 
part of the Win32 library, it makes sense to use it for cross-process communication, especially 
when you don't have control over all the source code. Otherwise, in a single process, it simply 
imposes too heavy a burden, in both CPU time and code complexity. 
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The ability to interrupt a thread and change what it's doing is a much different requirement and a 
far more difficult one to achieve. If you are thinking along these lines, reconsider your objectives 
very carefully! Why do you want to interrupt this particular thread? Could you get your work done 
by (1) polling from this thread, (2) waiting for this thread to complete its present task and then 
looking at a queue, or (3) simply creating a new thread to execute the task at hand? There is 
probably a simpler means of doing what you want. Find it. 

Win32 I/O Completion Ports 

An I/O completion port is Win32's answer to the producer/ consumer problem. You create a 
completion port with a file handle and then have a number of threads waiting on that completion 
port. When a packet arrives on that handle, one of the waiting threads is awakened and given the 
packet to work on. Upon completion, the thread sends any reply it needs to send and goes back to 
wait on the port again. Windows NT hackers love these things. 

Communicating via Streams 

On occasion you will see discussions of communicating between threads via streams, pipes, 
sockets, or some other higher level of communication. There are valid reasons for doing this, but 
most of those reasons boil down to "to interface with existing code." If you're working with an 
interface that someone else defined, OK. Do it that way. Otherwise, forget it! What do you think 
you're doing? How often do threads want to exchange bytes? Practically never. They want to 
exchange objects. Even when they're using strings, what they want to communicate is the string, 
not the characters that make it up. So pass a string object. 

Consider what a stream does. It supplies characters to a thread. If there are no characters in the 
stream, the caller blocks. When another thread writes into the stream, the first thread wakes up, 
removes the new characters, and starts over again. It's a producer/ consumer model restricting the 
queue to bytes. And which one do you think is faster? 

So you can communicate via streams, but… Don't do that. 

 

Volatile 

This keyword in C is used to indicate to the compiler that the variable in question changes 
independent of the local code. Hence, the compiler is not allowed to optimize away loads or stores. 
Indeed, loads must come from main memory, not be filled from cache. Stores should be expedited 
around the store buffer. The idea here is that memory-mapped I/O uses memory addresses as I/O 
registers and every read or write is meaningful. This is completely orthogonal to threads. Do not 
use volatile with threads, thinking that it will solve any threading problem. You won't like the 
results. 

The Java spec says that volatile can be used instead of locking. It's right but misleading. Use 
locking. (See Volatile: The Rest of the Story.) 

 

Performance 

Condition Variables vs. wait/notify 



 101

As we've noted, there are two disadvantages of wait sets vs. condition variables: With condition 
variables it is clear from the code what you're waking up, whereas notifyAll() will potentially 
wake up a lot of threads unnecessarily and waste a lot of time. 

The first point is unambiguous, but the second has that word potentially in it. What about the 
realities? We certainly have no problem in producing cases where performance is indeed abysmal, 
but how common are those cases? 

Let's take a typical client/server program that has been optimized for a specific platform. Our 
primary concern is going to be obtaining maximum throughput on a dedicated machine. We'd like 
lower loads to be efficient also, but that is strictly secondary. 

Let's assume that we have one producer thread listening to all clients. It will take 1 ms of CPU 
time to receive a request and enqueue it. Some number of consumer threads will dequeue those 
requests and process them as usual. We'll assume that all processing requires 4 ms of CPU and 
also requires one disk access averaging 15 ms latency. Further, we'll assume a sufficient number 
of disks and distribution of data to allow any number of overlapping requests to run completely 
simultaneously (i.e., 15 ms). Finally, we'll choose a 10-CPU machine. 

We can conclude that the system will be 100% CPU-bound and that each request/reply will 
require 5 ms of CPU, allowing 200 requests/s on each CPU. Total latency will be 20 ms/request; 
thus each thread will be able to process 50 requests/s. To obtain maximum throughput, we'll need 
4 threads per CPU—thus a total of 40 threads on our 10 CPUs, processing 2000 requests/s. 

If we conveniently assume a very steady load with negative feedback from the buffer (i.e., a client 
who is waiting for a reply will not issue any new requests), the buffer will remain partially full at 
all times and no consumer threads will ever be waiting on an empty buffer, nor will the producer 
thread ever be waiting on a full one. The potential problem with excessive wakeups due to 
notifyAll() will be completely moot. 

Now let's assume an overload. The buffer will remain full at all times and the producer will be 
blocking regularly, while the consumers will never block (the list is never empty). Once again, no 
excessive wakeup problem! 

Finally, let's look at the underloaded case. Instead of the peak load of 2000 requests/s, let's look at 
1000 requests/s. The buffer will be empty almost all the time and an average of 20 consumer 
threads will be sleeping. Each time the producer adds a request to the queue, it will wake up all 20. 
One consumer will get the request and the other 19 will have to go back to sleep. This is clearly a 
waste, but how much of one, and do we care? 

On an SS4, a spurious wakeup costs about 100 µs. With a rate of 100 requests/s, this will cost us 
about 100 ms, roughly 1% of available CPU power (on our 10 CPUs). Do we care about a 1% 
waste on a non-peak load? Not very much. The conclusion is that on any similar program, the 
excessive wakeup problem is not a major performance problem at all! 

By contrast, let's look at the extra CPU costs of using an explicit condition variable. A call to 
condWait()/condSignal() costs about 9 µs on an SS4, whereas wait/notify costs 3 µs. In our 
maximum throughput example we never block on the condition variable anyway, so there's no 
cost. In our overflow example, we'd be making 2000 calls/s, wasting 100 ms, 1% of CPU. In our 
underloaded example, we'd be saving 100 ms. None of these numbers is very large and the entire 
performance issue is completely moot for this kind of program (and indeed, probably for any 
"normal" program!). 

The one perversely funny aspect of this entire issue is that wait/notify is implemented in terms on 
condition variables in the underlying POSIX library! If condition variables were included as part 
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of the JVM, the performance numbers would turn around completely! Always use 
wait()/notifyAll() unless you have a very specific need for condition variables. 

Coarse vs. Fine Grain Locking 

At what level do you put your locks? You could have one big lock that covered everything, and 
then any time any thread wanted to access any shared data, it would need that one lock. This 
would be a good thing because you would not lock it very often. This would be bad because you'd 
be holding it for a long time. 

You could do exactly the opposite and use a different lock for every set of variables, locking and 
unlocking them quite often. This would be a good thing because the locks would be free most of 
the time and you could get lots of concurrent operations. It would be bad because you would 
spend a lot of time in locking and unlocking overhead. 

In small programs this may not be an issue. In larger programs it's quite likely that you'll choose 
different levels of granularity for different sections. In Manipulating Lists we show a small search 
and update program that demonstrates this trade-off. 

What to Lock 

Closely related to the question of granularity is the question of what you want to protect. In the 
simple case, it's pretty obvious. You want to protect a queue? You lock the queue object every 
time you do anything with the queue. That's easy. Folks sometimes get confused when they're 
changing several things concurrently. What if you wanted to add items to your queue and you also 
wanted to change the pointer to the queue itself? In this scenario it is highly likely that your lock 
on the queue object would be counterproductive, because it would make you think you were 
protecting the queue (which of course you are), whereas what you really needed to do was to 
protect the variable that pointed to the queue. 

Let's look at a more likely scenario. Let's assume that you have a queue of people and you want to 
do very fine grained locking on that queue by locking each individual element of that queue 
(instead of having one big lock protecting the entire queue). This is a perfectly reasonable thing to 
do and in some cases is the most efficient method of locking a structure. (We'll look at the 
performance of this design in more detail in Manipulating Lists.) 

The question we want to answer here is "What should I lock?" We can point you to many 
examples of programs where people have locked the wrong thing. In Figure 7-7 we see a queue of 
people and their salaries. Each person object also contains a lock. What does that lock protect? It 
can protect pretty much anything you want it to (you're the programmer), except for itself or the 
object that contains it. 

Figure 7-7. Friends/Enemies with Only One Local Mutex Lock 
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The most obvious things for the lock in Jan's object to protect are the data for Jan, along with Jan's 
"next" pointer. A better choice is to have that lock protect the data in Kim's object along with Jan's 
"next" pointer. What that lock cannot protect is the pointer list, because the only way to find Jan 
in the first place is to follow list. So even though you may hold Jan's lock, another thread will still 
be able to come in and take Jan off the queue by changing list. This is why it's better to have 
Jan's lock protect Kim's data. You need to hold Jan's lock anyway in order to access Kim, so why 
complicate matters? 

What if you have another thread which has a pointer (ptr) to Kim? You'd better not. Only the 
thread that holds Jan's lock is allowed to access Kim's object, except for data that is constant or 
data that might be out of date and you don't mind. Now if you remove Kim from the list, things 
change. Jan's lock will no longer protect Kim (it will now protect Kari) and you will be able to do 
anything you want with Kim's object because the thread that removes Kim from the list will be the 
only thread that has access to Kim. If you then pass Kim to another thread, you will need to come 
up with another method of protecting Kim. 

The main point here is that when manipulating complex data structures you need to consider your 
locking scheme carefully. 

Double-Checked Locking 

In a small number of very restricted cases, it is reasonable and legal to look at shared data values 
without holding any locks. Obviously, anything that's a constant may be used without a lock. In 
Java this includes objects that also contain shared variables and that may be moved onto or off of 
shared lists. [This is a different situation than in C/C++, where you explicitly return unneeded 
structures to the heap via free(). In Java, the garbage collector will take care of that.] 

The other situation where you may look at unprotected shared data is when you don't mind if that 
data is out of date. A monitor that runs a periodic display of the current value of some variable is 
always going to lag behind the actual value of that variable. You could reasonably look at the 
value in question without locking as long as that value is guaranteed to change atomically. So 
values of type int, char, and float, along with pointers, are fine. Depending upon your 
hardware, 64-bit values such as double and long may also be legal. Of course, you will not 
know how much the value of that variable changes while you're displaying it. If it has a sudden 
peak to 10 times its previous value, is that important? You're the programmer. 
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Display of a value is a good example because it's simple. It's a bad example because it doesn't gain 
you anything. Displaying something is an expensive operation, requiring hundreds to thousands of 
microseconds. Saving 1 µs by skipping a lock is not going to make a difference in performance, 
but it will make your code a little uglier. 

A better example of this situation is what's come to be known as double-checked locking (Code 
Example 7-6). This is useful in situations where a value is going to be initialized dynamically 
exactly once. The naive way of doing this is to have each thread lock a lock and then check to see 
if the data has been initialized yet, doing the initialization if not. With double-checked locking you 
can skip the lock and look directly at the value in question. If the value is valid, you know it has 
been initialized and that you can use it. If the value is invalid (presumably null), you lock the 
lock, recheck, and initialize. It is essential that you lock and recheck, as it is always possible for 
another thread to be running the same code at the same time. 

Example 7-6 Double-Checked Locking 

void foo() { 
    if (!object.initialized) { 
        synchronized (object) { 
            if (!object.initialized) { 
                object.initialize(); 
                object.initialized = true; 
            } 
        } 
    } 
 
    use object 
} 

You will probably never have use of this technique, as its use is so limited. Dynamic initialization 
like this is generally avoidable as you normally do initialization statically at load time or possibly 
directly from main() before any threads are started. Be very careful when doing this, as it's easy 
to do wrong. 

 

Synchronization Problems 

A number of things can go wrong when you try to coordinate the interactions of your threads. Not 
using synchronization variables is the most obvious and most common. But even when you've 
been careful to lock everything in sight, you still may encounter other problems. All of them have 
solutions; none of them have perfect solutions. 

Deadlocks 

A deadlock is a kind of catch-22 in which one thread needs another thread to do something before 
it proceeds, and the other thread needs something from the first. So they both sit there, doing 
nothing, waiting for each other, forever. This is a bad thing. 

A typical deadlock (Figure 7-8; Code Example 7-7) occurs when thread T1 obtains lock M1, and 
thread T2 obtains lock M2. Then thread T1 tries to obtain lock M2, while thread T2 tries for lock 
M1. 

Example 7-7 Deadlock in Java 
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Thread 1 Thread 2 
public void frob() { public void tweek() { 
  synchronized (one)   synchronized (two) 
    synchronized (two) {...}     synchronized (one) {...} 
} } 
  

Figure 7-8. Typical Deadlock 

 

Although typically a two-thread problem, deadlocks can involve dozens of threads in a circle, all 
waiting for one another. They can involve a single thread that tries to obtain the same 
(nonrecursive) mutex twice, and they can involve a thread that holds a lock dying while another 
thread is waiting for it. 

Deadlocks can always be avoided simply by using careful programming practices. If you declare a 
lock hierarchy and always acquire locks in the same order—A before B before C, etc.—then there 
is no chance of a deadlock. When you want to do out-of-order locking, you can use the trylock 
functions to see whether you can get all the locks you need, and if not, then release them all and 
try again later (Code Example 7-8). 

Example 7-8 Locking Mutexes Out of Order 

pthread_mutex_lock(&m2); 
  ... 
 
if (EBUSY == pthread_mutex_trylock(&m1)) { 
    pthread_mutex_unlock(&m2); 
    pthread_mutex_lock(&m1); 
    pthread_mutex_lock(&m2); 
} 
 
do_real_work();      /* Got 'em both! */ 

A typical instance of this out-of-order locking is the Solaris virtual memory system, which must 
lock access to pages. There is an official hierarchy which says that page 1 must be locked before 
page 2, etc. Occasionally, the VM system will lock page 2 and then discover that it also wants 
page 1. It will then execute a trylock on page 1. If that succeeds, all is well and it proceeds. If it 
fails, it releases the lock on page 2 and requests the locks in proper order.[3] This is a simple 
optimization that saves a bit of time in the normal case and is always correct. 

[3] Note that you must release lock m2. Just spinning, waiting for m1 to become available, will not 
work. 
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Obviously, this kind of design is not possible using Java's synchronized sections. You could 
extend our Mutex class to behave like this, but the overhead is so large that it is very unlikely to 
be worth the effort. 

Race Conditions 

Races are instances of indeterminacy in otherwise deterministic programs. The result a program 
will give in a race condition depends upon the luck of the draw—which thread happens to run first, 
which LWP happens to get kicked off its processor by the page daemon, etc. Race conditions are 
generally bad things, although there are times when they are acceptable. Certainly, one would be 
upset if 1414.60/2.414 came out to be 586 on one run of a program and 586.001 on the next. 

Most commonly, race conditions come around in programs in which the programmer forgot to 
write proper locking protection around some shared data or when locks were taken out of order. 
Still, it is certainly possible to write code that is perfectly correct, yet suffers from races. Consider 
Code Example 7-9; if v starts with the value one, the result will either be one or zero, depending 
upon which thread runs first. 

Example 7-9 Simplistic Race Condition 

            Thread 1                      Thread 2 
 
synchronized (one) {           synchronized (one) { 
   v = v - 1;                     v = v * 2; 
}                              } 

It is worth noting that some instances of indeterminacy in a program are acceptable. If you write a 
program that searches for a solution to a chess problem by creating lots of threads to consider lots 
of different possible moves, you may get different answers depending upon which thread 
completes first. As long as you get one good answer ("Checkmate in three!"), you don't really care 
if you move your pawn or your rook first. 

Recovering from Deadlocks 

A common question is, "What if a thread that is holding a lock dies? How can I recover from 
this?" The first answer is, "You can't." If a thread was holding a lock, it could legitimately have 
changed portions of the data that the lock protected in ways impossible to repair. If it was in the 
midst of changing the balance of your bank account, there is no inherent way for you to know 
whether or not it had credited the deposit it was working on. This is, of course, a very bad thing. 

Pthreads makes no provision for this situation. Only the owner of a mutex can release it, and 
should that owner die, the mutex will never be released. Period. This is not really a problem for 
well-written programs. The only way for a thread to die is for the programmer to write the code 
that kills it. Thus, the proper answer here is, "Fix your code!" 

You can, however, build arbitrarily complex "recoverable" locks from the primitives in all the 
libraries. Using them properly is the trick. Win32 and UI robust mutexes do allow recovery should 
the owner thread die. This is nice functionality if you need it, but it makes mutexes more 
expensive to use when you don't. 

In a single-process, multithreaded program, recovering from deadlocks is not too much of an issue. 
You have complete control over your threads, and if your process dies, all the threads die with it. 
In a shared memory, multiple-process program, it is more problematic, as it is possible for one 
process to die while leaving others running. 
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It is somewhat reasonable to consider recovering from a deadlock in the case of a process dying 
unexpectedly. In other deadlock situations, where threads are waiting for each other, you really 
shouldn't be looking at recovery techniques. You should be looking at your coding techniques. 

System V-shared semaphores do make provision for recovery, and they may prove to be the 
solution to your problem. They provide room for a system-maintained "undo" structure, which 
will be invoked should the owner process die, and they can be reset by any process with 
permission. They are expensive to use, though, and add complexity to your code. 

Both Win32 and UI robust mutexes have built-in "death detection" also, so that your program can 
find out that the mutex it was waiting for was held by a newly dead thread. 

Still, just having to undo structures that can reset mutexes does not solve the real problem. The 
data protected may be inconsistent, and this is what you have to deal with. It is possible to build 
arbitrarily complex undo structures for your code, but it is a significant task that should not be 
undertaken lightly. 

Database systems do this routinely via two-phase commit strategies, as they have severe 
restrictions on crash recovery. Essentially, what they do is (1) build a time-stamped structure 
containing what the database will look like at the completion of the change; (2) save that structure 
to disk and begin the change; (3) complete the change; (4) update the time stamp on the database; 
and (5) delete the structure. A crash at any point in this sequence of events can be recovered from 
reliably. 

Java does not have anything similar to these recoverable mutexes, nor does it need them. Java 
programs are either single process programs (in which case a deadlock is a programming bug) or 
they use RMI or some other kind of remote method invocation (in which case the RMI package is 
responsible for dealing with dead processes). 

Be very, very careful when dealing with this problem! 

The Lost Wakeup 

If you simply neglect to hold the lock while testing or changing the value of the condition, your 
program will be subject to the fearsome lost wakeup problem. This condition occurs when one of 
your threads misses a wakeup signal because it had not yet gone to sleep. Of course, if you're not 
protecting your shared data correctly, your program will be subject to numerous other bugs, so this 
is nothing special. In Java it is not possible to suffer the lost wakeup problem just using 
notify()/wait() directly because you must hold the lock before you can call notify(). 
However, you can create constructs in Java that will have this problem. The Mutex and 
ConditionVar classes that we just built are subject to lost wakeup. 

In Code Example 7-10 (slightly modified from our StopQueue example), it is possible for the 
stopper (which has failed to use the lock) to decide that it's time to stop and broadcast right at the 
instant between when the consumer checks the condition and when it goes to sleep. This code will 
promptly hang. 

The probability that the stopper would get to run at exactly the right (er, wrong) instant is very 
small. (In 1000 test runs of this code it did not occur once.) If we insert a slight delay in the 
consumer between the test and the call to condBroadcast(), we can get it to happen. (In the 
example code on the Web, the program LostWakeup allows you to vary the sleep time (delay) 
to see how often it occurs on your machine.) 

Example 7-10 The Lost Wakeup Problem 
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      Thread 1 (The Consumer)            Thread 2 (The Stopper) 
 
while (true) { 
  mutex.lock();                    Thread.sleep(delay); 
  while (empty() & !stop) {        System.out.println("Stopping") 
   Thread.sleep(delay);            //    mutex.lock(); 
                                   stop = true; 
                                   //    mutex.unlock(); 
                                   consumerCV.condBroadcast(); 
                                   producerCV.condBroadcast(); 
 
    consumerCV.condWait(mutex); 
  } 
 
  if (stop) 
    break; 
  item = remove(); 
  mutex.unlock(); 
  producerCV.condSignal(); 
  server.process(item); 
} 

InterruptedException 

Exceptions are a wonderful mechanism to handle unusual situations. They allow you to write your 
code in a simple, straightforward fashion and still be able to have special code for those special 
situations. Moreover, should those special situations occur in many diverse locations in your code, 
you are able to place a single exception handler at an appropriate location in your code, obviating 
the need for large amounts of repeated code. Finally, because you can allow an exception to 
propagate up through the call stack, it also provides you with a convenient method of executing 
"indirect jumps" [by means of C's longjmp() or Lisp's catch/throw blocks]. 

This is fine when you intend to handle these exceptions, but what if you don't intend to handle 
them? What about when you know there won't be any exceptions? What about 
InterruptedException when you know you are never going to call interrupt()? Or 
when you know you're simply going to ignore it? 

So far, our code has been sprinkled with bits that look as shown in Code Example 7-11. 

Example 7-11 Ignoring InterruptedException 

try { 
    wait(); 
} catch (InterruptedException ie) { 
} 

The obvious alternative, propagating the InterruptedException up the call chain, is viable, 
but a hassle. Just about every major method in your program will be propagating 
InterruptedException, and should you be making lots of changes to your code, you'll be 
inserting and removing "throws InterruptedException" regularly (Code Example 7-12). 
What a pain for something that you won't be using. 

Example 7-12 Propagating InterruptedException 

public void foo() throws InterruptedException { 
  wait() or sleep() or read() etc. 
} 
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We solved this dilemma in our code for sleep() by writing a method 
InterruptibleThread.sleep() which simply caught InterruptedException and then 
interrupted the thread again as it exited. The same general technique can be used for wait() or 
any other method that throws InterruptedException (Code Example 7-13). 

Example 7-13 Ignoring InterruptedException 

public static void sleep(long time)  { 
    boolean interrupted = false; 
 
    try { 
        Thread.sleep(time); 
    } catch (InterruptedException ie) { 
        interrupted = true; // Forget timeout 
    } 
 
    if (interrupted) 
        Thread.currentThread().interrupt(); 
} 

This technique is nice when you don't want to handle interrupts at all the places they can occur. It 
is perfectly reasonable to have an interruptible program that pays attention to these interrupts only 
at certain points. We'll go into greater detail in Implementing enableInterrupts(). 

 
 

APIs Used in This Chapter 

The Class Extensions.RWLock 

This is one of our classes. It implements POSIX-style readers/ writer locks. RWLocks are useful 
only in very limited circumstances. Time your program carefully first! 

readLock writeLock 
   public void readLock() 
   public void writeLock() 

This locks the RWLock in either reader or writer mode. If a read lock is held by a different thread, 
this thread will be able to get another read lock directly. If a write lock is requested, the current 
thread must go to sleep, waiting for it to become available. 

Reference:  Chapter 7.  
 
unlock 
   public void unlock() 

This unlocks the RWLock (both for readers and for writers). If this is the last reader, it will wake 
up one writer thread (if any are sleeping). If this is a writer, it will wake up one writer thread (if 
any are sleeping); otherwise, it will wake up all the sleeping threads with reader requests. 

Reference:  Chapter 7.  

The Class Extensions.Barrier 
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This is one of our classes. It implements barriers. 

Comment: You won't use these very often, but if you're implementing something like a 
simulation, these might come in useful.  

 
Barrier 
   public Barrier (int i) 

This creates a barrier object with a count of i. 

Reference:  Chapter 7.  
 
barrierSet 
   public synchronized void barrierSet(int i) 

This resets the barrier count to i. 

Reference:  Chapter 7.  
 
barrierWait 
   public synchronized void barrierWait() { 

This causes the calling thread to block until count threads have called barrierWait(). 

Reference:  Chapter 7.  

The Class Extensions.SingleBarrier 

This is one of our classes. It implements barriers with a divided set of waiters and posters. 

Comment:  You won't use these very often, perhaps only for example programs.  
 
SingleBarrier 
   public SingleBarrier (int i) 

This creates a single-barrier object with a count of i. 

Reference:  Chapter 7.  
 
barrierSet 
   public synchronized void barrierSet(int i) 

This resets the single barrier count to i. 

Reference:  Chapter 7.  
 
barrierWait 
   public synchronized void barrierWait() { 

This causes the calling thread to block until barrierPost() has been called count times. 

Reference:  Chapter 7.  
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barrierPost 
   public synchronized void barrierPost() { 

This increments the counter for how many times barrierPost() has been called. 

Reference:  Chapter 7.  

 
 

Summary 

A wide variety of more complex synchronization is possible, but probably not useful. Building 
your own synchronization variables is not terribly difficult, but it can be quite subtle. Deadlocks 
can always be avoided; race conditions are more problematical. Trying to recover from deadlocks 
is very, very tricky. Interruptions are a real pain. 
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Chapter 8. TSD 
• Thread-Specific Data 
• Java TSD 
• APIs Used in this Chapter 
• The Class java.lang.ThreadLocal 

In which explanations of thread-specific data, their use, and some implementation details are 
provided. 

 
 

Thread-Specific Data 

Sometimes it is useful to have data that is globally accessible to any function, yet still unique to 
the thread. Two threads that are printing out data, one in French and the other in Danish, would 
find it most convenient to have a private global variable, which they could set to the desired 
language. Any function at any depth could then access this variable without the hassle of passing 
it at every call. 

TSD provides this kind of global data by means of a set of function calls. The techniques used by 
POSIX and Java provide the same functionality with one major distinction. 

In POSIX, TSD is implemented by creating an array of key offsets to value cells, attached to each 
thread structure (Figure 8-1). To use it, you first create a new key, which is then added to the TSD 
arrays for all threads.[1] Keys are just variables of type pthread_key_t (which are opaque data 
types, most commonly integers), and key creation (initialization is a more descriptive term) 
consists of setting the value of the key to the next location. Once the key has been created, you can 
access or change the value associated with the key via calls to pthread_getspecific() and 
pthread_setspecific(). 

[1] Adding the two element to the array need not be done at creation time. It can be more effective 
to add the element first at first access time for each threat. 

Figure . Thread-Specific Data in POSIX 
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TSD is typically used to declare all the keys globally, initialize (er, "create") them in main(), 
then create threads and start the program for real. If you are creating some TSD in a library, you 
must arrange for that library to do the initialization before use. In Code Example 8-1, bar() in 

the first thread will see ,[2].and in the second thread will see π 

[2] One of my best friends, a math wizz, purchased a small farm in rural Minnesota. His address was 
1414, rural route 2 

Example 8-1 Use of POSIX TSD 

pthread_key_t house_key; 
 
foo((void *) arg) { 
    pthread_setspecific(house_key, arg); 
    bar(); 
} 
 
bar() { 
    float n; 
    n = (float) pthread_getspecific(house_key); 
} 
 
main() { 
    ... 
 
    pthread_keycreate(&house_key, NULL); 
    pthread_create(&tid, NULL, foo, (void *) 1.414); 
    pthread_create(&tid, NULL, foo, (void *) 3.141592653589); 
 
    ... 
} 

In Win32 there is a different version of TSD. Win32 calls it dynamic thread local storage and its 
use is virtually identical to TSD in POSIX (Code Example 8-2). Other than the lack of destructors, 
you may use it in the same fashion as TSD. 

Example 8-2 Dynamic TLS in Win32 
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key = TlsAlloc(); 
TlsSetValue(key, data); 
data = TlsGetValue(key); 

The actual implementation of TSD is different from vendor to vendor, but in general they're all the 
same. When accessing a TSD item, we first need to know which thread we're running on. Think 
about this for a moment. How does a thread find out who it is? How does it find its own thread 
structure? On SPARC machines, there is one register (g7) reserved for special use. Compiler 
writers are instructed not to use it. Here the threads library places a pointer to the thread structure 
of the running thread. The thread first dereferences g7 to find the structure [this is what 
pthread_self() and Thread.currentThread() do], then it dereferences an element of 
the structure to find the TSD array. Finally, it looks up the appropriate element in the array. 

 

Java TSD 

Java did not provide for TSD directly until Java 2. This was not a problem, however, as the ability 
to extend the thread class meant that you could simply add an instance variable to a subclass if you 
were in control of thread creation (Code Example 8-3). 

This technique is fairly straightforward, efficient, and gives you most of the functionality that 
POSIX TSD does. It does require you to declare the TSD as part of the thread, versus the more 
dynamic nature of POSIX TSD, but this is unlikely to be a problem. (In this simple example we do 
not provide any protection to ensure that only the current thread can access the TSD, but clearly 
no other thread should.) 

Example 8-3 Implementing TSD by Subclassing Thread 

public MyThread extends Thread { 
    float transcendental; 
} 
 
public MyRunnable implements Runnable { 
    public run() { 
        ((MyThread)Thread.currentThread()).transcendental = 
3.1415926535; 
        ... 
        bar(); 
    } 
 
    public bar () { 
        meditateOn(((MyThread)Thread.currentThread()).transcendental); 
    } 
} 
 
Thread t = new MyThread(new Myrunnable()); 
t.start(); 

Nonetheless, in Java 2, a TSD class (actually called TLS— thread local storage) is provided that 
will give you a more dynamic, POSIX-like functionality (Code Example 8-4). In this version you 
create an instance of the ThreadLocal class, then when you call the set() and get() methods, 
you will be manipulating a thread-specific value. This is essentially just a hash table indexed on 
the current thread. The values stored by ThreadLocal do need to be of type Object, so 
primitive types must be contained in the appropriate wrapper type (e.g., Integer for int). 
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Example 8-4 Using ThreadLocal in Java 

public MyObject { 
   static ThreadLocal transcendental = new ThreadLocal(); 
} 
 
public MyRunnable implements Runnable { 
   public void run() { 
      MyObject.transcendental.set(new Float(3.1415926535)); 
      ... 
      bar(); 
   } 
 
   public void bar () { 
      meditateOn((Float) MyObject.transcendental.get()); 
 
   } 
} 
 
Thread t = new Thread(new Myrunnable()); 
t.start(); 

You still have the problem of figuring out how to pass the ThreadLocal object around. Here, we 
have chosen to make it a static instance variable of MyObject. When you are creating all the 
threads yourself, you can use the first method, subclassing Thread, but when you are using 
threads that someone else created, you will need to use thread local storage. Clearly, any kind of 
TSD is going to be slower than accessing simple global variables. Note that the current 
performance of ThreadLocal is significantly worse than using our home-built thread-local 
variables! (See Timings.) 

The other missing piece of functionality is the lack of a specific TSD destructor. The primary use 
of a TSD destructor in POSIX is to reclaim dynamically allocated data, something the Java 
garbage collector will do automatically. The other, more general use of a destructor is to return a 
specific resource (e.g., to replace an object onto a list of free objects, close a file descriptor, socket, 
etc.). There is no direct parallel for this in Java. If you find yourself with this kind of problem 
(very unlikely!), you will need to write an ad hoc method to take care of it at thread exit time. 

Should you wish to know what Runnable your thread is, you can use a thread local variable or 
thread local storage to record that information (Code Examples 8-5 and 8-6). 

Example 8-5 Recording the Runnable in the Thread 

public class MyThread extends Thread { 
    Runnable runnable; 
 
    public MyThread(Runnable r) { 
        super(r); 
        runnable = r; 
    } 
} 

Example 8-6 Recording the Runnable in Thread Local Storage 

public class MyThread extends Thread { 
    static ThreadLocal runnable = new ThreadLocal(); 
 
    public MyThread(Runnable r) { 
        super(r); 
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        MyThread.runnable.set(r); 
    } 
} 
 
 

APIs Used in This Chapter 

The Class java.lang.ThreadLocal 

This class implements thread local storage by defining an object that can hold different values for 
different threads. 

ThreadLocal 
   public ThreadLocal() 

This creates a new thread local object. 

Reference  Chapter 8.  
 
get set 
   public Object get() 
   public void set(Object o) 

These functions set/get a thread-local value for this object. 

Reference:  Chapter 8.  
 
 

Summary 

We described the basic design of thread-specific data storage, its use, and some of the 
implementation details. 
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Chapter 9. Cancellation 
• What Cancellation Is 
• INTERRUPT() 
• A Cancellation Example 
• Using Cancellation 
• Cleanup 
• Implementing EnableInterrupts() 
• A Cancellation Example (Improved) 
• Simple Polling 
• APIs Used in this Chapter 
• The Class java.lang.Thread 
• The Class Extensions.InterruptibleThread 

In which we describe the acrimonious nature of some programs and how unwanted threads may be 
disposed of. The highly complex issues surrounding bounded time termination and program 
correctness are also covered. A simple conclusion is drawn. 

 

What Cancellation Is 

Sometimes you have reason to get rid of a thread before it has completed its work. Perhaps the 
user changed her mind about what she was doing. Perhaps the program had many threads doing a 
heuristic search, and one of them found the answer. Perhaps it's time to shut down a server. In 
such cases you want to be able to have one thread kill the other threads. This is known as 
cancellation (a POSIX term; see Figure 9-1). 

Figure 9-1. Thread Cancellation 

 

No matter how you choose to deal with the issues of cancellation, be it in Java, Win32, or POSIX 
threads, the primary issues remain the same. You must ensure that any thread that you are going to 
cancel releases any locks it might hold, frees any memory it may have allocated for its own use, 
and leaves the world in a consistent state (Code Example 9-1). 

Example 9-1 Asynchronous Thread Cancellation 

 

POSIX Java Win32 
T1.stop() pthread_cancel(T1) TerminateThread(T1) 
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The fundamental operation is quite simple: You call the cancellation function with the target 
thread, and the target thread dies sometime "soon." The ramifications of doing this are, however, 
quite complex, making cancellation one of the most difficult operations to execute correctly. 

Polling for Cancellation 

There are three basic techniques of cancelling threads. The simplest is to do it ad hoc. You set a 
flag and let all the target threads continue to run until they see it. This is what we did in our 
StopQueue example. This is great unless one of your threads is blocked waiting for I/O, in which 
case it may never notice that the flag has been set. 

Asynchronous Cancellation 

The second method is known as asynchronous cancellation. This is what most people think of first. 
You call the cancel function and the target thread dies "soon."[1] If the thread is sleeping or 
blocked on I/O, it will be awakened in order to die. 

[1] The actual delivery time of a stop request is not specified. The most obvious implementation for a 
truly asynchronous stop is to use UNIX signals or NT's equivalent. Signals in UNIX are indeed 
asynchronous, but not as immediate as you might imagine. The usual implementation of signals is 
for the caller to mark a bit in the target's process structure, and for the caller to look at that bit only 
when context switching on the system clock. Thus delivery of signals, hence stop notifications, 
occurs only at clock ticks. Perfectly legal but not intuitive. 

This is the only type of cancellation that Win32 provides. You call TerminateThread() and 
the target thread dies. Unfortunately, should that thread own some resource, hold some lock, or 
have malloced some memory, your program will be in trouble. This type of cancellation is known 
as unrestricted asynchronous cancellation, and it is the responsibility of the killer to know that the 
victim can be safely eliminated at the time of cancellation—a difficult task at best, impossible at 
worst. 

In POSIX you get this behavior by calling pthread_cancel() with the cancellation type set to 
asynchronous. In Java, the method thread.stop() behaves similarly, save that any 
synchronized sections will be released and any finally clauses will be executed. 

Deferred Cancellation 

The third type of cancellation is known as deferred cancellation. In this type of cancellation, a 
thread exits only when it polls the library explicitly to find out if it should exit. When the thread 
blocks in a library call which is a cancellation point [e.g., sem_wait()], the thread will be 
awakened in order to exit. POSIX defines a set of standard library functions that must call it (see 
Defined Cancellation/Interruption Points). 

In POSIX, there's a function pthread_testcancel(), which checks to see if a bit has been 
set. If the bit is set, it exits the thread; otherwise, it returns, and the thread continues normally. 

Using interrupt() for Deferred Cancellation 

In Java, InterruptedException and InterruptedIOException are used in much the 
same fashion as POSIX deferred cancellation. One thread may call interrupt() on another 
thread, and when that thread hits an interruptible point (the Java analogue to POSIX cancellation 
points), that method will then throw an InterruptedException or 
InterruptedIOException, and you may then handle that exception as you see fit. If your 
objective is to kill the thread, you may simply have the exception handler exit the thread. If you 
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merely wanted the thread to quit what it was doing and start doing something else, you can do that. 
(This is rather nicer than POSIX cancellation, as you may choose to do other things upon 
interruption.) 

Progressive Shutdown 

There are those who suggest that a progressive shutdown scheme is more appropriate than 
cancellation. By progressive, they mean first set a flag and wait. If that doesn't do the trick, reduce 
the scheduling priority. If that's not enough, restrict permissions and hope the target thread hits a 
security violation. Then try interrupt(), then try stop(), then try destroy(). This just 
doesn't seem like a terribly great idea. 

 

interrupt() 

Basically, a call to interrupt() sets a flag and looks to see if the target thread is blocked. If it 
is blocked, it is forcibly awakened. When it sees the flag, it throws an exception. You may also 
test to see if a thread has been interrupted via Thread.interrupted() (for the current thread, 
this also resets the interrupted flag) or thread.isInterrupted() (for an arbitrary thread, this 
does not reset the flag). Once the flag is cleared, no method will throw 
InterruptedException until interrupt() is called again (Code Example 9-2). Catching 
the exception will also reset the flag.[2] 

[2] This "interrupt flag" was not part of the Java 1.1 specification per se, nor was its behavior with 
respect to being cleared well defined. But it is defined in Java 2 and this is how it works in both 1.1 
and 2. 

Example 9-2 Using thread.interrupt() 

Thread 1 Thread 2 
try { t1.interrupt() 
  ... lots of work ... if (t1.isInterrupted()) { 
  while (!ready()) {wait();}   System.println(t1 + "int'd") 
  ... more work ...  
  if (Thread.interrupted() {  
    exit threaAd or whatever  
  }  
} catch (InterruptedException e) 
{ 

 

  exit thread or whatever  
}  
 

In POSIX deferred cancellation and in Java interruption, a thread may run for an arbitrary amount 
of time after a cancellation (interruption) has been issued, thus allowing critical sections to 
execute without having to disable/enable cancellation. This is good because you know that the 
thread will exit synchronously. This is bad because you must do extra work if you wish to ensure 
bounded cancellation times. An interrupted thread could go off and run in a loop for hours before 
hitting an interruption point. Of course, this might be OK. 

There is no pat answer to these issues, and you, as the responsible programmer, must resolve them 
on a program-by-program basis. In POSIX you may select asynchronous for one program, 
deferred for a second, and a mixture of both for a third. Java does not officially give you this 
option because the method stop() has been officially deprecated in JDK 1.2. But as stop() 
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will continue to be supported for some amount of time into the future, you could continue to use it. 
Don't. 

Don't Call stop() 

So what was the problem with the stop() method? Why has it been deprecated in JDK 1.2? 
Basically, it has proven just too difficult to use correctly. Just like POSIX's asynchronous 
cancellation, stop() will interrupt a thread in the middle of whatever it's doing and leave no 
options for proper recovery of system state. 

Yes, you can write a finally section to reestablish invariants, but you need to know which 
invariants to reestablish (perhaps your code is complex and only half of it ran). You also have to 
deal with the fact that the stop message can arrive in the middle of the finally section, in which 
case that will be stopped. In other words, finally sections don't help. 

About the only thing you can do is to write a stop protocol (similar to Code Example 9-6) yourself 
in which the killer thread and the target threads agree on exactly when a stop request may be 
issued. Basically, you would write a new class of threads StoppableThread, which would 
have two new methods: enableStop() and disableStop(). You would then write a method, 
myStop(), which would check the stoppable state of the target thread and call stop() only if it 
were enabled. All threads that you intend to stop would have to be of class StoppableThread. 
(We show this technique for interruption in InterruptibleThread.) 

So it's possible to use stop() for cancellation. It's just very difficult and you probably don't want 
to do this. (And of course, it's deprecated in JDK 1.2.) On top of all that, there is no clear 
statement of exactly when a thread that has been stopped will actually exit. If it's sleeping, will it 
be awakened? Maybe. Can it be forced to pop out of a JNI call? Maybe. 

ThreadDeath 

The way stop() works is that it throws an unchecked runtime exception, ThreadDeath. This 
exception then propagates up the call stack, running all finally sections and unlocking all locks 
that it encounters. When it gets to the initial run() method, it pops out of that, too, and the thread 
exits. 

When Java was being designed, ThreadDeath was not supposed to be an exposed interface; you 
weren't supposed to know about it. But it did become public and is now officially supported. 
That's very interesting, but now forget it. 

It is possible for you to throw ThreadDeath yourself. It is possible for you to catch 
ThreadDeath and deal with it yourself. You will even find books that give you snippets of code 
that do so. But they never give you enough to create a robust program. Yes, it is possible to use 
ThreadDeath. Don't do that. 

Using stop() to Implement Thread.exit() 

There is a second use for stop(). You can use it as the Java equivalent to pthread_exit() 
(Code Example 9-3). This use of stop() does not have any deadlock or data corruption problems 
noted above because you call it synchronously and you can ensure that it is called only when 
everything is consistent and safe. Unfortunately, even this use of stop() is deprecated. What to 
do? 

Example 9-3 Implementing exit() 
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public class InterruptibleThread extends Thread { 
    public static void exit() { 
        Thread.currentThread().stop(); 
    } 
 
    ... 

For a long time in our programs we simply put a little syntactic sugar over it and included it in our 
InterruptibleThread class as below. You will find examples of code like this in many of 
our older example programs. We have subsequently been convinced that this is the wrong way to 
do things. Indeed, we have been convinced that even pthread_exit() is the wrong way to do 
things! 

Never Exit a Thread! 

More accurately, never try to exit a thread explicitly. The argument goes like this: A runnable 
should be viewed as a package of work to be done. As such, you never know for sure just who is 
going to do that work. It could be a new thread, it could be an old thread, it could be the current 
thread. As such, neither the run() method nor any of the methods it calls (most certainly not any 
library objects you bought from Joe's Object Factory) should cause a thread to exit. They don't 
know anything about the thread that's running them. 

If there is a problem, they should either deal with it directly or throw an exception to be handled 
by a higher-level method. The run method itself has no idea which thread is running it, so at most 
it should simply return. If returning happens to exit the thread running it, that's OK. This way, 
runnable objects are free to be used by any thread in any fashion it chooses. 

In our ThreadedSwing example (Code Example 9-4; see also Threads and Windows), we do 
exactly this. In the snippet below, when we run the program with threads turned off, the work is 
performed by the current thread in-line. When we turn threads on, the work is farmed out to a new 
thread. 

Don't Call destroy() 

There is another method, destroy() which stops a thread but doesn't unlock locks or run 
finally sections. It was intended as a thread killer of last resort (in case you were in an 
unstoppable loop or if there were a bug in the JVM). If you use this method to kill a thread, you 
should expect the rest of your program to either crash or hang sooner or later. This method is not 
deprecated in Java 2, but neither is it implemented in any of the JVMs. 

Example 9-4 From ThreadedSwing Example: NumericButtonListener.java 

public void actionPerformed(ActionEvent event) { 
    ThreadedJButton currentButton = 
(ThreadedJButton)event.getSource(); 
 
    System.out.println("Pressed " + currentButton); 
    currentButton.setEnabled(false); 
    System.out.println(currentButton + " disabled."); 
    DoWorker w = new DoWorker(currentButton); 
 
    if (ThreadedSwing.useThreads) 
        new Thread(w).start(); 
    else 
        w.run(); 
} 
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Defined Cancellation/Interruption Points 

POSIX requires that a set of 25 library functions be cancellation points and that they must be 
interruptible should they be blocked at cancellation time. They are required to test for cancellation 
even if they don't block. These are functions such as (pthread_cond_wait, 
pthread_testcancel, read, sem_wait, write). It allows about 60 more, but leaves it 
to the vendor's discretion. 

Java faces the same set of issues for its interruptible points, and in JDK 1.2, a set of methods are 
defined to throw InterruptedIOException. (They must throw the exception if they have 
received an interrupt.) Unfortunately, Java does not specify exactly which functions these are, nor 
does it actually require that they throw the exception from the middle of a blocked system call. 
Among the calls that do throw InterruptedIOException are read() and accept(), 
which we illustrate in A Robust, Interruptible Server . Unlike catching 
InterruptedException, catching InterruptedIOException does not clear the interrupt 
flag. 

The Problem with I/O 

This problem is even more insidious than it appears at first glance. Not only are the interruption 
points not specified, not only are they not required to wake up from blocking calls to throw the 
exception, it is not even well defined what happens when they do! In particular, if a thread is 
blocked, waiting on a read() from a socket, it is legal for it to read in an unspecified number of 
bytes from the socket and then throw InterruptedIOException. This would leave the socket 
stream in an undefined state. The only thing that you could do would be to close the socket. 

Writes to sockets can also block for an unbounded time if the socket buffer in the kernel fills up. 
Typically, this buffer is around 64k, so it's unlikely to fill unless the client is asleep. 

Not Cancelling upon Interruption 

Interruptions in Java are just exceptions and nothing says that you have to exit a thread simply 
because it's been interrupted. For example, you may have a thread running Dungeon Of Doom '99, 
which is waiting for the user to vaporize an evil space Dalique (Code Example 9-5). If the user 
fails to do so, you may interrupt that thread after 2 seconds and declare him "eliminated," but only 
if he's already injured. If you want to use interruption for more than one purpose, you'll need to set 
a (protected!) variable to indicate what the interrupted thread should do. 

Handling Interrupts 

In writing your own libraries, it would be nice to have all of your functions interruption safe. You 
can ensure this by never calling any interruptible functions, or by properly handling interruptions 
when you do call some. There are a variety of methods for handling this. 

Disabling Interrupts 

You might simply ensure that no interruptions will be sent while your function runs. This requires 
a bit of coordination between your libraries and the user of your library to establish a "disabled" 
protocol such as that used in Code Example 9-6. You probably don't want to do this, as it binds 
your library too close to the application. In Code Example 9-6, the interruptible thread states a 
request that no interruptions be sent by setting inCriticalSection to true. That variable 
must be protected, of course, and it must be tested at each entry to any code that is either 
interruptible or that issues interrupts.[3] (Ugly, eh? Compare to Implementing enableInterrupts(), 
where this technique is cleaned up a bit. 
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[3] As a matter of fact, even this code is not flawless by the definition of interruption. It is 
theoretically possible for the interrupter thread to get the lock, send an interrupt to the target thread, 
and release the lock; the target thread could then lock the lock and Thread.interrupted() 
could still return false. It's difficult to imagine an implementation of the JVM for which this could 
happen, but it is possible according to the official definition. 

Example 9-5 Testing a Variable from an Exception Handler 

public synchronized boolean justInjured() { 
    if (health > 1) 
        return true; 
    else 
        return false; 
} 
 
public void attack() throws LiquidatedException { 
    ... 
 
    try { 
        vaporizeDalique(); 
    } catch (InterruptedException ie) { 
        if (justInjured()) 
            synchronized (this) { 
                health--; 
            } 
        else { 
            // Eliminate Eliminate Eliminate 
            throw new LiquidatedException(); 
        } 
    } 
} 

Ignore Interrupts 

You could install interruption handlers that do nothing and assume that either the programmer will 
never call interrupt or that she will keep calling it until the thread disappears. Most sample code 
you see in other books and articles does this. This is too much for a library to assume. Don't do 
that. 

Example 9-6 Inventing an InterruptDisabled Protocol 

// The Interruptible Thread 
 
public void doDatabaseThing() throws InterruptedException { 
    InterruptibleThread t = InterruptibleThread.self(); 
 
    synchronized (t) { 
        if (Thread.interrupted()) { 
            throw new InterruptedException(); 
        } 
 
        t.inCriticalSection = true; // Don't cancel in critical 
section! 
    } 
 
    try { 
        incrementDatabase(1); 
        Thread.sleep(10);         // Or some other interruptible 
method 
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        incrementDatabase(-1); 
    } catch (InterruptedException ie) { 
        // Impossible 
    } 
 
    synchronized (t) { 
        t.inCriticalSection = false; // Now it's OK to cancel 
        t.notify(); 
    } 
} 
 
 
// The Interrupter Thread 
 
synchronized (t) { 
    while (t.inCriticalSection) { 
        try  { 
            t.wait(); 
        } catch (InterruptedException ie) { 
            // Impossible 
        } 
    } 
 
    t.interrupt(); 
} 

Exit on interrupt() 

You could install interruption handlers that will exit the thread right there and then, assuming that 
the programmer always intends interruption to be cancellation and that all data is consistent 
anytime your library is called. This is also too much for a library to assume. Don't do that. 

Propagate InterruptedException 

You could propagate the exception. By propagating, you shift the burden of dealing with the 
exception to the callers, who must then treat your libraries as throwing 
InterruptedException. Propagating the exception is certainly the right thing to do for many 
library functions. 

The value of this is that if your library makes unbounded blocking calls, anyone who used it 
would want to be able to interrupt it. If you make bounded-time blocking calls, it's not so vital. It's 
generally OK if your library call takes 40 ms and you don't interrupt it. 

Reinterrupt 

You may wish to avoid dealing with InterruptedException at all. In such cases you can set 
a flag, reenter whatever code you were running, wait until that code returns normally, and then 
call interrupt on yourself before leaving. 

The point here is that (1) you don't want your code to do anything with interrupts at all, (2) you 
don't want the caller to have to deal with InterruptedException being thrown from your 
code, and (3) you really wish that you could have called a method that didn't throw that exception 
at all, but there was no alternative. This is a common thing to do. 

The mutex class shown in Code Example 9-7 (this is the actual code we use) exemplifies this 
situation. In this code we don't want to be bothered with interrupts and we don't want the caller of 
mutex.lock() to be forced to catch InterruptedException all the time. So we simply call 
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interrupt() on the current thread again, trusting that it will be seen in the caller's code 
somewhere else.[4] This way, the exception will never be lost. 

[4] If the programmer doesn't deal with InterruptedException, what the heck is he doing 
calling interrupt()? 

Example 9-7 Calling interrupt() upon Return 

public synchronized void lock() { 
    boolean interrupted = false; 
 
    while (owner != null) { 
        try { 
            wait(); 
        } catch (InterruptedException ie) { 
            interrupted = true; 
        } 
    } 
 
    owner = Thread.currentThread(); 
    if (interrupted) 
        owner.interrupt(); 
} 

Of course, this code could block forever and that could be a problem. This is what the designer of 
the program needs to deal with. He needs to guarantee that another thread will do whatever is 
necessary to make this method return. (For a mutex or synchronized section, he must guarantee 
that the owner releases it.) 

So this is a good thing. We're not dropping interrupts. But we're still not out of the woods. What if 
you have a method which calls one of these methods and that method doesn't know about you 
reinterrupting? It could get nasty. Consider the naive code (shown in Code Example 9-8) for 
condition variables and RWlocks. 

What happens if we're blocked waiting to get a read lock and we get interrupted? Well, our 
condition variable class doesn't want to throw InterruptedException, so it just schedules a 
reinterrupt and returns as if from a spurious wakeup. Unfortunately, our lock code views the return 
as spurious and just calls condWait() again. Which promptly sees the new interrupt and throws 
InterruptedException again, etc. (Code Example 9-9). Don't do that. 

So if we wanted to use that design for condition variables, we would need to keep that in mind and 
play the same tricks in the readers/writer lock. Ugh! 

Now, what we really want is for InterruptedException to work correctly and simply and 
any synchronization variables we build on top of Java to be equally simple to use. By sticking 
with our original version of condWait(), which doesn't treat InterruptedException as a 
spurious wakeup, we get the best of both worlds (Code Example 9-10). This is also almost 
certainly what you want to do in any of your code. If you want to get fancy, be careful! 

Example 9-8 Naive Condition Variable and Readers/Writer Lock 

public void condWait(Mutex mutex) { 
    boolean interrupted = false; 
 
    try { 
        synchronized (this) { 
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            mutex.unlock(); 
            wait(); 
        } 
    } catch (InterruptedException ie) { 
        // NB: There is no 'while' loop 
        interrupted = true; 
    } 
 
    mutex.lock(); 
    if (interrupted) 
        Thread.currentThread().interrupt(); 
} 
 
 
public void readLock() { 
    m.lock(); 
    nWaitingReaders++; 
 
    while ((owner != null) || (nWaitingWriters > 0)) { 
        readersCV.condWait(m); 
    } 
 
    nWaitingReaders--; 
    nCurrentReaders++; 
    m.unlock(); 
} 

Example 9-9 Handling Interruptions from condWait() the Hard Way 

public void readLock() { 
    booleaninterrupted=false; 
    m.lock(); 
    nWaitingReaders++; 
    while ((owner != null) || (nWaitingWriters > 0)) { 
        if (Thread.interrupted()) 
            interrupted = true; 
 
        readersCV.condWait(m); 
    } 
 
    nWaitingReaders--; 
    nCurrentReaders++; 
    m.unlock(); 
    if (interrupted) 
        Thread.currentThread().interrupt(); 
} 

Example 9-10 The Right Way of Implementing condWait() 

public void condWait(Mutex mutex, long timeout) { 
    boolean interrupted = false; 
 
    while (true) { 
        try { 
            synchronized (this) { 
                mutex.unlock(); 
                wait(timeout); 
                break; 
            } 
        } catch (InterruptedException ie) { 
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            interrupted = true; 
        } 
    } 
 
    mutex.lock(); 
    if (interrupted) 
        Thread.currentThread().interrupt(); 
} 

The vast majority of programs don't deal with interrupts at all. Computational programs don't care. 
Interactive programs usually are fine doing "dirty" shutdowns ["Who cares if there are open file 
descriptors, sockets, etc.? System.exit() will close them and any clients can deal with it on 
their end."] It's the more serious server and database programs that need to do clean shutdowns. 

Cancellation State 

POSIX has a more elaborate version of cancellation. It defines a cancellation state for each thread 
that will enable or disable cancellation for that thread. Thus you can disable cancellation during 
critical sections and reenable it afterward. Neither Win32 nor Java defines this state, although it 
would not be too difficult for you to write it yourself [Implementing enableInterrupts()]. 
Cancellation state makes it (just barely) feasible to use asynchronous cancellation safely, although 
there are still significant problems to be dealt with. 

 

A Cancellation Example 

Code Example 9-11 uses cancellation via interruption to get rid of unneeded search threads. This 
program has the objective of finding a certain number by using a heuristic. The desired number is 
the process ID, and the heuristic is to generate random numbers, checking to see if they happen to 
be the PID (Figure 9-2). Admittedly, this is not a very clever heuristic, but the concept is solid. 
You can reasonably replace the problem and heuristic with more meaningful ones, such as a chess 
position and an alpha-beta search. The cancellation issues won't change. 

Figure 9-2. Cancellation Example Program 
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The main thread gets the PID and creates 10 threads to search for it. Each of the searcher threads 
proceeds to generate a random number, checking to see if that happens to be the PID. When one 
thread finds the number, it interrupts all the other threads, then returns itself. The main thread will 
do a join on all the searcher threads, printing out the answer when all have exited. 

Example 9-11 Using interrupt() to Cancel Searcher Threads 

// CancellationInterrupt/Cancellation.java 
 
/* 
   A very simple example to run which illustrate cancellation. 
   Choose a target number, then create a bunch of threads to search 
   for using a heuristic [call rand()!].  The first to find it 
cancels 
   the others. 
 
   A database is included to illustrate typical problems.  The 
database 
   should always by 0 at the end of every transaction.  Observe how 
   much effort that takes. 
*/ 
 
import java.io.*; 
import Extensions.*; 
 
public class Cancellation { 
    int           answer = 0; 
    int           target = 9; 
    boolean       found = false; 
    int           nSearchers = 10; 
    TSDThread     threads[] = new TSDThread[nSearchers]; 
    Object        databaseBalancedLock = new Object(); 
    int           databaseBalanced = 0; 
    Object        nGuessesLock = new Object(); 
    int           nGuesses = 0; 
    static        boolean DEBUG = false; 
 
    public static void main(String argv[]) throws 
InterruptedException { 
        Cancellation c = new Cancellation(); 
 
        if (System.getProperty("DEBUG") != null) 
            DEBUG = true; 
 
        for (int i = 0; i < 2; i++) { 
            c.run(); 
        } 
    } 
 
 
    public void incrementGuesses() { 
        synchronized(nGuessesLock) { 
            nGuesses++; 
        }       // Cannot synchronize on cancel. Why? 
    } 
 
 
    public void incrementDatabase(int i) { 
        if (DEBUG) { 
            System.out.println(Thread.currentThread().getName() 
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                + " incrementing " 
                + databaseBalanced + " by " + i); 
        } 
 
        synchronized(databaseBalancedLock) { 
            databaseBalanced += i; 
        }       // Cannot synchronize on cancel. Why? 
    } 
 
 
    public void run() throws InterruptedException { 
        Thread t; 
        nGuesses = 0; 
        found = false; 
 
        synchronized(this) { 
            for (int i = 0; i < nSearchers; i++) { 
                threads[i] = new TSDThread(new Searcher(this, i)); 
                threads[i].start(); 
            } 
        } 
 
        for (int i = 0; i < nSearchers; i++) { 
            threads[i].join(); 
            System.out.println(threads[i].getName() + " joined."); 
        } 
 
        System.out.println("The answer is: " + answer + 
                ", it took: " + nGuesses + 
                " guesses, and the database is..."); 
 
        if (databaseBalanced == 0) 
            System.out.println("Consistant."); 
        else 
            System.out.println("Inconsistant!"); 
    } 
} 
 
 
 
 
//              CancellationInterrupt/Searcher.java 
 
import java.io.*; 
import java.util.*; 
import Extensions.*; 
 
public class Searcher implements Runnable { 
    int           target; 
    Cancellation  cancel; 
    int           seed; 
 
    public void run() { 
        TSDThread self = (TSDThread) Thread.currentThread(); 
        Random r = new Random(seed); 
        int guess; 
 
        System.out.println(self.getName() + " is searching..."); 
 
        for (int i = 0; true; i++) { 
            try { 
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                doDatabaseThing(); 
            } catch (InterruptedException ie) { 
                return; 
            } 
 
            guess = r.nextInt()% 10; 
            cancel.incrementGuesses(); 
 
            if (guess == target) { 
                synchronized(cancel) { 
                    System.out.println(self.getName() + 
                        " got the answer: " + guess); 
 
                    if (cancel.found) { 
                        System.out.println(self.getName() + 
                            " too late! Exiting"); 
                        return;   // If someone else already found 
it... 
                    } 
 
                    cancel.found = true; 
                    for (int j = 0; j < cancel.nSearchers; j++) { 
                        TSDThread t1 = (TSDThread) cancel.threads[j]; 
                        if (!t1.equals(self)) {  // Don't kill 
yourself 
                            synchronized (t1) { 
                                while (t1.inCriticalSection) { 
                                    try  { 
                                        t1.wait(); 
                                    } catch (InterruptedException ie) 
{ 
                                        // Impossible 
                                    } 
                                } 
 
                                t1.interrupt(); 
                                if (Cancellation.DEBUG) { 
                                    System.out.println(self.getName() 
+ 
                                        " cancelling " + 
t1.getName()); 
                                } 
                            } 
                        } 
                    } 
 
                    cancel.answer = guess; 
                    System.out.println(self.getName() + " done."); 
 
                    return; 
                } 
            } 
        } 
    } 
} 
 
 
 
// CancellationInterrupt/TSDThread.java 
 
/* 
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  Add a bit of Thread-Specific Data. 
*/ 
 
import java.io.*; 
import java.util.*; 
import Extensions.*; 
 
 
public class TSDThread extends Thread { 
    boolean inCriticalSection = true; 
 
    public TSDThread(Searcher o) { 
        super(o); 
    } 
} 

The method doDatabaseThing() uses the technique described in Code Example 9-7 to ensure 
that it runs atomically. In addition, you will notice that when the answer is found, the finder locks 
a synchronized section for the cancel object. In case some other thread already found the answer, 
our thread will enter this critical section, see that cancel.found is true, and exit by itself. [It 
is perfectly possible for two threads to find the answer independently and the interruption which 
the first sends to the second not to be seen by the second thread until later. So we need to check 
this variable. Alternatively, we could reasonably have called Thread.interrupted().] 

Each of the searcher threads calls doDatabaseThing() during the loop, so you don't have to 
worry about them never seeing the interruption. The main thread looks for the result in the global 
variable answer. It prints out success, noting the number of attempts required, then waits for all 
the searchers to exit. When they have all exited, it repeats the process.[5] Simple? Well… 

[5] This is pretty ugly code. We'll fix it up in a bit. 

 

Using Cancellation 

You've seen the definition of cancellation. Now how can you use it effectively? The answer is, 
"not easily!" 

First, let us consider your objectives in using cancellation. You created some threads to 
accomplish a task, and now you don't need them to work on it any longer. Perhaps the task has 
already been accomplished, or perhaps the user has changed her mind. Normally, we use 
cancellation to stop threads because we don't want them to waste time on something unnecessary. 
This is the best case. Sometimes we want to use cancellation to prevent threads from doing 
something that we no longer desire. This is harder. 

In cancelling a thread, what do you want? Do you want to: 

1. Kill it instantly? 
2. Kill it in bounded CPU time? 
3. Prevent it from making any more global changes? 
4. Prevent it from wasting CPU time? 

Presumably you want goal 4, generally implying goal 2. After all, if you don't care whether the 
CPU time is bounded, why bother cancelling the thread at all? 
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If you think you need goal 1, you'd best do some rethinking. First, it isn't possible; second, it isn't 
even well defined.[6] So, instead of goal 1, what is it that you really want? 

[6] If nothing else, special relativity denies the concept of objective synchronisity. Practically 
speaking, it will take at least 1 µs to send an interrupt anyway. 

If it was goal 3 you were thinking of, you're in much the same boat. It really isn't possible and not 
very meaningful. Now if you're satisfied with "not very many more global changes," we can put 
that in with goal 4 and proceed. 

Ensuring Bounded CPU Time 

The exact time of cancellation (interruption) is not guaranteed by POSIX, Java, or Win32. The 
target thread will become aware of a pending cancellation request some time after the function has 
been called. If you are using asynchronous cancellation [i.e., stop()], the thread should indeed 
spend very little extra time processing. No assurances here, but you can reasonably expect that it 
will be gone within a few milliseconds of CPU time (who knows how long it might sleep for if it 
needs a lock!). With deferred cancellation, the timing situation is more complex. The main point 
to remember is that you cannot rely upon the target thread exiting at any specific time. If you need 
to know when it has exited (you usually do!), you must use some sort of synchronization (either 
call join or use a barrier). 

As an example of a long wall-clock delay in cancellation, consider the case of a low-priority target 
thread and a high-priority killer on one LWP. The cancellation will be sent, but as the high-
priority thread continues to run, the target thread will not get a chance to exit any time soon. If the 
killer is running in realtime mode, the target might never exit! (Of course, in that case, you have 
lots of other problems to deal with.) 

Deferred cancellation is a polling scheme when a thread is running, and more like asynchronous 
cancellation when the thread is blocked. For running threads, the polling is essentially as shown in 
Code Example 9-12. Thread T2 cancels T1 by calling interrupt(), which in turn sets a 
variable in the thread structure. When T1 enters a cancellation point such as read(), that 
function then checks to see if the thread has been cancelled, and exits if so. 

To ensure bounded cancellation time with interruptions, it is up to you, the programmer, to insert 
calls to interruption points within every unbounded code path. In other words, for every loop that 
might run longer than your declared time limit, you must make sure that there is an interruption 
point in that loop. The obvious method is simply to include in the loop a call to 
Thread.interrupted(). 

Example 9-12 Deferred Cancellation as Polling 

interrupt() read() 
void interrupt(){ read(...) { 
  T1.interrupted = true;   ... 
  ...   if (self.interrupted) 
     throw new 

InterruptedIOException(); 
} } 

Interrupting Computational Loops 

In a tight loop, the overhead of Thread.interrupted() may prove excessive, even though it 
is very fast (about 3µs on a 110-Mhz SS4). You can test only once every 1000 iterations, or 
something similar (Code Example 9-13). 
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Example 9-13 Testing Once Every 1000 Iterations 

for (i = 0; i < N; i++) { 
    a[i] = b[i]; 
    if (i % 1000 == 0) { 
        if (Thread.interrupted()) { 
            throw new InterruptedException(); 
        } 
    } 
} 

So how long a latency can you afford for cancellation? That's a decision for you to make. Most 
likely the answer is going to be something like, "I want the target thread gone within 10 ms of 
CPU time after the call to cancel, with a probability of 99.999%."[7] With any sort of normal 
program, you'll have no problems. Analyze your program carefully, then test it. 

[7] What if you want 100% probability? Forget it. There is no such beast. When the probability of 
program failure drops below the probability of the computer being hit by a meteorite (about 1E-11 
per year), you can relax. 

What if you want bounded wall-clock time? Things get a bit stickier. We are now talking about 
realtime processing and an entirely different set of issues. The basic answer is, "Don't do that!" If 
you are going to do it, you'll need to know more than we do about realtime. 

Interrupting Blocked Threads 

Now that we've taken care of the CPU-bound programs, what about the I/O-bound programs? 
We've already stated that all blocking methods are intended to be interruptible. Is that enough? Or 
is it too much? 

The thing we want here is the same as above—we want a time bound for when our thread will see 
the interruption. Moreover, we can generally be fairly generous about that time bound. In 
particular, the amount of time it takes to read a block from disk (about 20 ms) is not going to be a 
problem. We are not going to be concerned with interrupting local disk I/O. Unfortunately, if we 
are reading remote files via NFS, we don't have that assurance. What do we want to do if NFS 
fails? Can we treat that differently from waiting for clients? Perhaps. 

Interrupting Sockets 

Still, the most common issue is sockets, because we have no idea when a client might send the 
next request. Taking the canonical case of wanting to shut down a server, we are concerned 
primarily with forcing threads that are blocked, waiting on a read from a socket to pop out of that 
read and see the shutdown request. In some systems it is actually possible for us to write into that 
socket from the local program. This would make things much easier, but this is not generally the 
case; certainly it is not the case with Java. With Java we need to use interruption. 

What Should Throw InterruptedException? 

That part is fine. Waiting for a socket? Throw an interruption and exit. The problem that occurs is 
that many other methods may receive that interruption instead. If our thread is calling wait() 
somewhere, that wait() will be the one to receive the interruption and we'll be forced to deal 
with it there. We don't really want that. We can control the wait() code more directly and more 
easily by using flags as in our StopQueue example. We would really prefer to use the 
StopQueue technique everywhere except when blocking on the socket. 
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The point is that we don't want to have to catch InterruptionException all the time, and we 
particularly don't want to have to write exception handlers that clean up the world all over the 
place. As long as we know we have a time bound on our code, we don't want to deal with these 
exceptions at all. Unfortunately, this is the way that Java works and we have to deal with them 
anyway. 

Obviously, there are many options here and the issues are quite complex. We have yet to see a 
sufficiently complete solution to them. Our opinion is that simplicity is best. Maximal simplicity. 
If we could, we would use the InterruptibleThread to disable InterruptedException 
everywhere except in unbounded blocking reads. If we didn't have control over the threads, we 
would use the reinterrupt technique in our libraries and require the program to unblock our waits 
explicitly, as with StopQueue. 

So, should our explicit Mutex class throw InterruptedException or should it catch it and 
reinterrupt later? We chose the latter for exactly the same reason that POSIX and Java chose it. 
With hundreds of locks scattered throughout our code, it would be a nightmare to catch exceptions 
at every call. (Consider the extreme example of requiring every call to new to catch an 
OutOfMemoryException!) 

This is why none of our synchronization variables throw InterruptedException. The 
programmer can always ensure that they don't block forever and is thus freed to deal with 
InterruptedException in fewer places in the code. Fewer is better. If you really wanted to, 
of course, you could write your own versions of Mutex, etc., that did throw 
InterruptedException. 

When should you write a method that throws InterruptedException? Probably never.[8] 

[8] This is bound to be a topic of debate, and we don't claim any special knowledge. We just haven't 
seen any better suggestions. 

Interrupting Sleeping Threads 

A thread that is waiting for a synchronized section lock to be released is not at an interruptible 
point, and it will continue to sleep until that lock is released. Once it acquires the lock, it must 
proceed until it hits an interruptible point (ditto for POSIX mutexes). This can be a serious 
sticking point when you are concerned about elapsed wall-clock time. Just be sure that you don't 
hold any locks that the interrupted threads might need. 

Interruption in wait() 

While wait() is an interruption point,[9] there is an additional issue that must be addressed. Upon 
a normal return, it always re-locks the synchronized section. Upon interruption, it must also re-
lock said synchronized section! Any exception handlers will be run with the lock held as 
appropriate. This means that if you're interrupting a thread to kill it quickly, you'd best be sure that 
no one is holding that lock for a long time. 

[9] Should wait() be an interruption point? A strong case can be made for it not being one, but in 
as much as we don't have any say on the matter, we'll just accept it as is. [If a thread is blocked on 
wait(), the programmer has complete control over it and can wake it up and have it see that it's 
exit time, the way we did in the StopQueue example. It's only when a thread is blocked on 
something that we don't have control over (e.g., I/O) that we need to be able to interrupt it.] 

In Code Example 9-14 both the exception handler and the finally section will run with the lock 
held. If the synchronization had been inside the try clause, the exception handler and the 
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finally section would have run without the lock being held. The throw from wait() still 
would have had to relock, even though the lock would be released promptly. 

Example 9-14 Interrupting a wait() 

synchronized(this) { 
    try { 
        wait(); 
    } catch (interuptedException ie) { 
        cleanUpAndExit(); 
    } finally { 
        doWhatEver(); 
    } 
} 
 
doWhatEverElse(); 

The Morning After 

Well, now that we've done all that, we're ready to get back to some useful work, right? Not quite. 

Threads are rather particular about how they're treated after cancellation. They want to be 
pampered. They want to be joined or at least waited for after they clean up. 

The point here is that you don't want to be starting up new threads until the old ones are truly gone. 
What if you have global variables that you need properly initialized? What if there is shared data 
that you don't want old and new threads sharing? If nothing else, it's nice to clean up memory 
before making new demands. (We're assuming that you'll run the same code again in your 
program. If you really only ran it once, you wouldn't need to be so careful.) 

In the searcher example (Code Example 9-15) we have one global array of threads. It would not 
do to start creating in new threads while the successful searcher was still busy killing off the old 
losers. Instead, we must wait for all the threads to exit before we reinitialize and start over again. 

Example 9-15 From the main() Method for Searcher Example 

synchronized(this) {                    // Protect threads[] 
    for (int i = 0; i < nSearchers; i++) { 
        threads[i] = new Thread(new Searcher(this, i)); 
        threads[i].start(); 
    } 
} 
 
for (int i = 0; i < nSearchers; i++) { 
    synchronized(this) { 
        t = threads[i];         // Searcher may use threads[] 
    } 
 
    t.join(); 
} 

We don't actually need the threads to exit. We merely need the threads to reach a point where they 
will never change any shared data and we will never use them again. Instead of using join(), 
the same effect could be accomplished by using a SingleBarrier. 
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Another detail to note in this code is the joining code. We first lock the lock, get the next thread 
object, then unlock it again before calling join(). Why? Well try it! Just move the join() 
inside the synchronized section. Deadlock again! (The main thread is holding the lock, blocking 
on a join, while the successful searcher needs to lock the lock before it can cancel the other 
searchers.) 

This is actually a very interesting bit of code. As soon as the main thread has created the last 
searcher thread and released the lock, the array can be treated as a constant—no other changes will 
be made to it until all searcher threads exit. This means that the main thread, which knows that the 
array is a constant, could dispense with locking the array in the join code. The searcher threads, 
which don't know when the array becomes a constant, must synchronize on that state somehow. 
(What if one of the searchers found the PID before the main thread had finished creating the rest? 
It might execute the cancellation loop and miss the not-yet-created threads.) 

 

Cleanup 

When a thread is cancelled, POSIX provides a way to clean up the thread's state through a set of 
cleanup handlers that are called upon the exiting of a thread. These are functions of one argument, 
which you define and then push onto a thread's cleanup stack. Should the thread exit [either via 
cancellation or a call to pthread_exit()], the functions on the stack will be run on the 
argument supplied. Should the thread not be cancelled, you may pop the functions off when they 
are no longer required (Code Example 9-16). 

Example 9-16 How POSIX Cleanup Handlers Are Used 

pointer = malloc(100); 
pthread_cleanup_push(free, pointer); 
use(pointer); 
free(pointer); 
pthread_cleanup_pop(0); 

The general idea for cancellation is that programmers will write their programs such that sections 
of code that allocate resources, obtain locks, etc., are preceded (or followed) immediately by 
cleanup handler pushes. The cleanup handlers will be responsible for freeing resources, 
reestablishing data invariants, and freeing locks. 

Java provides a neater solution to this problem. First, because Java has a garbage collector, there is 
no need to free memory, as in C/C++. Second, in those instances where you do need to release 
specific resources (close file descriptors, remove entries from lists, etc.), you can use the existing 
Java constructs of exception handlers and finally sections to ensure that the exit code is 
executed (Code Example 9-17). 

Example 9-17 How InterruptedException Handlers Clean Up 

try { 
    open_file(); 
    try { 
        do_stuff(); 
    } catch (InterruptedException ie) { 
        clean_up_stuff(); 
    } 
} finally { 
    close_file(); 
} 
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Implementing enableInterrupts() 

Thus far we've been dealing with these issues by writing snippets of ad hoc code—sufficient to the 
immediate problem but not easily reused. In Code Example 9-18 we show a subclass of Thread 
that deals with these problems more neatly. Because the methods are synchronized, there are no 
race conditions. If a thread has not disabled interrupts, interrupt() will call the method for the 
superclass [the normal interrupt()]. That interrupt will remain pending until either the 
programmer's code clears it [via calling interrupted() or catching 
InterruptedException] or disableInterrupts() is called.[10] If 
disableInterrupts() gets called, the flag will be cleared and our interruptPending flag 
will be set. This ensures that a subsequent call to enableInterrupts() will reinterrupt the 
thread so that the interruption does not get lost. 

[10] These are static methods (as it only makes sense to call them from the current thread), but they 
must be called from an InterruptibleThread. You will get a runtime error otherwise. 

Example 9-18 Implementing enableInterrupts() 

public class InterruptibleThread extends Thread { 
    private boolean interruptsEnabled = false; 
    private boolean interruptPending = false; 
 
 
    public static void enableInterrupts() { 
        InterruptibleThread self = 
InterruptibleThread.currentThread(); 
 
        synchronized (self) { 
            self.interruptsEnabled = true; 
            if (self.interruptPending) 
                self.interrupt(); 
 
            self.interruptPending = false; 
        } 
    } 
 
 
    public static void disableInterrupts() { 
        InterruptibleThread self = 
InterruptibleThread.currentThread(); 
 
        synchronized (self) { 
            if (interrupted()) 
                self.interruptPending = true; 
            self.interruptsEnabled = false; 
        } 
    } 
 
 
    public synchronized void interrupt() { 
        if (interruptsEnabled) 
            super.interrupt(); 
        else 
            interruptPending = true; 
    } 
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} 

The most interesting piece of this code is where it deals with a race condition for interrupt(). 
Imagine that t1 has called t2.interrupt(). Soon afterward, t2 calls 
disableInterrupts() with no intervening interruptible calls. That could leave the interrupt 
flag set after disableInterrupts() returned. To prevent this, disableInterrupts() 
checks for that condition, clears the flag [interrupted() does this automatically] and sets the 
interruptPending flag so that a subsequent call to enableInterrupts() will notice this 
and reissue the interrupt. Thus, the code following disableInterrupts() will never see an 
interrupt and any interrupts issued previously to disableInterrupts() will not be lost. 

A similar design could be used to disable thread.stop(), and indeed we do so in our 
extensions package, but only as an illustration. It has been degradated — don't use it. 

 

A Cancellation Example (Improved) 

Using the InterruptibleThread from above, we can now write a cleaner version of our 
search program (Code Example 9-19). The two ugly portions of the program were 
doDatabaseThing() and the cancellation code in searcher.run(). Using the 
disable/enable code, the first function becomes simpler and the latter gets to eliminate all of its 
checking code and simply call the interrupt() method with no further concerns. 

Example 9-19 Cleaner Version of doDatabaseThing() 

public void doDatabaseThing() { 
    try { 
        InterruptibleThread.disableInterrupts(); 
        cancel.incrementDatabase(1); 
        Thread.sleep(10); 
        cancel.incrementDatabase(-1); 
        InterruptibleThread.enableInterrupts(); 
    } catch (InterruptedException ie) { 
        InterruptibleThread.impossible(ie); 
    } 
} 
 
 

Simple Polling 

In a program of any complexity, using cancellation is very difficult. A program that will be ported 
to other languages will be even harder to write correctly. A strict polling scheme would be vastly 
superior in almost every respect, as long as we don't have to worry about blocked threads. In the 
code for CancellationNot (Code Example 9-20), we see the same searcher program written 
using polling. (Note that where we test for cancel.found we could use double-checked 
locking.) 

Example 9-20 1Implementing the Searcher with Polling 

public void run() { 
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    Random r = new Random(seed); 
    int guess; 
 
    System.out.println(t.getName() + " is searching..."); 
 
    for (int i = 0; i < 1000000; i++) {// Better never hit 1000000!  
        doDatabaseThing(); 
        synchronized(cancel) { 
            if (cancel.found) 
                break; 
        } 
 
        guess = r.nextInt() % 1000; 
        cancel.incrementGuesses(); 
 
        if (guess == target) { 
            System.out.println(t.getName() + " got the answer:" + 
                cancel.answer); 
 
            synchronized(cancel) { 
                if (cancel.found) 
                    break; 
 
                cancel.answer = guess; 
                cancel.found = true; 
                break; 
            } 
        } 
    } 
 
    cancel.barrier.barrierPost(); 
    return; 
} 

This polling example sure looks a lot simpler compared to the complexity of the previous 
examples, and it is. But it is also much less generally useful because many interesting programs 
involve unbounded blocking calls. Thus any kind of server program will invariably be calling 
read() on a socket, and there is no guarantee if or when that call will return. So use polling if 
you can, but you'll probably be stuck with using interruption. 

 

APIs Used in This Chapter 

The Class java.lang.Thread 

interrupt 
   public void interrupt() 

This sets the interrupt flag and causes the target thread to throw an InterruptedException if 
it is blocked on (or as soon as it executes) an interruptible method or 
InterruptedIOException if it is blocked on I/O. 

Reference:  Chapter 9.  
 
interrupted 
   public static boolean interrupted() 
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This returns the value of the interrupt flag for the current thread and clears it. 

Reference:  Chapter 9.  
 
isInterrupted 
   public boolean isInterrupted() 

This returns the value of the interrupt flag for the thread. 

Reference:  Chapter 9.  
Comment:  You will probably never use this.  

The Class Extensions.InterruptibleThread 

This is one of the classes that we defined for this book to provide a consistent interface for dealing 
with certain problems. Some of those problems are artificial, a product of trying to write uniform 
example code in both POSIX and Java. 

exit 
   public void exit() 

This causes the current thread to exit. This is just syntactic sugar for: 
Thread.currentThread().stop(). 

Reference:  Chapter 4.  
Comments: This is not the right way to do things. Don't exit from threads; return from the 

run() method, instead.  
 
interrupt 
   public void interrupt() 

This causes the target thread to throw an InterruptedException as soon as it executes an 
interruptible method when interrupts are enabled. If disabled at the time, the actual interrupt will 
be issued as soon as the interrupts are reenabled. 

Reference:  Chapter 9.  
 
disableInterrupts 
   public void disableInterrupts() 

This causes the current thread to set a flag indicating that it is not interruptible. The method 
interrupt() will look at this. 

Reference:  Chapter 9.  
 
enableInterrupts 
   public void enableInterrupts() 

This causes the current thread to set a flag indicating that it is interruptible. The method 
interrupt() will look at this. If the flag indicates a pending interrupt, that interrupt will be 
reissued at this time. 

Reference:  Chapter 9.  
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Summary 

Cancellation is the method by which one thread can kill another. Because of issues surrounding 
shared resources, held locks, and dynamically allocated storage, cancellation is extremely difficult 
to use correctly.[11] Cancellation can be avoided completely by implementing a polling scheme in 
any of the libraries, as long as we don't have to worry about blocked threads. In Java, 
interrupt() with exception handlers makes it merely difficult to use cancellation. 

[11] Just spelling cancellation is an issue! Webster's allows it to be spelled with either one "l" or two. 

Avoid cancellation if at all possible. 
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Chapter 10. Details 
• Thread Groups 
• Thread Security 
• Daemon Threads 
• Daemon Thread Groups 
• Calling Native Code 
• A Few Assorted Methods 
• Deprecated Methods 
• The Effect of Using a JIT 
• APIs Used in this Chapter 
• The Class java.lang.Thread 
• The Class java.lang.ThreadGroup 

In which a number of minor details are covered. 

 

Thread Groups 

A thread group is a group of threads, or more precisely, a group of threads (possibly empty) and 
other thread groups (also possibly empty). The raison d'être for thread groups is security. Java 
needs some method of allowing you to download untrusted foreign code and run it without it 
being able to affect the rest of your program. 

The idea was that you run the foreign code in its own thread group and tell that thread group that it 
is not allowed to start, stop, suspend, etc., any threads outside that group. This way, your threads 
are safe from the foreign code, but the foreign code is still able to create new threads of its own. 
Clever, eh? 

Unfortunately, they changed the security model for Java, and thread groups no longer provide this 
kind of protection; rather, security is handled in a different fashion. So of what use are thread 
groups now? You could use thread groups as a general container to keep track of your own threads, 
but you'll probably find it easier simply to keep a list or an array of thread objects and manipulate 
your threads with those. Because of the way MT programs are written, about the only thing you'll 
ever do with a list of threads is to wait for them to exit, or to interrupt them. Thread groups don't 
help you with this. 

When you create a thread, it is placed in a thread group. You can specify a particular thread group 
if you wish. That thread group can now restrict the new thread to creating threads only in that 
group or subgroups. You can place a small number of restrictions on threads in a particular thread 
group (set a maximum priority level), and you can call stop(), suspend(), resume(), or 
interrupt() on all threads in a group, but none of these are particularly useful. You can also 
do the usual set operations to find the parent of a group, the children, etc. 

You will probably never use thread groups. 

 

Thread Security 
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Thread security in Java is really rather simple—at least it was until Java 2 came along. First we 
will explain how security worked prior to Java 2 and then go into some of the details of the new 
security features of Java 2. 

Prior to Java 2 the primary focus of security was the SecurityManager class. The 
SecurityManager class is used to enforce a security policy for Java programs and in most 
cases is never modified by programmers. The SecurityManager class is usually defined and 
activated when a Java VM starts. When a Java method tries to access a vulnerable resource in the 
Java VM, one of the check methods in the SecurityManager class is called. If the check 
method permits the requested action, the check method will return silently. However, if the check 
method does not permit the requested action, the method throws a security exception. Using the 
Thread class as an example, when the checkAccess() method is called from the Thread class, 
it calls into the SecurityManager class and executes the checkAccess() method. If the 
calling thread is allowed access, the checkAccess() method simply returns. If the calling 
thread is not permitted, the checkAccess() method throws a SecurityException. Code 
Example 10-1 shows how the code would look in the calling thread. 

Example 10-1 Checking for Security Violations 

Thread A; 
 
try { 
    A.checkAccess(); 
} catch (SecurityException se) { 
    System.out.println("Thread access error: " +  
        se.getMessage()); 
} 

This may seem rather trivial; well, it is. The SecurityManager class defines the security to be 
implemented for the entire Java VM. In most cases the SecurityManager class has been 
defined for you. For example, when you are using the Netscape browser to execute Java code, the 
developers at Netscape have defined the SecurityManager for you. In this case, you can't 
modify or remove the SecurityManager. In most cases the SecurityManager will be 
defined and installed for you; this is the case when the Java VM is started for you. For example, 
the Java VM is started for you when you run code via a browser or appletviewer. If you start the 
Java VM yourself, for example from a command line, you are responsible for defining and 
installing a SecurityManager. 

By default, a SecurityManager is not installed in the Java VM. Depending on how you 
execute Java code, you may have to install your own SecurityManager. If some other program 
controls the Java VM, in most cases that program will install a SecurityManager. This is the 
case with browsers; since the browser controls the Java VM, it will probably install a 
SecurityManager. If the Java VM is not controlled by another program, in most cases you will 
have to install a SecurityManager. This is the case when you write your own Java applications. 
If you don't define a SecurityManager in your application, your program will have full reign 
of the Java VM. 

The main problem with the security mechanism in previous versions of Java is that you do not 
have fine-grained control over the security of your program. The other side of this is that users 
could not define what level of security they were willing to accept. For example, if a Java 
application was executed on your machine, it had full access to the machine just as a traditional C 
application would. The security mechanisms in Java 2 have solved these problems. 

Now that we have a bit of history, let's talk about how security works in Java 2. Java 2 exploits the 
concept of protection domains. Java has always had the concept of protection domains. That is, 
different code in the Java VM can have different levels of security. The simple case of this is the 
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fact that Java applications have access to the entire Java VM, whereas Java applets do not. The 
major difference with protection domains in Java 2 is the flexibility and control you have over 
how security is implemented. Although complete coverage of Java security is beyond the scope of 
this book, we will give you a general idea how security works in Java as it relates to threads. 

First we should mention that the SecurityManager class still exists in Java 2 and is also 
backward compatible with previous versions of the JDK. The SecurityManager in Java 2 is 
just a wrapper for compatibility where all security actions are forwarded on to the new protection 
domain infrastructure. This means that you could continue to use the SecurityManager class in 
a way that you may be familiar with, but its internal workings are far different. In fact, the 
interface for security is the same for both the Thread and ThreadGroup classes, but the 
implementation of security has changed. 

The new security mechanism is based on the concept of having a set of permissions. A 
Permission object in Java is really just an object that represents access to a protected resource. 
All permissions in Java have a name as well as semantics that define access to a resource. You can 
define your own permissions or you can use the predefined permissions in Java. For example, Java 
has a SocketPermission object that can control access to networking resources. The 
advantage of the Java 2 security mechanism is that a system administrator can define a set of 
restrictions to place on Java programs. The administrator has fine-grained control of all actions 
that can possibly be performed in the Java VM. Our focus is not on what all the permissions are or 
how they are defined, but rather, that a set of permissions have been defined and that we must 
adhere to these restrictions. For more information about Java security and permissions, see the 
Java documentation or one of the books recommended in Appendix B. 

So how do permissions relate to threads? The simple answer is, "in three ways." Java 2 has 
defined three permissions that all threads use. They are modifyThread, stopThread, and 
modifyThreadGroup, all of which are defined in the RuntimePermission class. Each of 
these permissions is used to protect Thread resources when certain methods are called. 

The following lists the RuntimePermission target names that are used in conjunction with 
Java threads: 

• modifyThread: This permission is accessed when a calling thread wants to access or 
modify an unrelated thread in the Java VM. 

• stopThread: This permission is accessed when a calling thread wants to stop another 
thread running in the Java VM. 

• modifyThreadGroup: This permission is accessed when a calling thread wants to 
access or modify a ThreadGroup. 

So how does all this work? When a thread resource needs protection, it can make a call into the 
security mechanism to verify if the requested action should take place. If the security mechanism 
does not object to the action, the call simply returns. If it does not permit the action, a security 
exception is thrown. Let's take a look at a simple example (Code Example 10-2). The example 
simply creates a new SecurityManager and then calls a few Thread and ThreadGroup 
methods. If you execute this program from a command line, you should get a security exception. 
We say "should" because if you have defined your security permissions to include the 
"modifyThreadGroup" permission, the program will execute without a problem. Also, if you 
remove the line that sets the SecurityManager, the program will also complete without any 
errors. 

Example 10-2 A Simple Security Exception 

public class Simple { 
    static public void main(String s[]) { 
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        System.setSecurityManager(new SecurityManager()); 
 
        ThreadGroup group = Thread.currentThread().getThreadGroup(); 
 
        // This line could generate a security exception 
        group.getParent(); 
    } 
} 

The reason that this example throws a security exception is due to the 
ThreadGroup.getParent() method. This method calls the ThreadGroup.checkAccess() 
method, which in turn calls into the SecurityManager, which in turn calls into the new Java 2 
security mechanism with the "modifyThreadGroup" permission request. If you have not given 
the security mechanism permission for "modifyThreadGroup," it throws an exception. You 
might wonder why an exception is thrown just for calling the getParent() method. The reason 
is that by calling the getParent() method in the example, you are trying to gain a reference a 
thread group that your program does not control. 

In most cases, thread security is controlled by the checkAccess() methods in the Thread and 
ThreadGroup classes. The checkAccess() method in the Thread class actually calls into the 
security mechanism with the "modifyThread" permission, and the checkAccess() method in 
the ThreadGroup class calls in to the security mechanism with the "modifyThreadGroup" 
permission. Both of the checkAccess() methods are most often called by other methods in the 
Thread and ThreadGroup classes. 

So how does all of this affect your programs? Well, if you are simply creating and operating with 
threads and thread groups in your program, you should never have to deal with security in your 
program. If, however, you are trying to access or modify threads or thread groups that are not 
under your control, you may run into the security system. If you are not sure if a call you are 
making is going to run into the security system, the safe thing to do is enclose the section of code 
you are unsure of with a try/catch block. This will allow you to catch the security exception and 
then perform some sort of correction to the problem. 

To help you understand what methods perform security checks, Table 10-1 lists the Thread class 
methods that may cause a security check to be performed. 

Table 10-1. Thread Class Methods That May Cause a Security Check 
Thread class method  RuntimePermission target  
getContextClassLoader()  "getClassLoader"  
setContextClassLoader()  "setContextClassLoader"  
checkAccess()  "modifyThread"  
interrupt()  "modifyThread"  
suspend()  "modifyThread"  
resume()  "modifyThread"  
setPriority()  "modifyThread"  
setName()  "modifyThread"  
setDaemon()  "modifyThread"  
enumerate()  "modifyThreadGroup"  
stop()  "modifyThread", "stopThread"  
Thread()  "modifyThreadGroup"  

Table 10-2 lists the ThreadGroup class methods that may cause a security check. 
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In addition to the security permissions provided in Java 2, you could define your own permissions 
and then add the checkPermission() calls in your code. This would force the user or 
administrator to define your permission in the security file in order for your program to execute. 
The system security policy file (java.policy) is located in the (jre)/lib/security 
directory, where (jre) is the path to the location of Java. Take a look at this file and try adding 
permissions for "modifyThreadGroup" and then try running the simple program above. You 
should find that it now runs without any security exceptions. 

Table 10-2. ThreadGroup Class Methods That May Cause a Security Check 
ThreadGroup class 
method  

RuntimePermission type  

ThreadGroup()  "modifyThreadGroup"  
checkAccess()  "modifyThreadGroup"  
enumerate()  "modifyThreadGroup"  
getParent()  "modifyThreadGroup"  
setDaemon()  "modifyThreadGroup"  
setMaxPriority()  "modifyThreadGroup"  
suspend()  "modifyThreadGroup"  
resume()  "modifyThreadGroup"  
destroy()  "modifyThreadGroup"  
interrupt()  "modifyThreadGroup", "modifyThread"  
stop()  "modifyThreadGroup", "modifyThread" 

"stopThread"  

Defining your own permission and using it in a program is beyond the scope of this book, but we 
wanted to point out that you could do this if you really wanted to. For more information on how to 
do this, as well as other security-related topics, read the Java 2 security documentation. 

Real-World Examples 

1. The garbage collector thread and the finalize() method 

A common problem we have seen is when the garbage collector thread becomes deadlocked trying 
to free up memory. Consider this situation: You have a legacy C-code application that is not 
thread-safe and you want to call into the C functions from a Java program. This scenario is not all 
that uncommon. An easy solution would have you synchronize methods that would access the C 
functions. Defining the methods as synchronized would allow only one Java thread to access the C 
functions at any given time. This seems like a logical assumption; however, since you are calling 
into C code, you may also want to define a finalize() method to do some cleanup in the C 
functions [i.e., calling free() to clean up memory used by the C code]. 

The problem that can result from a situation like this is a system deadlock. The reason why this 
can happen is rather simple. Since access to all the non-thread-safe C functions is controlled via 
synchronized Java methods, only one Java thread can access the C code at any given time. If an 
object that was using these Java methods goes out of scope, it is eligible for garbage collection. 
This makes sense, of course; however, when the finalize() method is called in the Java class, 
it will try to call into the C code to perform some cleanup tasks. If a Java thread is already in one 
of the C functions at the time of garbage collection, the entire system will hang. Why? Well when 
the garbage collection thread kicks in (begins garbage collection), it suspends all the other threads 
running in the Java VM. Now when the garbage collection thread calls into the finalize() 
method, it will block waiting for access to the C code. Since the garbage collection thread has 
suspended all other threads, the thread that is in the C code at the time of garbage collection will 
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never return to free the lock; therefore, the garbage collection thread will block forever and hang 
the Java VM. 

Keep this situation in mind when overriding the finalize() method. When finalize() is 
called by the garbage collection thread, all other threads running in the VM become suspended. 

2. Performance: Access to synchronized objects  

We have seen many situations where the performance of Java code is diminished when accessing 
synchronized methods or objects. This should not be a surprise, as calling synchronized methods 
involved locking a monitor before accessing the method. We can't stress this point enough. It 
seems simple enough, but programmers often fall into it. In one customer situation, a Hashtable 
object was being used to cache results obtained from a database. Using a Hashtable for this 
purpose is not wrong, in fact it is a common technique. However, if the program is to scale up to 
several concurrent database accesses at any given time, the Hashtable becomes a bottleneck to 
the program's performance. Since access to a Hashtable object is synchronized, only one thread 
is allowed to modify the object at any given time. 

A simple solution to a situation like this is to use multiple Hashtable objects and then distribute 
access to the objects so that you can have some level of concurrency. In the case we have outlined, 
when multiple Hashtable objects were used to cache the database data, a hundredfold increase 
in performance was gained. 

3. More problems with the garbage collection thread 

Usually, the garbage collector works exactly the way intended and you, the programmer can 
ignore it completely. In certain cases under certain system requirements, you may wish to change 
some details of its behavior. Don't even think about this unless you see specific problems. 

We have run into a number of issues with the garbage collection thread in the Java VM. Most of 
the problems revolve around the fact that when the garbage collection thread runs, it suspends all 
of the other threads in the Java VM. The fact that all the threads in the VM are suspended can be a 
cause of concern when programming multithreaded programs in Java, but the simple act of 
garbage collection can also cause some annoying problems. For example, say you have a Java 
program that needs a lot of memory for a local cache that you wrote. If the memory heap 
requirements are large, say 500 MB or more, the simple act of garbage collection can take quite a 
bit of time to complete. In this example, since the heap requirements are large and system garbage 
collection does not usually kick in until 75% of the heap is used, it can cause the entire Java VM 
to halt for quite a bit of time while it cleans up the heap. 

A simple solution to a problem like this is to perform garbage collection more often or to define 
your own garbage collection class. For example, you could have a thread that sleeps for a given 
amount of time and then wakes up and calls for garbage collection. You may think that this would 
cause even further program delays, but the simple fact that garbage collection is performed more 
often means that the amount of heap it needs to clean up is smaller. This means that the delay 
caused during garbage collection is smaller. In the example where the heap is huge, it is better to 
have very small delays introduced during program execution than to have a single large halt while 
the entire heap is collected. 

4. Make synchronized code sections as small as possible 

A synchronized method invocation is one of the most time- consuming operations in Java. 
Therefore, you want to avoid its use as much as possible. We realize that when writing threaded 
programs in Java, you will need to use synchronized code. The synchronized keyword is most 
commonly used in method signatures. This is a valid use of the keyword, but in many cases the 
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entire method does not have to be synchronized. Why lock an entire method when only a few lines 
of code in the method have to be locked? A better idea is to synchronize the smallest section of 
code possible in a method that needs to be protected. 

You can do this by using the synchronized keyword in the method code (see Code Example 10-3). 
Notice that the synchronized keyword is used to protect only the section of code in the method 
that needs to be protected. This will allow for more concurrency and will also help with the 
performance of programs. 

Example 10-3 Synchronizing Part of a Method> 

public void aMethod() { 
    if (some_condition) 
        synchronize (this) { 
            // Do synchronized work here 
        } 
    else { 
        // Do unsynchronized work here 
    } 
} 
                                 } 

5. Threaded class downloads 

A problem we often see with large Java programs is the time it takes to download all of the class 
files needed for execution. This problem can be solved by creating a custom class loader, which 
downloads only the initial class files needed for the program to begin its execution. Then while the 
program begins its execution, thread(s) can be created to continue the download of other class files 
in the background. Cyrus InterSoft offers a commercial solution to problems like this. Cyrus offers 
a number of Java resources that aid in the download and execution of Java programs. For example, 
they are able to begin the execution of a Java program even before all of it is downloaded, as well 
as run multiple Java programs inside the same Java VM. Improvements like these can have a 
dramatic effect on the performance of Java programs. 

General Tips and Hints 

1. It is very helpful in a thread dump analysis to give the thread a meaningful name. If you 
spawn many threads without meaningful names, it becomes next to impossible to figure 
out what is really going on. 

2. I'd say the biggest issue I've run into at customer sites is the mismatch between the ease of 
Java thread syntax and semantics. Everybody talks about how easy threads are to do in 
Java, and what these people are always referring to is the ease with which someone can 
write some threaded code, the syntax. What often is overlooked until too late is how 
complex the thread semantics can be and how difficult these portions of the code will be 
to debug. Thus, one often ends up with a situation where some fairly novice developers 
have created code that is too complex for them to debug. 

3. Many customers running on Solaris (JDK 1.1) do not realize that by default they are using 
green threads. They then wonder why their quad processor E4000 runs no better (or worse) 
than a single-processor NT box, or why the load is not distributed across processors. 

 

Daemon Threads 



 149

A daemon[1] thread is normal in every respect save one. When it is time for the JVM to decide if 
it's time to exit (based on whether there are any active threads), daemons are ignored. Thus if you 
have ten daemon threads running and your last normal thread exits, the JVM will exit the entire 
process. 

[1] A few years ago, one very conservative (and not very savvy) religious group called for a 
nationwide prayer meeting to cast out the "demons" that were in UNIX. 

Daemons are used for background tasks that make sense only when there are other threads that are 
doing the real work. The garbage collector is an excellent example of a proper use of daemons. 
You can set the daemon flag on or off as your program requires with thread.setDaemon(), 
but you can only do this before you call start(). You cannot change the status of a running 
thread. You can also check the status of a thread with isDaemon(). 

You will probably never use daemons. 

 

Daemon Thread Groups 

A daemon thread group is normal in every respect save one. When it becomes empty, it may 
automatically be destroyed and removed from its parent. There is no relationship between daemon 
threads and daemon thread groups. You can change the daemon status of a thread group at any 
time. 

 

Calling Native Code 

From Java you can use the JNI (Java Native Interface) library to call C, C++, etc., code from your 
Java program, or to call Java code from your C, C++, etc., code. If your Java program is 
multithreaded, calling native code from multiple threads does not change the issues of thread 
safety at all. If the native code uses data that is shared by multiple threads, that data must be 
properly protected. By far the simplest and most reliable method of doing this is to have your Java 
code take care of the locking. 

If a Java method calls a native function, which in turn uses some shared data, synchronizing the 
method properly will ensure that said data is protected properly. Don't worry, be happy! 

If for some reason this is not an option (perhaps the native code accesses different bits of data 
under different circumstances which Java cannot know about, and you want those different bits of 
data to be accessible concurrently), you have a challenge in front of you. The JNI spec specifies 
how native threads and locks will interact with Java code. If you're using a native threads library 
underneath Java, you'll probably be OK using the native locks. If you're using green threads, on 
the other hand, you're in trouble. Green threads will not interact with native locks in any viable 
fashion. 

If you are running Java with the native threads library, most things work as you would expect, 
even though they are not necessarily clearly specified. A native method can be declared 
synchronized just like a non-native method. In addition, within the native method the C code can 
invoke explicit MonitorEnter() and MonitorExit() operations (Code Example 10-4). [To 
call wait(), notify(), etc., it is necessary to make explicit JNI calls back into Java. They are 
not supported directly as with monitors.] Moreover, MonitorEnter() is recursive (as you 
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should expect). However, given that native code (outside the system classes) is usually used for 
speed or to access system-specific APIs, there is usually little need to do this. 

Example 10-4 Locking Monitors from C Code 

(*env)->MonitorEnter(env, obj); 
// Critical Section 
(*env)->MonitorExit(env, obj); 

Native methods can also use native synchronization objects to coordinate their actions with other 
native threads. All of this will operate correctly with Java. 

Threads originally created outside Java can attach to the JVM using JNI 
[AttachCurrentThread()]. Once a thread is attached to the JVM, it will receive a Java 
wrapper and appear to the JVM as a normal Java thread, including being entered into a thread 
group. It will be able to access Java objects and invoke methods on them, including the usual 
synchronization methods. Any thread, whether originally Java or native, can create additional 
native threads in the native method. However, any such thread must attach itself to the JVM 
before it can interact with any Java objects. A native thread that calls in to the JVM can also create 
and start Java threads. 

In Figure 10-1 you can see the basic Java threading design when using the native thread libraries. 
The Java thread objects are built by and controlled by the JVM, but the threads themselves are 
actually native threads that are created and controlled by the native library. The actual context 
switching, locking, etc., are done by the native threads library, which is why things work together. 

Figure 10-1. Java Thread Objects Use Native Threads 

 

Within native code all exceptions are synchronous, including those caused by stop(). 
Exceptions are detected either by explicit polling using ExceptionOccurred() or in some 
cases by checking return values. Once an exception is raised it must be dealt with (by clearing or 
by returning and thus propagating to Java code). It is not safe to call further JNI methods (other 
than those for dealing with exceptions) until the exception has been dealt with. 

You cannot share local Java objects from one native thread to another, nor should you hold on to 
references across multiple JNI calls to C code, even from the same thread. Java will pass C an 
interface pointer (JNIEnv *) which is valid only for that thread on that call. If you wish to share 
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or retain references across calls or threads, you will need to convert those local references into 
global ones. (By making them global, you are adding a root reference to the objects in question so 
they won't get garbage collected or moved.) 

In short, if your JVM uses the system's native threads library, every combination of threads and 
synchronization should work correctly. If your JVM uses green threads, you should expect things 
not to work together. 

This is very tricky stuff. Be careful! 

 

A Few Assorted Methods 

There are a small number of other methods that provide minor functionality that you probably 
won't use. You can ask the JVM how many threads there are currently running in a thread's thread 
group [Thread.activeCount()] and which of them is "alive" [Thread.isAlive()]. You 
can get a list of them, too [Thread.enumerate()].[2] Unfortunately, by the time you get around 
to using any of this information, it may have changed. If you need to keep track of the threads in 
your application, you will need to design an ad hoc mechanism to do so. Just like thread groups, 
this is not a big deal and is easily accomplished. 

[2] All three of these methods are officially deprecated in Java 1.1 and replaced with the thread 
group methods threadsCount(), groupCount(), and allThreads(). 

Do you need to know how many threads are running? Have them increment a counter upon 
starting. Need to know if a thread has completed its work? Use a semaphore or a wait/notify. You 
can also change the print string for a thread [setName()]. 

Stack Size 

The default stack size for Java is implementation dependent. On Solaris the default stack is 500k, 
which is big enough for 10,000 recursive calls to a method of no arguments and no local variables. 
This is probably big enough for any program. You can change the stack size by passing a 
command line argument. This invocation will give you a 1-MB stack for all threads: 

%java -oss 1000000 Test 

If a thread overflows its stack, it will hit a guard page that is mapped in nonreadable. This way 
you will get an immediate SEGV so you can go back and fix your program. 

You can find out how deep the current stack is [Thread.countStackFrames()] and even 
print it out [Thread.dumpStack()]. 

 

Deprecated Methods 

When a method becomes deprecated (wonderful term, eh?), for how much longer will it be 
supported? If you have a program written for JDK 1.1 that uses stop(), do you need to worry 
about running it on JDK 1.2? 
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There's no official answer here. Certainly in other Sun products the guarantee was that a 
discontinued interface would continue to be supported for five years past the announcement date. 
So, if you're using any of the deprecated methods, you're probably OK for some time to come, but 
change your code next time you do a major release. 

 

The Effect of Using a JIT 

To maintain complete hardware independence, Java is always compiled to a byte code which is 
then interpreted. (Yes, we know that there are some companies that write full, native compilers, 
but that's not "proper" according to the rules for Java. We'll subsume those in the JIT discussion.) 
Although the performance of the byte interpreters is quite impressive and is sufficient for many 
I/O-bound programs, it still doesn't hold a candle to native code for computing. 

A Just In Time Compiler loads the byte code and then compiles that down to native code (possibly 
at load time, possibly at runtime). The CPU-intensive portions of your program will now run 
much faster (a factor of 5 or so). The I/O portions won't improve at all (they're either running 
kernel code or they're blocked, waiting for I/O!). How does this affect your MT programming? 
Probably not at all. The threads' functions already run almost entirely in the JVM; hence, a JIT 
will not speed them up at all. 

Adaptive Compilers 

In the HotSpot compiler only selected portions of code are compiled to native format. As the 
program runs, HotSpot continues to monitor its progress, compiling other methods as it sees fit. 
HotSpot has one enormous advantage over JIT compilers: It can compile many things in-line 
which JIT compilers cannot. To maintain full Java semantics, all programs must allow new 
subclasses to be loaded at any point during computation. This dynamic loading may invalidate 
some of the in-line calls that you would like the compiler to make for you. JIT compilers handle 
this by not compiling in-line. HotSpot gets around this problem by recompiling those sections of 
code affected by the new classes. 

HotSpot (or rather the ExactVM, which it is based on) also has a number of optimizations to 
improve the speed and reduce the memory required for locks. Basically, instead of allocating locks 
in permanent hashtables or the like, locks are allocated on the stack when first used, and popped 
from the stack when the owner releases them. Only when another thread blocks on it will the lock 
be copied off the stack and placed into permanent memory. 

The threads functions are mostly in the JVM itself and will not benefit much from the JIT. You 
should expect the percentage of time that thread overhead takes to increase by a factor of 10 or so 
(because everything else is getting faster). As long as that can be held to a small percentage of 
total processing time, you should have no problems. 

 

APIs Used in This Chapter 

The Class java.lang.Thread 

Thread 
   public Thread(ThreadGroup group, String name) 
   public Thread(ThreadGroup group, Runnable run) 
   public Thread(ThreadGroup group, Runnable run, 
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               String name) 
               throws SecurityException, 
               IllegalThreadStateException 

These create a new thread object in the thread group stated. 

References:  Chapters 4 and 10.  
 
getThreadGroup 
   public final ThreadGroup getThreadGroup() 

This returns the thread group for this thread object. 

Reference:  Chapter 10.  
 
checkAccess 
   public void checkAccess() throws SecurityException 

If there is a security manager, its checkAccess() method is called with the Thread as an 
argument. 

Reference:  Chapter 10.  
 
isDaemon setDaemon 
   public boolean isDaemon() 
   public void setDaemon(boolean on) 
                throws SecurityException, 
                IllegalThreadStateException 

This gets/sets this thread to be a daemon. You cannot change the status of a running thread. 

Reference:  Chapter 10.  
 
countStackFrames 
   public int countStackFrames() 

This returns the depth of the stack. 

Reference:  Chapter 10.  
Comments:  Deprecated in Java 2. Not well defined in any case.  
 
dumpStack 
   public static void dumpStack() 

This prints out the stack. 

Reference:  Chapter 10.  
 
activeCount 
   public static int activeCount() 

This returns the number of active threads in the current thread's thread group. 

Reference:  Chapter 10.  
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Comments:  Deprecated in Java 1.1. See ThreadGroup.allThreadsCount()  
 
enumerate 
   public static int enumerate(Thread tarray[]) 

This fills tarray with as many currently active threads as fit, returning that number. 

Reference:  Chapter 10.  
Comments:  Deprecated in Java 1.1. See ThreadGroup.allThreads().  

The Class java.lang.ThreadGroup 

ThreadGroup 
   public ThreadGroup(String name) throws SecurityException 
 
   public ThreadGroup(ThreadGroup parent, String name) 
         throwsSecurityException, Null Pointer Exception 

These create a new thread group. 

Reference:  Chapter 10.  
 
toString 
   public String toString() 

This returns a printable string. 

Reference:  Chapter 10.  
 
checkAccess 
   public final void checkAccess() throws SecurityException 

If there is a security manager, its checkAccess() method is called with the ThreadGroup as 
an argument. 

Reference:  Chapter 10.  
 
getName 
   public final String getName() 

This returns the name that you gave to the group. 

Reference:  Chapter 10.  
 
getParent 
   public final ThreadGroup getParent() 

This returns the parent of this group. 

Reference:  Chapter 10.  
 
parentOf 
   public final boolean parentOf(ThreadGroup g) 
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This returns true if this is the parent. 

Reference:  Chapter 10.  
 
stop 
   public final void stop() throws SecurityException 

This calls stop() on every thread and thread group in this group. 

Reference:  Chapter 10.  
Comments:  Deprecated in Java 2.  
 
suspend 
   public final void suspend()  
               throws SecurityException 

This calls suspend() on every thread and thread group in this group. 

Reference:  Chapter 10.  
Comments:  Deprecated in Java 2.  
 
resume 
   public final void resume() 
               throws SecurityException 

This calls resume() on every thread and thread group in this group. 

Reference:  Chapter 10.  
Comments:  Deprecated in Java 2.  
 
interrupt 
   public final void interrupt() 
               throws SecurityException 

This calls interrupt() on every thread and thread group in this group. 

Reference:  Chapter 10.  
 
destroy 
   public final void destroy() 
                throws SecurityException, 
                IllegalThreadStateException 

This removes the group if it is empty. If the thread group has subgroups, destroy() is called on 
each of those first. Finally, the newly destroyed thread group is removed from its parent. 

Reference:  Chapter 10.  
 
getMaxPriority setMaxPriority 
   public final void getMaxPriority() 
   public final void setMaxPriority(int newMaxPrio)throws 
         SecurityException, IllegalArgumentException 

This gets/sets the maximum priority allowed for any thread in this group. 
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Reference:  Chapter 10.  
 
isDaemon setDaemon 
   public final void isDaemon() 
   public final void setDaemon(boolean daemon) throws 
         SecurityException 

This gets/sets this group to be a daemon. 

Reference:  Chapter 10.  
 
threadsCount 
   public int threadsCount() 

This counts the threads in this group. 

Reference:  Chapter 10.  
 
allThreadsCount 
   public int allThreadsCount() 

This counts the threads in this group and subgroups. 

Reference:  Chapter 10.  
 
groupsCount 
   public int groupsCount() 

This counts the groups in this group. 

Reference:  Chapter 10.  
 
allGroupsCount 
   public int allGroupsCount() 

This counts the groups in this group and subgroups. 

Reference:  Chapter 10.  
 
threads 
   public Thread[] threads() 

This returns an array of all the threads in this group. 

Reference:  Chapter 10.  
 
allThreads 
   public Thread[] allThreads() 

This returns an array of all the threads in this group and subgroups. 

Reference:  Chapter 10.  
 
groups 
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   public ThreadGroup[] groups() 

This returns an array of all the groups in this group. 

Reference:  Chapter 10.  
 
allGroups 
   public ThreadGroup[] allGroups() 

This returns an array of all the groups in this group and subgroups. 

Reference:  Chapter 10.  
 
activeCount 
   public int activeCount() 

This returns the number of groups in this group. 

Reference:  Chapter 10.  
Comments:  Deprecated in Java 1.1. Use allThreadsCount().  
 
activeGroupCount 
   public int activeGroupCount() 

This returns the number of groups in this group. 

Reference:  Chapter 10.  
Comments:  Deprecated in Java 1.1. Use allGroupsCount()  
 
enumerate 
   public int enumerate(ThreadGroup list[]) 
   public final void enumerate(ThreadGroup list[], boolean 
         recurse) 

This is deprecated. Use allThreads(). 

Reference:  Chapter 10.  
Comments: Deprecated in Java 1.1. Use allThreads Count() or threads(), 

allGroups(), or groups().  
 
list 
   public final void list() 

This is a debugging utility that prints out a detailed description of this thread group. 

Reference:  Chapter 10.  
 
uncaughtException 
   public final void uncaughtException(Thread t, Throwable e) 

This is called whenever a thread in this group dies via an uncaught exception. 

Reference:  Chapter 10.  
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Summary 

We described some of the details of areas of minor interest. You'll probably never use anything in 
this section. 
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Chapter 11. Libraries 
• The Native Threads Libraries 
• Multithreaded Kernels 
• Are Libraries Safe? 
• Java's Multithreaded Garbage Collector 

In which we explore a variety of operating systems issues that bear heavily upon the usability of 
threads in actual programs. We examine the status of library functions and the programming 
issues facing them. We look at some design alternatives for library functions. 

Multithreading is a fine and wonderful programming paradigm as we have described it thus far. 
However, it's not worth too much if it doesn't have the operating system support to make it viable. 
Most of the major operating systems are in a state of significant flux, so it would be difficult for us 
to say much about all of them. Instead, we will stick with the issues that need to be considered and 
describe where the major systems are with respect to them. 

 

The Native Threads Libraries 

The native threads library is an integral, bundled part of the operating system for most (Solaris, 
IRIX, AIX, Digital UNIX, SCO, HP-UX, Win95, NT, OS/2) but not all OSs (Linux). When it is 
bundled, you can write your program and not worry about whether the dynamic library will be 
there when you need it. As long as you write your C programs legally, you will be able to move 
them across different machines and across different versions of the operating system without any 
problems at all. 

JVMs that use green threads are independent of the native threads libraries, so there's no issue here 
for them. JVMs that do use the native threads library will obviously need that native library in 
place. 

 

Multithreaded Kernels 

Many of the kernels are implemented using threads (Solaris, NT, OS/2, AIX, IRIX, Digital UNIX, 
HP-UX). The kernels generally use the same C API that you have access to (Solaris kernel threads 
are very similar, Mach kernel threads are much lower level). There is no inherent connection 
between the kernel being multithreaded and the existence of a user-level MT library. Kernel 
programmers could have written the user-level library without the kernel being threaded, and they 
could have threaded the kernel without supplying a user-level library. They even could have built 
LWPs, made them realtime, SMP, and preemptable without the use of threads. Theoretically. 

In practice, the same things that make MT so attractive to you also make it attractive to the kernel 
hackers. Because the kernel implements all internal schedulable entities as threads, it is much 
easier to implement SMP support and realtime scheduling, and make the kernel preemptable. So 
LWPs are built on top of kernel threads. Interrupts are built with kernel threads. Creation, 
scheduling, synchronization, etc., of kernel threads work much the same way as for user-level 
threads. 
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The OS can be viewed as one gigantic program with many library calls into it [read(), write(), 
time(), etc.]. Kernels are unusual in that they have always been designed for a type of 
concurrency. DOS is simple and allows no concurrent calls. If your program blocks while reading 
from disk, everything waits. Multitasking systems, on the other hand, have always allowed 
blocking system calls to execute concurrently. The calls would get to a certain point [say, when 
read() actually issues the disk request], save their own state, and then go to sleep on their own. 
This technique was nonpreemptive, and it did not allow for parallelism. Code paths between 
context switching points could be very long, so few systems claimed any time of realtime behavior. 

In the first case in Figure 11-1 (which is like SunOS 4.1.3 and most early operating systems), only 
one process can be executing a system call at any one time. Many processes may be blocked in the 
middle of a system call, but only one may be running. In the second case, locks are put around 
each major section of code in the kernel, so several processes can be executing system calls, as 
long as the calls are to different portions of the kernel. In the third case (like most current systems), 
the granularity of the locks has been reduced to the point that many threads can be executing the 
same system calls, as long as they don't use exactly the same structures. 

Figure 11-1. Concurrency within the Kernel 

 

Now, if you take these diagrams and substitute processor for process, you will get a slightly 
different picture, but the results will be largely the same. If you can execute several things 
concurrently, with preemptive context switching, you can execute them in parallel. A slightly 
different but perfectly valid way of looking at this is to consider it in terms of critical sections. In 
the "no concurrency" case, the critical section is very large—it's the whole kernel. In the "more 
concurrency" case, there are lots of little critical sections. 

Symmetric Multiprocessing 

SMP merely means that all processors are created equal and endowed by their designers with 
certain inalienable functionalities. Among these functionalities are shared memory, the ability to 
run kernel code, and the processing of interrupts. The ability of more than one CPU to run kernel 
code simultaneously is merely an issue of concurrency—an important issue, of course, but not a 
defining one. 
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All of the OSs discussed here were designed to run on uniprocessor systems and tightly coupled, 
shared memory multiprocessors. The kernel assumes that all processors are equivalent. Processors 
run kernel threads from the queue of runnable kernel threads (just as in user code). If a particular 
multiprocessor implementation places an asymmetric load on the processors (e.g., if interrupts are 
all directed to a single CPU), the kernel will nonetheless schedule threads to processors as if they 
were equivalent, not taking this asymmetry into account. 

 

Are Libraries Safe? 

Just because you write perfectly safe code that will run in a multithreaded environment with no 
problems doesn't mean that everyone else can. What would happen if you wrote a wonderful MT 
program, but then called a library routine that used a bunch of global data and didn't lock it? You'd 
lose. So you must be certain that if you call a routine from multiple threads, it's MT-safe, which 
means that a function must lock any shared data it uses and it in turn must only call other MT-safe 
functions. 

Well, even programmers with the best of intentions find themselves with conflicting goals. "Make 
it fast" and "Make it MT-safe" don't always agree. Some routines in some libraries will not be 
MT-safe. It's a fact of life, and you have to deal with it. The documentation for each library call 
should indicate its level of "MT safeness." It is often quite unclear from the Java spec just which 
methods are or are not thread-safe. 

Libraries and classes themselves are not safe or unsafe, per se. The methods in them are (or aren't). 
Just to confuse things, there are libraries that contain some methods that are safe and some 
methods that aren't safe. Every time you use a method, you must make sure that it's MT-safe. 

The calls read() and write() are technically MT-safe, inasmuch as you can call them from 
multiple threads and get correct results. Unfortunately, they both move a pointer associated with 
the file descriptor. In practice, if you perform concurrent operations from different threads on the 
same file descriptor, you're likely to get very confused. For this reason, in UNIX98 there is a pair 
of calls (Figure 11-2): pread() and pwrite(), which operate exactly the same way as read() 
and write(), except that you have to pass an explicit file position pointer along with them. 

Figure 11-2. Using pread() and pwrite() to Keep Track of the File Pointer 

 

No such calls exist in Java, so you are forced to open file descriptors for a file if that is the 
behavior you want. [In our disk performance example (see Disk Performance with Java), this is 
what we do.] 
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Window Systems 

All modern window toolkits are designed around the concept of having an event loop waiting for 
window events. Xview, SunView, X11, MS Windows, Motif, CDE, AWT, Swing, etc., are all 
based on an event loop. Basically, the thread in question will sit in a call to read(), waiting for 
input. The user may push a button or move the mouse, or a socket or pipe may signal data ready. 
All of these are encoded as events. (In the different toolkits, different events may be registered 
with the event loop. Java allows only mouse events and keyboard input events in the AWT and 
Swing.) 

When that event is read by the event loop, the event loop then dispatches the event to the 
appropriate method. In X11, CDE, etc., the programmer will register specific functions to run 
when specific events occur. In both Swing and the AWT, events are always dispatched to one of a 
small number of known methods. If you subclass Applet and create a button, pushing that button 
will call the Button method actionPerformed(). You (presumably) have specialized that 
method for your subclass to do what you want. 

In a Swing program, the main thread runs main() (as usual) and it typically lays out the 
components for a window and makes them appear by calling either show() or setVisible(). 
As soon as the first Swing window is shown, an event dispatch thread is also created to handle 
events. All event callbacks run in this thread. 

The AWT is not thread-safe. This will come as a great surprise to many people (the authors 
included). There were plenty of indications that it was, and plenty of sample programs in books 
and manuals that assumed it was, but it isn't. 

In a window system that is thread-safe, any method may be called on any object in the toolkit in 
one thread while any other method is running on any other object (or the same method and object). 
The results might not always make sense, but it would be legal and would produce the same 
results as if you had called the methods from the same thread. This is a good thing, because you 
can call methods from any thread at any time. This is also a bad thing because it will slow down 
the window system quite a bit. 

The future of Java is not in the AWT, so we won't spend much time on it. (A sample AWT 
program that mimics our Swing example is on the Web.) Swing is the new toolkit that you'll be 
using to do all of your Java windows work and Swing is most specifically not thread-safe! This is 
bad because you can't call methods from any thread at random. This is good because you're less 
likely to make the silly mistakes noted above. 

Its one drawback is largely mitigated by the inclusion of two methods, invokeAndWait() and 
invokeLater(). These two methods place any operation you want onto a queue that the 
window thread will run from its read/execute loop. The first function, invokeAndWait(), 
places the event onto the event queue and waits until it completes. The second, invokeLater(), 
places the event onto the queue and returns immediately (Figure 11-3). The event will then get 
processed some unknown time later. You will probably not use invokeAndWait() very often, 
and obviously you would never call it from the event dispatch thread. 

Figure 11-3. Threads Using invokeLater() with the Swing Toolkit 
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Several other methods are also thread-safe and may be called from any thread, including 
JTextComponent.setText(), JTextArea.insert(), JTextArea.append(), 
JTextArea.replaceRange(), JComponent.repaint(), and 
JComponent.revalidate(). You may also add and remove event listeners from any thread. 
The listener methods will, of course, run in the event dispatch thread. You may also create 
components, set their properties, and add them to containers as long as they are not yet realized. 
Once realized [via show(), setVisible(), or pack()] you cannot manipulate them any 
longer. You will probably never use any of the latter thread-safe methods, as it is normally 
possible to do everything from either the main thread or via invokeLater(). 

The result of this design is that the window thread (the one running the event loop) spends the vast 
majority of its time blocked in read, waiting for an event. This is good. You want to do your main 
computing in another thread. The problem that arises is that some button might invoke a long-
running method, freezing the GUI until it completes. 

So you can have the callback function spawn a new thread to handle the calculation and the 
callback can return immediately. This way, the GUI is still active and the calculation is performed 
in the new thread. When the calculation is complete, the thread can then request updates to the 
windows to be done by calling invokeLater() (Figure 11-4). 

Figure 11-4. ThreadedSwing Window Example 

 

This is the same technique that is used in the native window toolkits in UNIX. As Motif has no 
"invokeLater()"-style function, C programmers simply send an event directly from the thread 
to the event loop using XCreateEvent(), causing the event loop to run the callback for that 
event. 

Code Example 11-1 is from the program ThreadedSwing (see the complete code in Threads and 
Windows) and shows the callbacks, the function that runs when you push a button (which just 
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creates a thread and returns), the work function [which does its work, then calls invokeLater()] 
and the display function [which is run by invokeLater()]. 

Example 11-1 Using Threads in Swing 

public class NumericButtonListener implements ActionListener  { 
    public void actionPerformed(ActionEvent event) { 
        ThreadedJButton currentButton = 

(ThreadedJButton)event.getSource(); 
 
        System.out.println("Pressed " + currentButton); 
        currentButton.setEnabled(false); 
 
        System.out.println(currentButton + " disabled."); 
        DoWorker w = new DoWorker(currentButton); 
 
        if (ThreadedSwing.useThreads)  
            new Thread(w).start(); 
        else  
            w.run(); 
    } 
} 
 
 
class DoWorker implements Runnable { 
    ThreadedJButton button; 
 
    public void run() { 
        Thread selfName = Thread.currentThread(); 
 
        System.out.println(button + " sleeping... " + selfName); 
        InterruptibleThread.sleep(6000); 
        System.out.println(button + " done. " + selfName); 
 
        // This will run workComplete() in Swing main thread. 
        // This is the main point of the whole example. 
        SwingUtilities.invokeLater(new DidWorker(button)); 
    } 
} 
 
 
class DidWorker implements Runnable { 
    ThreadedJButton button; 
 
    public void run() {    // Run only in Swing main thread. 
        Thread selfName = Thread.currentThread(); 
 
        button.setEnabled(true); 
        System.out.println(button + " reenabled. " + selfName); 
    } 
} 

Working with Unsafe Libraries 

What do you do if you want to use a class library that contains unsafe methods? You could use it 
in locations where it is already protected (Code Example 11-2). (HashMap is not MT-safe, but in 
this code it is used only by methods that are already safely protected.) You could subclass it and 
synchronize the methods (Code Example 11-3). You could use it from only a single thread. 
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Example 11-2 Protecting a HashMap 

public synchronized Object tweek(Object arg) { 
    HashMap.put(arg); 
} 

Example 11-3 Subclassing an Unsafe Object 

public class MyFoo extends Foo { 
    ... 
 
    public synchronized Object frob(Object arg) { 
        return foo.super(arg); 
    } 
} 

When Should a Class Be Synchronized? 

There is a tendency when writing a threaded program to declare all methods synchronized. This 
would seem a good thing to do, as then they could all be safely called from any thread. But it's not. 
The vast majority of objects that a program uses are called from code that already contains proper 
protection. In our producer/ consumer examples, there was no need to make workpile.add() 
and workpile.remove() synchronized because they were only called from producer and 
consumer. 

Synchronized Collections in Java 2 

In Java 2 several classes that previously had synchronized methods have gotten replacement 
classes that don't [e.g., HashTable has synchronized methods, HashMap (new in Java 2) doesn't]. 
This is a good thing because HashMap runs faster. It is a good thing because it is fairly unlikely 
that you need it to be synchronized anyway. But sometimes you do. 

Java 2 has a clever method of dealing with this situation. Instead of making subclasses of the 
various collection classes and synchronizing them, Java 2 provides a static factory method for 
each collection class which will return a synchronized version of the collection. This is known to 
design pattern folks as a decorator pattern. 

So the idea is that you create a class, then call the factory method on it to get back a synchronized 
version of that same class. Obviously, you must now use only the synchronized version of the 
class. Each of the core collections has such a factory method: 

public static Collection synchronizedCollection(Collection c) 
public static Set synchronizedSet(Set c) 
public static Map synchronizedMap(Map c) 
public static List synchronizedList(List c) 
public static SortedSet synchronizedSortedSet(SortedSet c) 
public static SortedMap synchronizedSortedMap(SortedMap c) 

So you use these methods to obtain synchronized collections (Code Example 11-4): 

Example 11-4 Making Synchronized Collections 

List syncdList = Collections.synchronizedList(list); 
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If you use an iterator, you must use it entirely within a synchronized block or else another thread 
might change the collection while the iterator is using it (Code Example 11-5) 

Example 11-5 Protecting an Iterator 

synchronized (syncdList) { 
    Iterator i = syncdList.iterator(); 
    while (i.hasNext()) 
        foo(i.next()); 
} 
 
 

Java's Multithreaded Garbage Collector 

Obviously, Java's garbage collector must work in a threaded environment. There are a number of 
different algorithms that will do this. They range from simple stop-and-copy garbage collectors to 
realtime, dynamic, generational collectors. As Java is very specifically not a realtime language, 
stop-and-copy is perfectly acceptable. The actual algorithm used is not specified by Java, and 
different implementations use different collectors. 

By the very nature of garbage collection, a multithreaded garbage collector is significantly more 
complex than a single-threaded collector. In a single-threaded collector, the system is able to run 
freely until it runs out of heap, in which case it can then run a GC directly. As there is only one 
thread, that thread is clearly in a known safe state and the GC can proceed immediately. In a 
multithreaded collector, things are not so simple. 

In an MT environment, when a thread discovers that it needs to start a GC, it cannot just begin 
immediately. There are more threads out there and they must not be allowed to interfere. First, 
they must not be allowed to use the heap while our GC thread is changing it. Second, they must 
not be allowed to change any pointers while the GC thread is running. Third, the entire state of the 
system must be consistent and all internal invariants correct. 

This is accomplished by requiring all other threads to arrive at a known safe place in the JVM and 
stay there. How to get all the threads to do this is another matter, and there are plenty of clever 
schemes used to ensure all threads arrive at one of the GC points as quickly as possible. 

Now, can your GC also compact the heap? And do you want it to? Yes, the GC can compact the 
heap. It's a little bit tricky if you hash on an address, but possible. In some set of programs, 
compacting will allow you to run in a smaller memory machine. But outside of intentionally 
mistuned programs, this probably isn't an issue anyway. Memory is plentiful and cheap. 

Locks during Finalization 

As with all finalization, you never know if or when it is going to happen. Trying to lock locks 
during finalization can easily get a naively written program into a deadlock. What do you want to 
use finalization for anyway? There is almost certainly a better way to do whatever you're thinking 
about. 

 

Summary 
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Many library functions are not MT-safe, and several different techniques are used in dealing with 
this, some by the JVM, some by individual vendors. In most cases you will find that you want MT 
safety at a higher level than Java base classes anyway. It is often unclear from the documentation 
exactly how some of the Java classes have been defined. 
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Chapter 12. Design 
• Making Libraries Safe and Hot 
• Manipulating Lists 
• Program Design 
• Design Patterns 

In which we explore some designs for programs and library functions. Making both programs and 
individual functions more concurrent is a major issue in the design of these functions. We look at 
a variety of code examples and the trade-offs between them. 

 

Making Libraries Safe and Hot 

Now that we've discussed the grand generalities of what is possible, let's move to the other 
extreme and take a look at some of the specific programming issues that MT programs come up 
against and how they can be dealt with. We'll look at the issues of designing and working with 
libraries—the vendor's libraries, third-party libraries, and your own libraries—how they can be 
written to be both correct and efficient. By far the most important design issue is simplicity. 
Debugging multithreaded programs is difficult and the current tools are not that good (because 
none of us have figured out how to build better tools!), so this is a major issue. 

Often, there are simple, obvious methods of making functions MT-safe. Sometimes these methods 
work perfectly, but sometimes they introduce contention between different threads calling those 
functions. The job of the library writer is to analyze those situations and make things fast. 

We're going to look first at some functions in C because (1) these are good examples of the issues 
involved, (2) they are real examples from productions systems, and (3) we had this section left 
over from the last book and wanted to use it. We can divide functions into a number of categories. 

Trivial Library Functions 

Many functions are trivially safe. Functions like sin() have no need to write any shared data and 
can be used exactly as first implemented thirty years ago. 

Another set of functions has very little shared state and can be made thread-safe simply by 
surrounding the use of global data with a lock. The pseudo-random number generator, rand(), is 
a very small, fast function that takes about 1 µs on an SS10/40. It uses a seed value that it changes 
on each call. By protecting that seed, the function can be made safe (Code Example 12-1). This 
new version of rand() is safe and now runs about 1 µs slower due to the mutex. For most 
programs, this is fine. 

Example 12-1 Simple MT-Safe Implementation of rand(), Version 1 

rand_1() { 
    static unsigned int seed; 
    static pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER; 
    int value; 
 
    pthread_mutex_lock(&m); 
    value = _rand(&seed);     /* Calculate new value, update seed */ 
    pthread_mutex_unlock(&m); 
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    return(value); 
} 

Functions That Maintain State across Invocations 

There are cases where you might wish to use a function to set values in one invocation and use 
those same values in another invocation but don't want those values shared by different threads. 
When you call strtok(), for example, you first pass it a string to be parsed, and it returns the 
pointer to the start of the first token in that string. When you call it a second time (with a NULL 
argument), it returns a pointer to the start of the second token, etc. It is highly unlikely that you 
would want thread 1 to get the first token in a string and thread 2 to get the second, although this is 
exactly what strtok() will do. 

There are two possible solutions. One is to write a new function, strtok_r(), which takes an 
extra argument that the programmer uses to maintain state explicitly. (This is what POSIX does.) 
This is a good technique because the programmer can explicitly choose how to use the arguments 
to the best advantage. But at the same time, it puts an additional burden on the programmer, who 
must keep track of those arguments, passing them from function to function as required. 

The second solution is to use thread-specific data and have strtok() maintain separate state for 
each thread (this is what Win32 does). The advantages to this solution are consistency (no code 
changes required) and simplicity at the cost of some efficiency. 

We'll use rand() again to illustrate these points (Code Example 12-2). Normally, a function like 
rand() will be used only occasionally in a program , and there will be very little contention for 
its critical section (which is very short anyway). However, should your program happen to call 
rand() a great deal, such as in a Monte Carlo simulation, you may experience extensive 
contention. By keeping the seed as thread-specific data, this limitation can be avoided. 

Example 12-2 Implementing rand() with TSD, Version 2 

int rand_2() { 
    unsigned int *seedp; 
    int value; 
 
    seedp = (int *) pthread_getspecific(rand_key); 
    value = _rand(seedp);     /* Calculate new value, update seed */ 
    return(value); 
} 

With the rand_2() definition, there is no contention for a critical section (as there is none). 
However, even rand_2() is two times slower than rand(). One advantage of rand_1() and 
rand_2() is that they don't change the interface of rand(), and existing libraries that use 
rand() don't need to be changed.[1] 

[1] The semantics of rand_2() are different than those of rand(), inasmuch as pseudo-random 
number generators are deterministic, and their results are repeatable when a known seed value is 
used. Both rand() and rand_1() would be nondeterministic, as thread scheduling is 
nondeterministic. This is unlikely ever to be a problem. 

Well, that's interesting, but is it really relevant to Java? Most of the issues above are subsumed by 
the use of objects. In Java the object Random contains its own state and is (potentially) just as fast 
as rand() in POSIX. So no, these are not terribly relevant to Java, but it's good to know how the 
lower-level libraries deal with these issues. 
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Making malloc() More Concurrent 

The implementation of malloc() on Solaris 2.5 is quite simple (Figure 12-1). There's one global 
lock that protects the entire heap. When a thread calls either malloc() or free(), it must hold 
that lock before doing the work. It's a simple, effective design that works fine in most programs. 
When you have numerous threads calling malloc() often, you can get into a performance 
problem. These two functions take some time to execute and you can experience contention for 
that one lock. Let's consider other possible designs. Keep in mind that we are not going to be 
changing the definition of malloc(), nor will we change the API. We are only going to change 
the implementation underneath. 

Figure 12-1. Current Solaris Implementation of malloc() 

 

Using Thread-Specific Data to Make malloc() More Concurrent 

When used sparingly, a simple mutex works fine. But when called very often, this can suffer from 
excessive contention. The TSD solution is a possibility, but it introduces some problems of its 
own. 

What if T2 mallocs some storage and T1 frees it? How does T1 arrange to return that memory to 
the correct free list? [Because free() will glue adjacent pieces of freed memory together into a 
single large piece, the free() must be called with the original malloc area; see Figure 12-2.] If 
T2 exits, who takes care of its malloc area? If an application creates large numbers of threads but 
seldom uses malloc(), it will be creating excessive numbers of malloc areas. 

Figure 12-2. Threads with Individual TSD malloc() areas 
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So this is possible, but not very attractive. One of the fellows in our group actually implemented 
this for a customer with a very specific problem. It worked well, but it was not at all generalizable. 

Using Other Methods to Make malloc() More Concurrent 

It is possible to assign a mutex to protect each piece of free storage and have threads skip over 
those areas when locked. Although possible, this technique suffers from excessive complexity. It 
also suffers from excessively fine-grained locking. [If malloc() has to lock a mutex for every 
single node in the free list, it could easily spend more time doing the locking than looking for the 
memory. We do exactly this in One Local Lock.] 

A different approach to this problem is to build a static array of malloc areas to be shared by all 
threads (Figure 12-3). Now a thread calling malloc() can check for an unlocked malloc area by 
calling pthread_mutex_trylock() on the area's mutex. If held, the thread will simply check 
the next area. The probability of more than a few malloc areas being locked is vanishingly small 
for any vaguely normal program. This version of malloc() would be safe, fairly fast, and 
relatively simple. 

Figure 12-3. Threads Using an Array of malloc() Areas. 
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Storage being freed must still be replaced into its area of origin, but this is a manageable problem. 
The freeing thread could simply block. It could place the pointer to be freed onto a list for that 
area and let the thread holding the lock take care of doing the freeing on its way out. We could 
dedicate a special thread to the task of returning freed storage to its proper location. A variation on 
a theme for this design involves using a small hashtable that maps the TID to a specific malloc 
area, reducing the amount of searching involved. 

These are a few of the most common problems that we have seen. There are two points worthy of 
note: (1) There are many viable solutions to every problem; and (2) no one solution is optimal for 
all aspects of a problem. Each of the three versions of malloc() is fastest in some situation. 

Although Java does not have trylock methods, virtually the same effect may be accomplished 
by locking the array of pointers and including an "in use" bit. As of the writing of this book, 
several people were working on different variations of this last solution. We will probably see 
them in later operating system releases by the different vendors. 

Manipulating Lists 

Now we are going to take a look at some designs for a program that adds, removes, and searches 
for entries on a singly linked list (Figure 12-4). The program creates a list of people with their 
salaries. One set of threads is going to search down that list looking for friends of Bil's, and give 
those people raises. Another set of threads is going to search down the list looking for people 
whom Dan detests and remove those people from the list. There may be some overlap of Bil's 
friends and Dan's enemies. 

Figure 12-4. Friends/Enemies: Basic Design 

 

To make the program a bit more interesting (and emphasize certain issues), we will associate a 
delay time with each raise and liquidation. These delays may represent the time to write to disk or 
to do additional computation. For this purpose we'll make a call to sleep(). On Solaris, the 
minimum sleep time is 10 ms (it's based on the system clock), which is typical for most OSs. The 
main question we'll be asking is: "For a given configuration of CPUs, delay times, list length, and 
number of threads giving raises and performing deletions, which design is best?" For different 
configurations we'll get different answers. 

Basic Design 
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The complete code for all examples is available on the Web (see Code Examples). 

A few notes about the program. The function findPerson(name) is to be used by both the 
friends and enemies threads; hence, it will return a pointer to the previous element of the people 
list (the liquidate function needs access to the previous person to remove a person from the list). 
The appropriate element of the list must remain locked when findPerson() returns, and which 
lock is appropriate will change with the different designs. It is possible to search for someone who 
has been liquidated, so null is a possible return value. We'll have to be careful. 

Single, Global Mutex 

Single, global mutex is by far the simplest design (Code Example 12-3). All that is necessary is to 
lock the mutex before starting a search and release it after the thread is finished with liquidation or 
giving raises (Figure 12-5). This is the extreme case of coarse grain locking. It has very little 
overhead and has the best performance when there is only one thread or when the delay times are 
zero. Once the delay times go up and more threads are added, the wall-clock performance of this 
design goes to pot. It will not get any advantage from using multiple CPUs either. 

Figure 12-5. Friends/Enemies: Global Mutex Lock 

 

There are a couple of things worth noting. The mutex protects the entire list—every element on it, 
all the pointers, and the data inside (name and salary). It is not legal for a thread to use a pointer to 
any element of the list if it does not hold the mutex. 

One other thing that you may notice if you run this code is an odd tendency for one thread to get 
the mutex and then keep it. Typically, one thread will get the lock and execute a dozen or more 
iterations of its loop before another thread ever runs its loop at all. Often, one thread will run to 
completion before any other thread even starts! Why? Because there is no work being done 
outside the synchronized loop and as soon as the running thread releases the synchronized section, 
the very next thing it does is reacquire it. A call to Thread.yield() in the code forces it to 
behave more the way we'd expect. In a "real" program, this would not be an issue because it would 
be doing real work outside the loop. 

In Code Example 12-3 we see the central function that runs down a list of friends, looking them 
up and giving them raises. It locks the mutex, does all its work, then unlocks the mutex. It gets the 
next friend off the list of friends and starts all over again. There are no more than a few dozen 
instructions between the time it unlocks the mutex and locks it again! The probability of another 
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thread getting in there fast enough to get the mutex is quite low. Using a FIFO mutex in this code 
would make it much fairer. And slightly slower. 

Example 12-3 Giving Friends Raises (from FriendThread.java) 

public void run() { 
    while (friends != null) { 
        synchronized(test.people) { 
            Person p = Person.findPerson(friends, test.people); 
            if (p != null) { 
                p.next.giveRaise(); 
            } 
            friends = friends.next; 
 
        } 
 
        Thread.yield();// If running Green Threads 
    } 
} 

Global RWLock with Global Mutex to Protect Salaries 

Version two of the program uses a readers/writer lock to protect the list and a mutex to protect the 
salaries. This way, any number of threads can run down the list, at the same time searching for 
people to receive raises. Once found, we need to protect the salary data while we update it. We 
add the SalaryLock for this purpose. Clearly, we could not update the salary if we only held a 
read lock. When a thread wishes to remove one of Dan's enemies from the list, that thread must 
hold a writer lock while it searches down the list and removes the offending element (see Figure 
12-6). 

Figure 12-6. Friends/Enemies: Global RWlock and Salary Lock 

 

It's important for us to think very carefully about what each lock is protecting. The RWlock 
protects the list structures and the pointers. It does not protect the salaries. Surprisingly, the 
performance of this code is not much better than that of the previous code! Inspecting the code 
closely, you should realize that very little time is spent actually searching down the list (about 1 µs 
per element). It is the contention for the salary lock when the delay is non-zero that takes all the 
time.  

Once again, no thread may hold a pointer to any portion of the list unless it owns one of the locks. 
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Code Example 12-4 is the code that updates the salary of Bil's friends. The delay is inside the 
critical section; thus, while one thread is sleeping here, all the other threads must wait outside. 
Moving the delay outside would vastly increase the performance of the program. It wouldn't be 
terribly realistic to do so. As the delay represents a write to disk or some other operation on the 
salary, it really must be inside the critical section. 

Example 12-4 : giveRaise() (listGlobaRW.java) 

public synchronized void giveRaise() { 
    rwlock.unlock(); 
    salary++; 
    delay(raiseDelay); 
} 

Note that we release the RWlock as soon as we obtain the salary lock, allowing liquidator threads 
to begin their searches. The liquidator threads are allowed to run while we're updating the salary! 
To make this work correctly, the function liquidatePerson() must also lock the salary lock 
before it changes anything in the object (Code Example 12-5). Also notice how we are mixing our 
RWlocks with Java's synchronized sections. 

Example 12-5 Removing an Element from the List (ListGlobalRW2.java) 

public synchronized void liquidate() { 
    next = next.next; 
    rwlock.unlock(); 
    delay(liquidateDelay); 
} 

Global RWLock with Local Mutex to Protect Salaries 

Version three of the program (Figure 12-7) uses a readers/writer lock to protect the list and a local 
mutex to protect individual salaries. This way, any number of threads can run down the list 
searching for people to give raises to at the same time. Once found, we need to protect the 
individual salary data while we update it. Now we have overcome the major bottleneck of this 
program. Many threads may now update different salaries at the same time. 

Figure 12-7. Friends/Enemies: Global RWlock and Local Salary Lock 
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Once again, no thread may hold a pointer to any portion of the list unless it owns one of the locks. 
If it only holds a local salary lock, it may not do anything except access that one data item. As 
soon as the element is removed from the list (see Code Example 12-5), we can release the RWlock 
(no one else will ever be able to access our item). 

In this code, the only points of contention are: 

• Only one liquidator at a time may search. 
• Only one thread at a time may give a raise to a given individual. 

Something that you might consider at this point is: Why not allow multiple liquidators to search at 
the same time, then once they've found the object, convert the read lock into a write lock? We 
could modify the definition of RWlocks to allow this possibility; however, it wouldn't work. We 
would have to ensure that only one thread ever wanted to make the conversion at a time, and as 
soon as it made that request, every other thread with a read lock would eventually have to release 
that lock without making a conversion request. In other words, it's possible to do, but it's so 
limited in functionality as to be nearly worthless. 

For pretty much any program of this nature, design 3 will turn out to be the best. However, there 
are other possibilities. 

One Local Lock 

What if we allocated one mutex per element to protect only one element? In Figure 12-8, each 
mutex protects a pointer and the structure to which the pointer points. (The global mutex protects 
only the global pointer and first structure.) With this design, multiple threads may search down the 
list at the same time, either to update a salary or to remove an element. Now, multiple liquidator 
threads may search and destroy simultaneously! Unfortunately, as soon as one thread finds the 
element it is searching for, it will continue to hold the lock while it finishes its work. Other threads 
will quickly pile up behind it,[2] waiting to acquire that mutex. This design yields abysmal results 
for every combination of CPUs, threads, list length, delay times, etc. 

[2] Ever drive 101 at rush hour? 

Figure 12-8. Friends/Enemies with Only One Local Mutex Lock 
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It is illegal for a thread to hold a pointer to an element unless it holds the appropriate mutex. In 
this case, the appropriate mutex is local, so numerous threads may hold pointers to different 
elements. Note that the mutex in Jan's structure protects the "next" pointer and the following 
structure (Kim's). 

To update Kim's salary, a thread will need to hold the mutex in Jan's structure, not the one in 
Kim's. To remove Kim from the list, once again the thread must hold the mutex in Jan's structure. 
As soon as it has been removed from the list, Jan's mutex may be released. It will be impossible 
for any other thread to get a pointer to Kim. 

Let's look at the searching routine (used by both liquidators and raisers; Code Example 12-6). The 
basic loop is simple: Look at each element, compare the name strings, return the previous pointer 
if found. What is interesting about this function is the order in which locks are acquired and 
released. 

Example 12-6 Searching Code (ListLocalLock.java) 

public static Person findPerson(Person p, Person people) { 
    Person previous; 
 
    people.mutex.lock(); 
 
    while (people.next != null) { 
        if (p.name.equals(people.next.name)) 
            return people;            // Previous person (holding 
lock!) 
        people.next.mutex.lock(); 
        previous = people; 
        people = people.next; 
        previous.mutex.unlock(); 
    } 
 
    people.mutex.unlock(); 
    return null; 
} 

First we lock the global lock and compare our name to the first element (Jan). If this isn't it, we 
lock Jan's lock, release the global lock, and compare again. The locking/unlocking is being done in 
an overlapping fashion! (It's often called chain locking.) This makes it somewhat challenging to 
ensure that the correct locks are locked and unlocked in the correct order in all the different 
functions. 

Two Local Locks 

A superior version of the local lock design may be had by providing two local locks, one to 
protect the element and one to protect the salary. Now we have the advantage of allowing multiple 
liquidator threads to search down the list while not causing bottlenecks. The only points of 
contention occur when two threads wish to operate on the same element. There's nothing we can 
do about that. 

That's the good news. The bad news is that it takes time to lock mutexes. It may well take more 
time to lock and unlock each mutex than it takes to do the comparison! In this code, it does. This 
version of the program, shown in Figure 12-9, is significantly slower than the RWlock version. 
Only if the list were short and the time to execute a comparison were long would this design give 
superior results. 

Figure 12-9. Friends/Enemies: Two Local Locks 
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Local RWLock with Local Mutex to Protect Salaries 

Just for the sake of completeness, we'll consider one more design (Figure 12-10). By making the 
local lock an RWlock, we can allow multiple threads to do comparisons on the same element at 
the same time. If comparisons took significant amounts of time, this could be a viable design. For 
our program, which does a simple string compare, this design proves to be the worst yet. It takes 
up much more space, adds more complexity, and is slower by a very significant amount. 

Figure 12-10. Friends/Enemies: Local Lock and RWlock 

 

We've now completed the journey from very coarse-grained locking to very fine-grained locking 
and come to the obvious conclusion. The best results are usually found in the middle, but the only 
way to know is to try. 

 

Program Design 
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A small number of high-level design strategies have been discussed in several books (see The 
Authors on the Net ). These names are not used completely uniformly. They are: 

• Master/Slave: One thread does the main work of the program, creating other threads to 
help in some portion of the work. 

• Client/Server (Thread per Request): One thread listens for requests, then creates a new 
thread to handle each request. 

• Producer/Consumer (a.k.a. Work Queue or Workpile or Thread Pool): Some threads 
create work requests and put them on a queue. Other threads take the work requests off 
the queue and execute them. 

• Pipeline: Each thread does some work on a task, then passes the partially completed task 
to the next thread. 

• Client/Server (Thread per Client): One thread listens for new clients to attach, then 
creates a new thread to handle each client. The thread is dedicated to its client, doing 
work only for that client. 

In the discussion below we will elaborate on each of the designs and include some sample code. 
All the code will be based on a client/server program that takes in requests from a socket, 
processes them, and sends replies back out over the same socket file descriptor. The complete 
code for three versions of the program (thread per request, producer/consumer, and nonthreaded) 
is on the Web site. 

Master/Slave 

The master/slave design is the most obvious for many kinds of tasks. In its most elemental form, it 
will be implemented by a library, and the programmer will not even be aware of there being 
multiple threads. A matrix multiply routine may well spawn a set of threads to do the work, but all 
the programmer knows is that she called matrix_multiply(). 

Client/Server (Thread per Request) 

This is really just a master/slave design for client/server programs. The master thread will do the 
listening. In the fragment of the socket program shown in Code Example 12-7, each time a new 
request comes in from a client, the main thread spawns off a thread to handle that request. The 
main thread then returns to its accept() loop while the thread works on the request 
independently, exiting when it's done. 

Example 12-7 Master/Slave Socket Design 

public void runServer() throws Exception { // Executes in main thread 
    for (int i = 1; true; i++) { 
        socket = serverSocket.accept(); 
        Thread t = new Thread(new ProcessRequest(socket)); 
        t.start(); 
    } 
} 
 
public void process() { 
    int n = csocket.is.read(request); // request = "Request ..." 
    reply = getReply(request); 
    csocket.os.write(reply); // reply = "Reply ..." 
} 

Although this design has some positive aspects (e.g., simplicity and directness), it also admits to 
some drawbacks. The cost of thread creation is not going to be significant unless the task itself is 
very short (< 10 ms). Of more significance is that the programmer has no simple control over the 
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number of threads running at any one time. Should there be a sudden spike in the number of 
requests, there will be an equal spike in the number of threads, causing performance degradation 
due to the excessive number of threads competing for the same locks, CPUs, virtual memory, and 
other resources. (Running this program on a fast 32-bit machine will crash the program when it 
runs out of virtual memory.) 

Rewriting the program to limit the number of threads would be somewhat ugly, and there are 
better ways of handling the problem. This is probably not a good design for any program! 

Producer/Consumer 

In the producer/consumer model (Code Example 12-8), the programmer can exert full control over 
the number of threads with very little effort. The threads may be created at startup time and then 
be left to wait for work to appear on the queue. Should some of the threads never run at all, there 
will be no great cost— probably immeasurable. Should there be too many incoming requests, they 
can be placed on the queue and handled when convenient. 

Example 12-8 Producer/Consumer Socket Design 

public void startUp() throws Exception { // Executes in main thread 
    for (int i = 1; i < nConsumers; i++) { 
        Thread t = new Thread(new Consumer(workpile)); 
        t.start(); 
    } 
 
    socket = serverSocket.accept(); 
    Thread t = new Thread(new Producer(workpile, socket)); 
    t.start(); 
    System.out.println("Server[" + t.getName() + 
        "]\tStarted new socket server: " + socket); 
} 
 
public static Request read(Socket socket) { 
    int n = csocket.is.read(b); 
    return new Request(csocket, b); 
} 

An important aspect of the work queue is that you can allow the queue to grow to any length you 
deem appropriate. If your clients block, waiting for the results of query 1 before issuing query 2, 
then allowing the length of the queue to grow to the number of clients will assure you that requests 
will never be lost, and you can maintain peak efficiency. 

If clients are able to issue unlimited overlapping requests, you have no choice. At some point you 
must begin rejecting requests. However, as long as the average rate of incoming requests is below 
what your server can handle, then by allowing the queue to grow up to some modest limit, you can 
effectively buffer burst traffic while retaining peak efficiency. This is a popular design and is the 
general design of NFS. 

Pipeline 

The pipeline model is based directly on the same work model that is used in CPUs and on factory 
floors. Each processing element will do a certain amount of the job and then pass the partially 
completed task on to the next element (Code Example 12-9). Here the processing elements are 
threads, of course, and each thread is going to do a portion of the task, then pass the partial results 
on to the next thread. 
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Example 12-9 Pipeline Design 

processRequest_A() { 
    ... 
 
    while(true) { 
        is.read(data, LENGTH); 
        resultA = processDataA(data); 
        addQueueA(resultA); 
    } 
} 
 
 
processRequest_B() { 
    ... 
    while(true) { 
        resultA = getFromQueueA(); 
        resultB = processDataB(resultA); 
        os.write(resultB, LENGTH); 
    } 
} 

We can certainly see that this model would be valuable for simulations in which what you're 
simulating is a pipeline. For other situations, it's not so clear. In silicon and on factory floors, 
specialization is important. One section of a chip can execute only a single task (the instruction 
fetch unit can only fetch instructions, never decode them), and it takes time for a worker to put 
down a wrench and pick up a paintbrush. 

This is not so for threads. It is actually easier and faster and the programming simpler for one 
thread to execute an entire operation than to do a little work, package up the partial result, and 
queue it for another thread. Although a number of programs that use this paradigm have been 
suggested, it is not clear to us that any of them are superior to using one of the other designs. 

Client/Server (Thread per Client) 

The final model is also somewhat questionable to us. In this model, each client will have a thread 
devoted to it, and that thread will remain inactive the vast majority of the time (Code Example 12-
10). The advantage of having a thread devoted to an individual client is that the thread can 
maintain state for that client implicitly by what's on the stack and in thread-specific data. Although 
this does save the programmer the effort of encapsulating that data, it's unclear that it's worth it 
because of the large number of threads required. In POSIX we avoid doing this by having one 
producer thread call select() on hundreds of sockets. In Java, this is not an option [there is 
nothing similar to select() in Java; see Dealing with Many Open Sockets], so you are pretty 
much forced to use this design. 

Example 12-10 Thread per Client Design 

public void startUp() throws Exception { // Executes in main thread 
    for (int i = 1; i < nConsumers; i++) { 
        Thread t = new Thread(new Consumer(workpile)); 
        t.start(); 
    } 
 
    for (int i = 1; true; i++) { 
        socket = serverSocket.accept(); 
        Thread t = new Thread(new Producer(workpile, socket)); 
        t.start(); 
        System.out.println("Server[" + t.getName() + 
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            "]\tStarted new socket server: " + socket); 
    } 
} 

We'll consider these last two as interesting possible designs that need some practical fleshing out. 

 

Design Patterns 

Design patterns are an excellent tool for conceiving of and constructing programs. This is 
especially relevant to threaded programs, where the interactions between the threads may become 
complex. A pattern describes a design form consisting of the interfaces, classes, and objects that 
make up a program and their interactions. As such, they are a more formal way of stating what we 
have just described. 

There are a series of well-thought-out patterns that are used in multithreaded programs. The use of 
design patterns lies just above the focus of this book, so we will not attempt to cover it at all. Doug 
Lea's excellent book Concurrent Programming in Java is devoted to describing how such patterns 
are designed and used (see Threads Books). We recommend it highly. 

 

Summary 

Numerous trade-offs exist in the creation of MT-safe and MT-hot libraries. No single locking 
design works best for all programs. How different threads will interact and how they will be 
created and exit are open questions. We offer a few insights and some examples. The most 
important design issue is simplicity. 
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Chapter 13. RMI 
• Remote Method Invocation 

In which we examine RMI and see what it provides in terms of a distributed object programming 
model. We look at how threading interacts with it and how it uses threads. 

RMI is not a thread topic per se, but it does often play a significant role in threaded programs 
because of its use by threaded programs. The prototypical MT program is a client/server system 
where the server is threaded to provide greater throughput. In our previous examples, we 
implemented client/server programs using simple byte streams to communicate across raw sockets. 
This was good because it was simple and fast, but it was bad because encoding any level of 
complexity (integers, symbols, objects, etc.) into the byte stream required complicated, ad hoc 
byte stream formats for those more complex objects. 

RMI provides us a simple method of encoding and transmitting arbitrarily complex objects, 
making it a natural replacement for our raw socket code. Thus we expect a great deal of threaded 
code to use RMI and therefore include a section on it. 

 

Remote Method Invocation 

The basic idea of remote objects is very simple. A server program creates an object and makes a 
reference to that object remotely available. Client programs find that reference and use it remotely 
to perform work. The client code treats that reference as if it were a normal, local object, calling 
methods on it and getting results back. For the most part, the client is unaware that there is 
anything special about the object. The underlying RMI system takes care of packaging up method 
invocations and arguments, transmitting them across the wire and returning results. This is a good 
thing. 

In Figure 13-1 we see a typical, simple RMI application. The rmiregistry is started first. (The 
registry is a "poor man's" name server. It can be started directly from the command line or it can 
be started by the server when that first starts up. We'll use the command line method.) Next the 
server program is started. At (1) the server program instantiates a new ServerImpl object (this 
is just a regular class that implements java.rmi.Remote; we'll subclass 
UnicastRemoteObject). At (2) it calls the RMI bind() method, which first finds the registry 
(by default it looks on port 1099 on the current host), then tells the registry to associate the string 
supplied ("frobber") with the object (f). Now the main thread is done, exporting that object. 
We'll let it exit, although you could keep it around if you wanted. The server startup code has done 
its work and is done. Behind the scenes, RMI has started up a new thread of its own [while 
executing the bind() call] which will now handle all requests for the object f. (Lots of details 
here; we'll discuss them in a bit.) 

Figure 13-1. A Simple RMI Call Sending and Receiving a String 
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Next the client is started up. It calls the RMI function lookup() to ask the registry for any object 
associated with the supplied string. The registry returns the reference to the server object f. This 
object is returned as a remote object, meaning that the client basically has a "fake" local copy (a 
stub) of that object which it can use normally. When the client calls one of the remotely callable 
methods [e.g., frob()], the arguments are passed to the stub, which uses RMI to "package up" 
the arguments (known as serializing an object) and send them across the wire to the actual object 
in the server along with the method being invoked. That method runs in the server (6), doing 
whatever it wants, and returns the result, which RMI serializes and ships back across the wire to 
the client. We can now implement the same client/server program as before without bothering 
with the details of working with raw sockets. This is a good thing. 

Sending Remote References 

It is also possible for the client to ship remote references to objects over to the server. In Figure 
13-2 we expand upon the previous example by declaring a class in the client which subclasses 
UnicastRemoteObject. In (5) we create an instance of that object and in (6) we cause RMI to 
send a reference to it over the wire by passing it as an argument to frob(). Now the server has a 
remote reference to an object in the client, and the client has one to an object in the server. The 
server can call remote methods on this object and get arbitrary data from the client. 

Figure 13-2. A More Complex RMI Call Sending a Remote Object Reference 
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Note that as soon as a remote reference is exported from the client, the client starts up an RMI 
thread of its own to handle remote calls on any exported object. Thus when the server calls the 
remote method fgetS() on c at (7), that remote call will run in the client's new RMI thread, not 
the main thread which made the initial call to frob(). 

The basic idea is that an object can (a) implement Remote, in which case passing it as an 
argument will cause RMI to ship a remote object reference to the server. An object can (b) 
implement the Serializable interface instead (or subclass Remote-Stub), in which case 
passing it as an argument will cause RMI to ship a complete copy of that object to the server. 
(Strings are serializable.) Finally, (c) an object can do neither, in which case passing it as an 
argument is not legal and the compiler will complain. 

In the code for this program (Code Example 13-1), we see the declaration of the interface for the 
ServerImpl object (ServerOp), where the remote method frob() is declared. Next we see 
the ServerImpl object itself,[1] where the actual method frob() is defined. The ClientOp 
interface and ClientImpl class look very similar. 

[1] The use of the postfixes "Op" for the interface and "Impl" for the object are a general RMI naming 
convention that we use for convenience and uniformity. You may choose any names you like, but 
we recommend sticking with the convention. 

Example 13-1 Simple RMI Server and Client 

//  ServerRMI/Server.java 
 
/* 
  A simple RMI server program.  It sets up a registry name for the  
  client program to connect to. It creates an unknown number of 
threads  
  FOR you, exiting them when it feels like it. 
*/ 
 
 
import java.rmi.*; 
import java.rmi.server.*; 
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import Extensions.*; 
 
public class Server { 
    static int     serverDelay = 0; 
    static boolean DEBUG = false; 
    static boolean KILL = false; 
 
 
    public static void main(String[] argv) throws Exception { 
        Thread t; 
 
        if (System.getSecurityManager() == null) 
            System.setSecurityManager(new RMISecurityManager()); 
 
        if (argv.length > 0) 
            serverDelay = Integer.parseInt(argv[0]); 
 
        if (System.getProperty("DEBUG") != null) 
            DEBUG = true; 
 
        if (System.getProperty("KILL") != null) 
            KILL = true; 
 
        System.out.println("Server(serverDelay: " + serverDelay + 
")"); 
 
        if (KILL) 
            new Thread(new Killer(120)).start(); 
 
        Naming.rebind("Frobber", new ServerImpl()); 
        System.out.println("Server: 'Frobber' now registered with 
rmiregistry."); 
    } 
} 
 
 
 
//  ServerRMI/Client.java 
 
import Extensions.*; 
import java.rmi.*; 
import java.rmi.server.*; 
 
public class Client implements Runnable { 
    static boolean       DEBUG = false; 
    String               name; 
    static int           nCalls = 100; 
    static int           nThreads = 2; 
    static int           clientDelay = 10; 
    static SingleBarrier barrier; 
    static boolean       KILL = false; 
 
    public static void main(String[] argv) { 
        if (System.getSecurityManager() == null) 
            System.setSecurityManager(new RMISecurityManager()); 
 
        if (argv.length > 0) 
            nCalls = Integer.parseInt(argv[0]); 
 
        if (argv.length > 1) 
            nThreads = Integer.parseInt(argv[1]); 
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        if (argv.length > 2) 
            clientDelay = Integer.parseInt(argv[2]); 
 
        if (System.getProperty("DEBUG") != null) 
            DEBUG = true; 
 
        if (System.getProperty("KILL") != null) 
            KILL = true; 
 
        System.out.println("Client(nCalls: " + nCalls + " nThreads: " 
            + nThreads + " clientDelay: " + clientDelay 
            + ")"); 
 
        barrier = new SingleBarrier(nThreads); 
 
        for (int i=0; i<nThreads; i++) { 
            Thread t = new Thread(new Client()); 
            t.start(); 
        } 
 
        if (KILL) 
            new Thread(new Killer(120)).start(); 
 
        barrier.barrierWait(); 
        System.exit(0); 
    } 
 
 
    public void run() { 
        String selfName = Thread.currentThread().getName(); 
 
        try { 
            System.out.println("Client[" + 
                selfName + "]\tStarted new thread."); 
 
            ServerOp ro = (ServerOp)Naming.lookup("Frobber"); 
 
            for (int i = 0; i < nCalls; i++) { 
                String msg = "[Client " + selfName + "] Request: " + 
i; 
                ClientImpl ci = new ClientImpl(msg); 
 
                if (DEBUG) { 
                    System.out.println("Client[" +  selfName + 
                    "] \tSent: '" + msg + "'"); 
                } 
 
                String reply = ro.frob(ci); 
 
                if (DEBUG) { 
                    System.out.println("Client[" +  selfName + 
                        "] \tGot:  '" + reply + "'"); 
                } 
 
                InterruptibleThread.sleep(clientDelay); 
            } 
        } catch (Exception x) { 
            x.printStackTrace(); 
            System.exit(1); 
        } 
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        barrier.barrierPost(); 
    } 
} 
 
 
 
//  ServerRMI/ClientImpl.java 
 
import java.rmi.*; 
import java.rmi.server.*; 
import Extensions.*; 
 
public class ClientImpl extends UnicastRemoteObject implements 
ClientOp { 
    static int delay = 0; 
    String     message; 
 
    public String getString() { 
        return(message); 
    } 
 
    public ClientImpl() throws RemoteException { 
        message = "No Message"; 
    } 
 
    public ClientImpl(String msg) throws RemoteException { 
        message = msg; 
    } 
} 
 
 
 
 
//  ServerRMI/ClientOp.java 
 
import java.rmi.*; 
 
// A remote interface for an object that supports the "call" 
// operation. 
 
public interface ClientOp extends Remote { 
    public String getString() throws RemoteException; 
} 
 
 
 
//  ServerRMI/ServerImpl.java 
 
import java.rmi.*; 
import java.rmi.server.*; 
import Extensions.*; 
 
public class ServerImpl extends UnicastRemoteObject implements 
ServerOp { 
    int nCalls = 0; 
 
 
    public ServerImpl() throws RemoteException { 
    } 
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    public String frob(ClientOp o) throws RemoteException { 
        int localCalls; 
        ClientOp ci = (ClientOp)o; 
        String   request = ci.getString(); 
        String   selfName = Thread.currentThread().getName(); 
        String   reply; 
 
        synchronized (this) { 
            localCalls = nCalls++; 
        } 
 
        if (Server.DEBUG) { 
            System.out.println("Server[" + selfName + 
                "]\t Starting:  '" + request + "'"); 
        } 
 
        InterruptibleThread.sleep(Server.serverDelay); 
 
        reply = "[Server" + selfName + "] Reply: " + 
            localCalls + " to: " + request; 
 
        if (Server.DEBUG) { 
            System.out.println("Server[" + selfName + 
                "]\t Processed: '" + reply + "'"); 
        } 
 
        if ((localCalls%100) == 0) { 
            System.out.println("Server[" + selfName + 
                "]\t Processed: " + localCalls + " requests."); 
        } 
 
        return(reply); 
    } 
 
 
    public String getName() throws RemoteException { 
        return("<ServerImpl: " + nCalls +">"); 
    } 
} 
 
 
 
//  ServerRMI/ServerOp.java 
 
import java.rmi.*; 
 
// A remote interface for an object that supports the "call" 
// operation. 
 
public interface ServerOp extends Remote { 
    public String getName() throws RemoteException; 
    public String frob(ClientOp o) throws RemoteException; 
} 

In the server, main() establishes a security manager (this is required—we use 
RMISecurityManager, but any security manager will do) and then calls Naming.rebind() 
to register with the rmiregistry. That's all. [The method rebind() will overwrite previous 
registration of an object, whereas bind() will throw an error if there is a previous registration.] 
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The client establishes a security manager and then calls Naming.lookup() to ask the 
rmiregistry for a remote object reference. When it gets the reference, it then creates a pile of 
ClientImpl objects and passes them as arguments to ro.frob(). And that's pretty much it. 

The full source code for this program includes a lot of debugging statements that will print out 
information about which thread is where and doing what. It is informative to examine the code in 
more detail and watch its output. Compiling the program currently requires you to call a special 
compiler, rmic, to build the stub code for the remote objects. (This may change.) 

To run the program, you start the registry (Code Example 13-2), then the server, and finally, the 
client. The registry needs to know the details of the class, so you must set CLASSPATH for it. 
We'll simply start the registry from the code directory (as CLASSPATH includes ".") 

Example 13-2 Running ServerRMI 

bil@cloudbase[259]: rmic ServerImpl ClientImpl 
 
bil@cloudbase[260]: rmiregistry & 
 
bil@cloudbase[261]: java -DDEBUG Server & 
Server: 'Frobber' now registered with rmiregistry. 
 
bil@cloudbase[262]: java -DDEBUG Client & 

RMI's Use of Threads 

RMI starts up one thread to listen for remote invocations on the exported object. RMI's threading 
behavior is not specified beyond this. All RMI says is that it will run your request in some thread 
other than the ones you created. If you trace this program on Solaris 2.6, you will notice that the 
server will run a bunch of remote requests in RMI thread 1, a few more in RMI thread 2, etc. It 
will probably run multiple requests simultaneously in different threads. This is officially hidden 
from you, and the only way to discover this is to print out the thread's name from frob(). 

The good part of this is that it doesn't matter. It's not part of your contract with RMI, so who cares? 
The bad part is that if you mean to use RMI for high-performance programs, you have lost control 
over the creation and number of threads that your server is running. 

Exactly how and in which threads RMI executes remote requests is not specified, nor should it be. 
All you care about is that your client made a remote invocation on an object and that methods 
were run on the object in the server on some thread that you did not create. 

In the reference implementation of Java 2, a single "accept" thread (TPC-Accept) is started when 
the first object is exported [either via bind() or when you pass it as an argument to another 
process]. This thread will listen on a dynamically allocated port for any and all incoming requests. 
When a client connects and sends a request, the accept thread arranges for that request to run in a 
TPC-Connection thread. If no connection threads exist, the accept thread will create one. If 
there is an idle connection thread, the accept thread will use that. Idle connection threads 
eventually exit. 

There are no guarantees about which connection thread a request will run in or about how many 
connection threads RMI will create. If your application needs absolute control over server threads, 
you may have to build a consumer/producer model on top of RMI. In this case, the initial remote 
method would place a request object on a queue and return a "working" message to the client. 
When the consumer thread completes its work, it can return the desired results via a remote 
invocation on a remote client-side object. 
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The Deadlock Problem with RMI 

What would happen if you locked a synchronized section on an object c, made a remote call, 
passing c to the server, and then the server made a synchronized remote callback on c? The 
server's callback would run in the client's RMI thread. It would try to get the lock, fail (because 
the main thread owns that lock), and go to sleep, waiting for the main thread to release it. 
Unfortunately, the main thread is waiting for frob() to return. Deadlock (Figure 13-3). 

Figure 13-3. Deadlock by Remote Callback 

 

What can you do about it? Nothing. In the best of situations you can simply ensure that a locking 
hierarchy is maintained, recognizing that remote callbacks run in different threads. This has the 
potential of becoming quite complex in more elaborate applications where hundreds of different 
programs on different machines may all hold references to different remote objects scattered 
across the network. In the very best of situations, you write your code so that this never comes up. 

Another minor note: You can synchronize on the local object stub for the remote object. This will 
lock the lock on the stub, not the actual object. This is probably not what you want to do. 

Running synchronized remote methods on remote objects could get quite complicated. Don't do 
that. 

Remote Garbage Collection 

A reasonable question at this point is: How does RMI handle garbage collection? Clearly, an 
object that is not referenced locally could still have remote references to it which our local process 
wouldn't know about. RMI has a clever, optimistic distributed garbage collector (DGC). Basically, 
each RMI process has a DGC client that periodically sends messages to other processes telling 
them that it has references to objects there (this is called lease renewal). 

The DGC does its level best, collecting all objects to which it can't find references. Should a 
reference to one of these objects later turn up in some client process that didn't renew the lease, 
too bad. The object is gone, and any remote method invocations on it will throw 
RemoteException, and it will be up to the programmer to deal with the problem. Presumably 
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the program will catch that exception and go back to the server it got it from and request a new 
object. This is a good research area for Ph.D. students. 

 

Summary 

RMI creates its own threads to handle remote method invocations. The details are implementation 
specific, but this is not a problem. The one challenge is avoiding cross-process deadlocks. 
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Chapter 14. Tools 
• Static Lock Analyzer 
• Using a Thread-Aware, Graphical Debugger 
• Proctool 
• TNFview 

In which we consider the kinds of new tools that a reader would want when writing a threaded 
program. An overview of the Solaris tool set is given, as representative of what should be looked 
for. 

Programming with threads adds new challenges to the development tools that you use. "Normal" 
toolsets, in most cases, will not work well with threaded programs, because they were designed 
with single-threaded programs in mind. All the vendors have some set of products to be used with 
multithreaded programs—debuggers, code analyzers, and performance analysis programs. 

This chapter focuses on some of the current tools that Sun Microsystems provides for the 
development of multithreaded programs. Tool offerings from Symantec, IBM, etc., are fairly 
similar. 

 

Static Lock Analyzer 

For C programs there is a tool called LockLint, which is a lint-type program for locks. It verifies 
consistent use of mutexes and RWlocks in multithreaded ANSI C programs. LockLint performs a 
static analysis of the program and looks for inconsistent or incorrect use of these locking 
techniques. It can tell you definitively if your program is subject to deadlock as long as the calling 
structure of your program is predictable. Unfortunately, there is no similar tool for Java. 

 

Using a Thread-Aware, Graphical Debugger 

All of the different vendors have some version of a graphical debugger, all of which have the same 
basic functionality. We'll look at a few screen shots from Sun's Java Workshop Debugger. To say 
the least, the value of a graphical debugger for multithreaded programs is enormous. 

Figure 14-1 uses the debugger to take a look at the code in An Example: Create and Join. We 
started by loading the program into the debugger and then setting a breakpoint in main(). Then 
we started the program and let it hit the breakpoint. 

Figure 14-1. Sun's Debugger [Program Stopped in sleep()] 
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When any thread hits a breakpoint, all threads will stop. (This is a good thing, because you want 
things to stop while you try to figure them out.) Notice that the Sun's Java implementation creates 
several threads for its own use in the main thread group. All of our threads are by default located 
in the Multi.main thread group. The JDK's threads are managed by the JDK and have no effect 
on your programing. 
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Also notice that the main thread is always "Main." You can see from the thread pane that Main is 
stopped in sleep(). The stack pane will show the entire call stack for the selected thread. 

The tiny folders are thread groups, the double lines are threads. The dark double lines indicate 
threads that have been suspended, hence "Main" and "C" were running at the time of interruption, 
whereas "A," "B," and "D" have arrows, hence were all blocked in a call to wait() or sleep(). 
These three blocks piled on top of each other—"[1]," "[2]," and "[3]"—indicate calls on the stack 
(those blocks are stacks, get it?). You can see the stack frame (and details thereof) for any thread 
you choose. The graphics and interface are a bit awkward, but they are quite functional. 

It is possible to single step an individual thread, or to continue all threads. No other options exist. 
You can let a program run and then interrupt it. This allows you to look at deadlocked programs 
and figure out the problem. 

Some caution must be exercised, as the first option can get you into confusion. If you step into a 
call to a synchronized section, and that lock is locked, the thread will not be able to enter that 
section and JWS will allow all the other threads to run. And you may get confused. 

Even in the best designed programs, it is common to have problems getting critical sections to 
work exactly the way you want. When you do run into problems, it can be extremely time 
consuming to find the information you need to fix them. Java locks do not appear in the debugger 
at all and there is no way for you to find out which thread owns them. 

 

Proctool 

For Solaris 2 systems, there is a very nice system status display tool (Figure 14-2), which is freely 
available via FTP (see Freeware Tools). It will show you all the system statistics on your program, 
including the details for each individual LWP. This tool can be useful when you want to know 
how your threads are behaving with respect to system calls. 

Figure 14-2. Proctool, Main Display Window 
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In the main display window you see the complete status line for each process (you get to select 
what to display). This is data that is derived from the /proc file system. Selecting one of those, 
you can look at detailed information about that process. In Figure 14-3 you see the detailed 
statistics for each LWP. (This is one of the places where it's nice to have bound threads, because 
you get to see what each individual thread is doing.) 

Figure 14-3. Proctool, LWP Display Window 

 

 

TNFview 

Many of the new, multithreaded kernels have internal instrumentation in both the kernel and 
standard libraries. In Solaris, this instrumentation takes the form of a TNF (trace normal form) 
probe. The basic idea for all these types of instrumentation is that probes are included in various 
important routines. These probes write their names into the file and, optionally, details of the 
current program state (i.e., some variable values) into a file, along with the exact time of the call. 
The probes are normally turned off but can be enabled when timing data is desired. 

In Figure 14-4 we see calls to TNF_PROBE_N() (N is the number of data values that the probe 
will write out) in the Pthread library code, in the UNIX kernel, and even calls that we included in 
our own code. When we run the program with tracing enabled, the probes will write their 
information out into a file.[1] The timing information is based on the high-resolution clock, which 
is part of all new Sun hardware. That clock can be read directly (no system call required) with a 
resolution of 10 µs. 

[1] Actually, it's a bit more complicated than we show, as there is an intermediate, binary format 
between the probe and the human-readable file. Kernel probes write out to an internal buffer 
instead of a file, so that must be merged into the final output. 

Figure 14-4. Data Collection for TNF 
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To use TNF probes from Java, it is necessary to write the probes themselves in C and then use JNI 
to call those probes from your Java code. This is more than a little bit awkward and totally 
nonportable, but it does give you a great deal of very detailed performance information. We have 
an example of this in the code on the Web page (TNFExample.java). 

Once that data is collected, all that's left is to make sense of it. While you could simply read the 
file itself, that would probably prove to be rather difficult—there's just too much data to read from 
a printout. 

bil@cloudbase[89]: tnfdump /tmp/trace-45132 
 
probe tnf_name: "give_friend_raise_middle" tnf_string: "keys 
lgl;file tnf_list_global_lock.c;line 157;" 
 
probe tnf_name: "give_friend_raise_end" tnf_string: "keys 
lgl;file tnf_list_global_lock.c;line 159;" 
 
probe tnf_name: "liquidate_enemies_start" tnf_string: "keys 
lgl;file tnf_list_global_lock.c;line 186;" 
 
probe tnf_name: "liquidate_enemies_end" tnf_string: "keys 
lgl;file tnf_list_global_lock.c;line 198;" 
 
probe tnf_name: "give_friends_raise_end" tnf_string: "keys 
lgl;file tnf_list_global_lock.c;line 164;" 
 
Elapsed (ms)   Delta (ms)  ...   Probe Name 
------------   ----------        ---------- 
 0.000000       0.000000         give_friends_raise_start 
 0.695500       0.695500         give_friend_raise_start  
 0.955000       0.259500         give_friend_raise_middle 
 1.447000       0.492000         give_friends_raise_start 
16.150000      14.703000         give_friend_raise_end    
16.703000       0.553000         give_friend_raise_start  
17.311000       0.608000         give_friend_raise_middle 
36.163000      18.852000         give_friend_raise_end 

A better method is to use a special viewer, TNFview (also available via FTP), which condenses 
that data into graphical form and produces a series of histograms and plots. 
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In Figure 14-5 we see the details of one run of our program (Code Example 14-1). The different 
threads are shown as horizontal lines and specific probes are shown as different colored shapes, 
squares, triangles, circles, etc. The time line can be scaled and individual events examined. 

Figure 14-5. Main Data Display Window for TNF 

 

In Figure 14-6 we see a histogram of method latencies. TNFview assumes that pairs of probes 
ending in the words "start" and "end" are related and will produce graphs of latencies between the 
time the "start" probe fires and when the "end" probe fires. In this example we see that the vast 
majority of calls to give_friends_raise() took 20 ms (in this example the delay time was 
20 ms), a few took zero seconds (these are the friends we couldn't find), and a few more took 10 or 
30 ms (due to the 10 ms granularity of the system clock), and one last one took 50 ms (wonder 
why!). 

Figure 14-6. Histogram Display Window for TNF 
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To insert TNF probes into Java code, you need to make calls outside the JVM. It's a bit awkward 
to do, but not particularly difficult, as we show in Code Example 14-1. 

Example 14-1 Code Using TNF Probes in Java 

// TNFExample 
 
/* 
  Show how to use TNF from Java.  (Only a bit messy.) 
*/ 
 
import java.io.*; 
import java.util.*; 
import Extensions.*; 
 
class ProbedObject { 
    public native void objectCreateStart(); 
    public native void objectCreateEnd(); 
 
    static {System.loadLibrary("javaProbe");} 
} 
 
 
 
class TNFExample implements Runnable { 
    static SingleBarrier barrier = new SingleBarrier(1); 
 
    public static void main (String[] arg) throws Throwable { 
        long startTime = System.currentTimeMillis(); 
        long endTime; 
 
        if (arg.length == 0) { 
            System.out.println("Running single-threaded"); 
            new TNFExample().run();     // Non-threaded 
        } else { 
            System.out.println("Running multi-threaded"); 
            for (int i = 0; i < 1; i++) { 
                new Thread(new TNFExample()).start(); 
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            } 
 
            barrier.barrierWait(); 
        } 
 
        endTime = System.currentTimeMillis(); 
        System.out.println("Done after " + (endTime - startTime) + 
"ms"); 
        System.exit(0); 
    } 
 
    public void run() { 
        ProbedObject obj = new ProbedObject(); 
 
        for (int i = 0; i < 100; i++) { 
            obj.objectCreateStart(); 
            obj = new ProbedObject(); 
            obj.objectCreateEnd(); 
        } 
 
        barrier.barrierPost(); 
    } 
} 
 
 
 
/* javaProbe.c */ 
 
/* cc -G -I/usr/java/include -I/usr/java/include/solaris javaProbe.c 
-o 
   libjavaProbe.so */ 
 
 
#include <jni.h> 
#include <tnf/probe.h> 
#include "ProbedObject.h" 
 
JNIEXPORT void JNICALL 
  Java_ProbedObject_objectCreateStart(JNIEnv *env, jobject obj) { 
 
  TNF_PROBE_0(object_create_start, "object creation", ""); 
} 
 
JNIEXPORT void JNICALL 
  Java_ProbedObject_objectCreateEnd(JNIEnv *env, jobject obj) { 
 
  TNF_PROBE_0(object_create_end, "object creation", ""); 
} 
 
 
#  run.csh 
 
# Show how to compile, link, and run a program to get TNF information 
echo "Compiling java code..." 
javac -O TNFExample.java 
javah -jni ProbedObject 
 
echo "Compiling C code..." 
cc -G -I/usr/java/include -I/usr/java/include/solaris javaProbe.c -o 
libjavaProbe.so 
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echo "Running program under prex..." 
prex -o /tmp/tnf.tmp java TNFExample < cmds 
 
echo "Dumping results (or view with tnfview)..." 
tnfdump /tmp/tnf.tmp | head 
 
echo "Viewing results with tnfview..." 
tnfmerge -o /tmp/tnfview.tmp /tmp/tnf.tmp 
$TNFHOME/bin/tnfview2 /tmp/tnfview.tmp 
 
 

Summary 

Using the Solaris toolset as an example, a brief overview of what you can expect from MT tools 
was given, along with a few hints about what to look for and what to look out for. 
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Chapter 15. Performance 
• Optimization: Objectives and Objections 
• CPU Time, I/O Time, Contention, Etc. 
• Limits on Speedup 
• Benchmarks and Repeatable Testing 
• The Lessons of NFS 

In which we make things faster, look at general performance issues, political performance issues, 
an Your program is not a commodity;nd thread specific performance issues. We conclude with a 
discussion of the actual performance of multithreaded NFS. 

 

Optimization: Objectives and Objections 

Performance is an incredibly wide topic that means different things to different people. It is often 
referred to broadly and vaguely as an obvious requirement for all programs, without ever defining 
exactly what it is. We are not aware of any truly good and comprehensive texts on the subject.[1] In 
one short chapter, about all we can do is point out the things you probably already know. 

[1] There are a number of books discussing kernel tuning, many discussing algorithmic issues for 
general programs, and numerous texts and papers do detailed analyses of theoretical limits.These 
are all fundamental and important places to start, but they are all weak on many important aspects 
of actual implementation. 

Before you begin optimizing your program, you must answer the fundamental question: What do 
you really want? We're not being silly. This is not an easy question. Major factors surrounding 
performance tuning include: 

• Time to market 
• Available human resources and programming costs 
• Portability 
• User perception 
• Competition 
• Targeted machine configuration 
• Algorithm 
• CPU time, I/O time, contention, etc. 

In general, your customers' only objective is going to be: "Do my work for the least cost." They 
really do not (well, should not) care about any of the details. They have their job to do and that's 
the sole value of your software to them. Many of us engineering types have a tendency to skip 
over all this touchy-feely stuff and jump straight into the code. Let us resist for a moment and 
consider these details that affect our pay checks so much. We may not like this, but it really is 
vitally important. 

Time to Market 

Most optimization issues are ultimately marketing issues. These marketing aspects are important 
and have to be hashed out with management. It's no use having a program that runs twice as fast if 
your company's out of business. We'll get to the techniques in a moment, but we wish to 
emphasize this point. The amount of optimization to do on a program is a marketing issue. 
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Related to this is correctness. Correctness is more important than either performance or time to 
market. Minor bugs and occasional crashes can be traded off against time to market, but 
fundamental correctness is essential. Unfortunately, this is a major battle between engineering and 
marketing all the time. 

Available Human Resources and Programming Costs 

If you can speed your program up by 50 percent, but it takes 60 programmers two years to do it, is 
it worth it? Maybe yes, maybe no. It's up to you and you should be thinking in these terms when 
you begin the optimization efforts. 

Portability 

Some of the techniques we're going to discuss will require customizing to a particular platform or 
even to a particular configuration. Is such specialization worthwhile to you? Maybe yes, maybe no. 
Sunsoft does a PSR (Platform Specific Release) of Solaris for each different machine (one for the 
SS1, another for the SS2, a third for the SS10, etc.). Ninety-nine percent of the code will be shared, 
but things like byte copy will be optimized for the exact CPU, memory bus, and cache 
configuration. 

It is highly unlikely you would ever go as far in your own code. The normal thing is to optimize 
for a specific configuration (typically, the highest-performance one) and admit that the others will 
be a bit suboptimal. Would you want to write and maintain upward of 20 PSRs just for Sun 
machines? And another 20 for SGI, DEC, etc.? 

User Perception 

Yes, you might be able to optimize an editor to process keystrokes twice as fast. The user wouldn't 
care, because the user can't tell the difference between 1-ms and 2-ms response time anyway. 
Don't waste your time on useless optimization. 

Easier said than done, of course. Especially as the world is rife with inappropriate benchmarks 
upon which people do base their buying decisions. Sorry. 

Competition 

Being 10% faster means nothing to the user. It looks great on the data sheets, but that's about it.[2] 
Your program is not a commodity; don't sell it as if it were. Of course, if your program runs 50% 
slower than the competition, you may need to speed it up significantly. Make sure that you get the 
time and support you need. 

[2] Yes, performance numbers on data sheets are important because people do make decisions 
based upon a 1% difference in a published benchmark (dumb, but real). Nonetheless, given a 
choice between releasing 5% slower than the competition today and 5% faster next year, we'd opt 
for today. 

Targeted Machine Configuration 

You have to select your primary target machine and you have to declare some configurations 
inadequate. If you can't get your desired performance on a x286, don't sell on a x286.[3] Next year's 
machines will be twice as fast anyway. Sometimes, "throwing money at the problem" is the right 
answer. 
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[3] At one of Bil's first software division meetings (back when everyone fit into the cafeteria!), there 
was a big debate concerning the poor performance of SunOS on a 4-MB machine. Some of 
management wanted to restrict all developers to 4-MB machines so we would be more motivated to 
control code inflation. The final resolution was to make 8 MB the minimum shippable configuration. 

Algorithm 

There are three vitally important aspects of performance optimization: algorithm, algorithm, and 
algorithm. Seriously. Forget all of this other stuff until you have settled on the very best possible 
algorithm. We can show you programs that will run faster on a uniprocessor VAX 780 than on a 
64-way, 500-MHz Alpha Server, simply due to algorithm choice. 

You can multithread bubblesort, and it will run twice as fast, but… 

 

CPU Time, I/O Time, Contention, Etc. 

That should be enough moralizing on the practicalities of dealing with the real world. Now let's 
get serious—you're an ISV and you really want to get the best performance you can (for some 
"reasonable" programming cost). First let's look at the overall system design and define our true 
objectives. 

The primary components are the CPU, the cache, the main memory bus, main memory, the I/O 
bus, and the peripherals (disks, tapes, possibly displays, networks, etc.), all of which can be 
viewed generically as resources. There is a tendency to view the CPU as unique, and we often 
speak of maximizing CPU usage before considering any other subsystems. However, that's not 
really what we want. We really want our program to run in minimal wall-clock time. Let's 
consider these subsystems. 

CPU 

Some programs are completely CPU-bound. They don't make great demands upon the peripherals 
and have a small enough working set to be largely cache resident. A huge number of programs are 
partially CPU-bound. To optimize such programs, our primary technique will be to reduce the 
number of instructions executed, and our primary method of doing so will be by choosing the best 
algorithms. 

Our secondary method will be to examine our code very carefully to see if there are places where 
loops can be made tighter. Sometimes we will even examine assembly code to verify the tightness 
of the complied code. In all cases, we will first analyze our program, then focus our efforts on 
those sections that consume the most time. 

We will leave clever use of registers, optimal instruction scheduling, and the like to the compiler. 
Only in the rarest of circumstances will we ever "bum" code (write assembly code). Byte copy can 
be written in a single line of C code. On Sun machines, the actual library call occupies roughly 
500 lines of carefully hand-optimized assembly code. It is specialized for each of the different 
byte alignments, and a different version is written for each PSR. The programmer counts the 
instructions, spreads data across numerous registers to maximize pipelining and multiple 
instruction issues, etc. It runs upward of ten times as fast as the one line of C. 

The chances of you doing anything similar is quite small. It takes a lot of effort, and it is valuable 
for only a few very tight, very intensively used loops. The hassle of maintaining "bummed" code 
is also quite significant. Don't do this at home! 
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Memory Latency 

The speed at which the main memory system can fill cache requests is a major factor on the CPU 
side of performance. It is not at all unusual for memory latency to occupy 50% of total CPU time. 
Memory latency is difficult to identify as separate from CPU time because there are no standard 
tools for measuring the amount of time it takes. As far as the OS is concerned, the entire 
CPU/cache system is a single entity and is lumped into a single number—CPU time. 

No measurements of cache activity are recorded, so the only means of distinguishing cache from 
CPU are (1) counting instructions, (2) comparing target code to known code, and (3) using 
simulators. Simulators are not generally available.[4] We'll focus on (1) and (2). Once we 
determine the cache behavior of our program, we may be able to reorganize data access to 
improve performance (see Reducing Cache Misses). 

[4] They're too complex to use easily, so there's no reasonable way for vendors to market them. If 
you are willing to go through a lot of pain and spend big bucks for one, tell your vendor. Vendors will 
do anything for money. 

Memory Bandwidth 

No single CPU can come vaguely close to saturating a main memory bus. At the insane rate of one 
memory access per cycle, a 200-MHz Ultra could demand nearly 100 MB/s—one-twelfth of the 
UPA bus's bandwidth. Of course, the CPU wouldn't have any time to do anything. Realistic 
programs demand data rates closer to 50 MB/s, and 95% or more of that is serviced by the cache. 
Main memory bus rates of 5 MB/sec per CPU are normal for actual programs. A UPA bus can 
sustain data rates of over 1 GB/s. 

It is true that a maximally configured ES10000 with 64 CPUs can easily saturate the 100-MHz 
UPA crossbar switch. We don't have any clever techniques for minimizing it. 

I/O Latency 

Making a disk request takes a long time, about 20 ms. During this time a thread will typically go 
to sleep, letting others run. Depending upon the details of the access pattern, there are a couple of 
things we can do either to reduce the number of requests or to pipeline them. When the working 
set is just a bit larger than main memory, we can simply buy more memory. 

When the working set is enormous, we can duplicate the techniques that we'll use for optimizing 
memory access (see Reducing Cache Misses). Disk accesses are easier to deal with than cache 
misses because the OS does collect statistics on them and because the CPU is able to run other 
threads while waiting. 

Other types of I/O must simply be endured. There really is no way to optimize for asynchronous 
network requests. 

Contention 

Sometimes one CPU will hold a lock that another CPU needs. This is normal and unavoidable, but 
it may be possible to reduce the frequency. In some programs, contention can be a major factor in 
reducing the amount of parallelism achieved. Contention is only an issue for multithreaded (or 
multiprocess) programs, and primarily only on MP machines. Although threaded programs on 
uniprocessors do experience contention, the most important cause of the contention is the speed of 
other components of the system (e.g., you're holding a lock, waiting for the disk to spin). 
Reducing contention is always a good thing, and is often worth a lot of extra work. 
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Throughput vs. Latency 

Given these resources, we next must refine our definition of performance—do we want to 
minimize latency for individual subsystems, such as having an NFS server respond to individual 
requests as fast as possible, or do we want to maximize the number of requests per second that the 
server can handle? This is a serious consideration and we cannot blithely answer "both." 

Consider Figure 15-1.[5] We get to select the point on the graph where we wish to operate. For 
some programs (e.g., numerical calculations), this latency vs. throughput issue is nonexistent; for 
others (e.g., NFS) it is paramount. The answer to the question is almost always, "Maximize 
throughput with 'reasonable' latency." For NFS this means that everyone designs their servers to 
give maximum throughput at 40-ms average latency.[6] The question now becomes: "For my 
individual application, which of these subsystems is the limiting factor, and how much can I 
accelerate that before another subsystem becomes saturated?" 

[5] Program data and graphs from Hennessy and Patterson, Computer Architecture, 2nd edition 
(San Francisco: Morgan Kauffmann, 1996). 

[6] Forty milliseconds is also the limit chosen for the maximum allowable latency for the SPEC 
Laddis benchmark. 

Figure 15-1. NFS Throughput vs. Latency on Some SGI Machines 

 

 
 

Limits on Speedup 

A naive view of multiprocessing says that we should expect a two-CPU machine to do twice as 
much work as a one-CPU machine. Empirically, this is not at all the case. Indeed, it is not unusual 
to hear reports of people who see very little improvement at all. The truth is that it all depends 
upon what you are doing. We can cite examples of programs that get near-linear speedup, a few 
that show superlinear speedups, a large majority that show some speed up, and even a few that 
slow down. 



 207

One basic fact should be acknowledged up front: There is always a limit. For every program or 
system load that you can imagine, there is an optional number of CPUs to run it on. Adding more 
CPUs to the machine will slow it down. 

You could, if you wanted, build a 1-million-CPU SMP machine. It just wouldn't be very efficient. 
And while we can invent programs that would make good use of all 1 million CPUs (e.g., analyze 
all 20 move chess games), they would be highly contrived. Most "normal" programs can make use 
of only a small number of CPUs (typically, 2–20). 

Let's start by looking at some data from some simple programs (Figure 15-2). These are 
numerically intensive programs that run entirely in memory. Because there is no I/O involved, and 
because the amount of shared data is often quite limited, all of these programs show a superb 
scaling up to 16 CPUs. 

Figure 15-2. Parallel Speedup on Several Numerical Programs 

 

Fast Fourier transforms are performed by a set of matrix manipulations. It is characterized by 
largely independent operations with significant interthread communication in only one section. 
The next three programs all have largely constant amounts of interthread communications. LU 
factorization is dense matrix factorization, and also performed by a set of matrix manipulations. 
Barnes-Hut is an N-body simulation for solving a problem in galaxy evolution. Ocean simulates 
the effects of certain currents on large-scale flow in the ocean. 

Notice that all of these programs do show a falloff in performance for each additional CPU. At 
some point, that falloff will drop below zero and begin to slow the total throughput. Why? Well, 
let's take a look at where these programs are spending their time. As you can see from Figure 15-3, 
the amount of time that the CPUs actually spend working on the problem drops as the number of 
CPUs increases. Notice that memory overhead can easily occupy 50% for total CPU time. On 
database-style programs, it can exceed 50%. The requirement for synchronization takes up more 
and more of the time. Extrapolating out to just 128 CPUs, we can infer that performance would be 
dismal indeed. 

Figure 15-3. Program Behavior for Parallelized Benchmarks 
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Superlinear Speedup 

In a very small number of programs, such as Ocean on two and four CPUs (Figure 15-2), it is 
possible to see speedups slightly better than linear. This is a result of having more cache and 
possibly reducing overhead because of fewer context switches. It's nice if you get it, but don't 
expect it. 

Timing Threaded and Nonthreaded Programs 

In our measurements, we compare the runtime of identical code that creates different numbers of 
threads, appropriate to the available CPUs. This isn't really fair, because we're including the 
synchronization overhead (and possibly a less efficient algorithm) for the one-CPU case, which 
doesn't need that synchronization. 

Unfortunately, for any real program, it's far too complex to implement, optimize, and maintain two 
different programs (the PSR argument again). Most ISVs ship a single binary and simply run 
suboptimally on uniprocessors. You may console yourself (and your marketing department) by 
noting that you can probably find more performance improvement in the techniques mentioned 
above than you can in writing a uniprocessor-only version. 

 

Amdahl's Law 

Amdahl's law (Figure 15-4) states: If a program has one section that is parallelizable, and another 
section that must run serially, the program execution time will asymptotically approach the time 
for the serial section as more CPUs are added. 

Figure 15-4. Amdahl's Law: Time(total) = Time(serial) + Time(parallel) / 
Number_of_CPUs 
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Although obviously true, this fact is of no interest to many programs. Most programs with which 
we have worked (client/server, and I/O intensive) see other limitations long before they ever hit 
this one. Even numerically intensive programs often come up against limited memory bandwidth 
sooner than they hit Amdahl's limit. Very large numeric programs with little synchronization will 
approach it. So don't hold Amdahl's law up as the expected goal. It might not be possible. 

Client/server programs often show a lot of contention for shared data and make great demands 
upon the I/O subsystem. Consider the TCP-C numbers in Figure 15-5. Irrespective of how 
representative you think TPC-C is of actual database activity (there's lots of debate here), it is very 
definitely a benchmark into whose optimization vendors put enormous effort. So it is notable that 
on a benchmark as important as this, the limit of system size is down around 20 CPUs. 

Figure 15-5. TPC-C Performance of a Sun UE6000 

 

So what does this mean for you? That there are limitations. The primary limiting factor might be 
synchronization overhead, it may be main memory access, it might be the I/O subsystem. As you 
design and write your system, you should analyze the nature of your program and put your 
optimization efforts toward these limits. And you should be testing your programs along the way. 

 

Performance Bottlenecks 

Wherever your program spends its time, that's the bottleneck. We can expect that the bottleneck 
for a typical program will vary from subsystem to subsystem quite often during the life of the 
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program. Bottleneck is a somewhat pejorative term that isn't really fair. After all, whichever 
subsystem is the bottleneck is the one that's doing your work! There is also a general tendency to 
want to "balance out" the work across the different subsystems, keeping them all busy all the time. 
Once again, that's a bit inaccurate. Balancing the work is useful only if it helps your program run 
faster. 

In Figure 15-6 we show a representation of where a program is spending its time and where the 
bottleneck is with respect to CPU, cache latency, and I/O latency. Each block represents how busy 
that subsystem is during some period of time (say, 10 µs). 

Figure 15-6. Performance Bottlenecks and Capacities of Programs 

 

Black indicates a subsystem used at full capacity, white indicates zero usage. A black CPU is 
never stalled for anything; the other subsystems are waiting for it to make requests. A black cache 
indicates that the CPU is stalled, waiting for data at least some of the time, and the same for I/O. 
Depending upon system design, it may or may not actually be possible for CPU and cache to be 
busy simultaneously. (We show a system where there is overlap.) The solid white sections for 
CPU 1 and 2 indicate that they are suffering contention, waiting for CPU 0 to release a lock. 

Typically, we expect CPU and cache to take turns being the bottleneck, alternating very rapidly. 
When I/O is the bottleneck, it will be so for extended periods of time (the latency on a disk read 
runs on the order of 20 ms). 

By definition, there must be a line of solid black from one end of our graph to the other. In some 
sense, the more solid black in the CPU section, the more work is getting done. A typical subgoal 
will be to maximize the amount of time that all the CPUs actually work. (The primary goal is to 
make the program run fast. Normally, you expect that making more CPUs do more work will have 
that effect.) Eliminating contention is a major factor in doing so. 

 

Benchmarks and Repeatable Testing 

Before you get into the details of optimizing your code, you need to be very clear on what your 
starting point is and what your objective is. Your overall objective is to make the entire system run 
faster. Perhaps you have a specific target (you need 13.5% improvement to beat the competition); 
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perhaps you just want to spend six months and get as much improvement as you can. Your starting 
point will be a specific release of your program, a specific machine to run it on, and a very well-
defined set of input data. You absolutely must have an unambiguous, repeatable test case for 
which you know the statistics. 

Things you may have to control for include other activity on the test machine, unanticipated 
network traffic, file layout on your disk(!), etc. Once you have all of that, you will generally find 
that most of your time is used by a few small loops. Once you're convinced that these loops really 
are the right ones, you'll separate them out into their own little testbeds and verify that you can 
produce the same behavior there. Finally, you will apply your efforts to these testbeds, 
investigating them in great detail and experimenting with the different techniques below. 

When you feel confident that you've done your best with them, you'll compare the before and after 
statistics in the testbeds, then integrate the changes and repeat the tests in the original system. It is 
vitally important that you repeat the test in both original version and in the new version. Far, far 
too many times people have discovered that "something changed," that the original program now 
completes the test faster than before, and that the extensive optimizations they performed didn't 
actually make any improvement at all. 

Is It Really Faster? 

Even "simple, deterministic programs" show variation in their runtimes. External interrupts, CPU 
selection, VM page placement, file layout on disks, etc., can cause wide variation in runtimes. A 
difference of 20% between two runs of the same "deterministic" CPU-bound program is not 
unusual. Consider the runtimes listed in Table 15-1. A program was run four times, giving the first 
set of results. It was changed, recompiled, and gave the second set of results. 

Table 15-1. Runtimes for Four Trials 
Run 1  Run 2  

rate: 27.665667/s  rate: 28.560094/s  
rate: 23.503779/s  rate: 28.000473/s  
rate: 20.414748/s  rate: 25.274012/s  
rate: 20.653608/s  rate: 35.249477/s  
Mean rate: 23.05/s  Mean rate: 28.27/s  
Standard deviation: 3.34  Standard deviation: 4.20  

The question is: How sure are we that the difference we measured is the difference between the 
actual means? The answer requires a tiny bit of statistics which you can take straight from a book 
or even "eyeball" the data. You just have to know what you're looking for. We want to know this: 
µ1 – µ2 =? x1 – x2 given the data in Table 15-1. 

x1 = 23.05  s1 = 3.34  
x2 = 28.27  s2 = 4.20  

The answer is that for four measurements (which isn't very many), looking for the usual 95% 
confidence level: 
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Thus 

 

 

The interval includes zero. We are less than 95% certain that the two sets of measurements are 
different! And indeed, this is taken from a set of runs that were done incorrectly. After modifying 
the program, it was recompiled to a.out by mistake. The two sets of measurements actually 
come from exactly the same binary! 

If you run only four measurements, the difference between the measured means must be greater 
than (1.96 x std. error), or roughly twice the measured standard deviation. By running it ten times 
(see Table 15-2) the 95% confidence level is obtained when the difference is greater than the 
standard error. When the numbers are reasonably close together, you can eyeball the mean and 
standard error fairly easily. 

Table 15-2. Runtimes for Ten Trials 
Run 1  Run 2  

N_PROD = 1 N_CONS = 4  N_PROD = 1 N_CONS = 5  
rate: 85.965975/s  rate: 89.984372/s  
rate: 86.802915/s  rate: 91.710778/s  
rate: 88.528658/s  rate: 91.075302/s  
rate: 85.411582/s  rate: 91.741185/s  
rate: 85.957945/s  rate: 87.995095/s  
rate: 84.514983/s  rate: 93.661803/s  
rate: 86.732842/s  rate: 89.505427/s  
rate: 84.284994/s  rate: 89.262953/s  
rate: 85.024726/s  rate: 89.611914/s  
rate: 85.602694/s  rate: 91.972079/s  
    
Mean rate: 85.88/s  Mean rate: 90.65/s  
Standard deviation: 1.25  Standard deviation: 1.67  

The difference between the means is about 5 and the standard deviation is about 1.5. The 
difference, 5 – 1.5, is much greater than zero, so we can conclude with confidence that run 2 is 
indeed superior to run 1. Doing this stuff well is not at all obvious, and doing it wrong is all too 
common. We're not expecting you to do this carefully on every test, but you do have to be aware 
of it. 

General Performance Optimizations 

By far the most important optimizations will not be specific to threaded programs, but rather, the 
general optimizations you do for nonthread programs. We'll mention these optimizations but leave 
the specifics to you. First, you choose the best algorithm. Second, you select the correct compiler 
optimization. Third, you buy enough RAM to avoid excessive paging. Fourth, you minimize I/O. 
Fifth, you minimize cache misses. Sixth, you do any other loop optimizations that the compiler 
was unable to do. Finally, you can do the thread specific optimizations. 
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Best Algorithm 

That's your problem. 

Compiler Optimization 

This is not necessarily obvious and is highly dependent upon the individual compiler. If you just 
use the usual byte code compiler, there are no particular issues—your program will run at a 
nominal speed on any platform. With a JIT compiler or an adaptive compiler such as HotSpot, the 
compiler is able to take advantage of specific instructions on individual machines and you should 
expect much better performance and you should not have to do anything extra to obtain it. 

C Compiler Optimization 

By contrast, let's consider what you need to do for optimal performance of a C program. You need 
to select the individual machine to compile for. For example, Sun supports SS1s and SS2 (both 
SPARC version 7 machines, which trap to the kernel to handle the integer multiply instruction), 
SS10s, SS20, SS1000s, and SC2000s (all SPARC version 8 machines, which have hardware 
integer multiply); and Ultras (SPARC version 9 machines, which have 64-bit registers and 64-bit 
operations). Optimizing for an Ultra might produce lousy code for an SS1. Optimizing for an SS1 
will produce OK code for an SS10 or Ultra. (This is a marketing decision, of course.) 

You need to choose the optimization level for your program. You may choose different levels for 
different modules! Sun compilers, for example, provide five levels of optimization. Level -xO2 is 
the normal good optimization level, producing fairly tight code, highly reliable and highly correct. 
Levels 3, 4, and 5 produce extremely fast code (it may be larger), which is much faster than -xO2 
in some cases and possibly slower in others. They are much more likely to fail (i.e., not compile at 
all). 

Thus, expect to compile and test your program at -xO2 (default). Compile and profile it at -xO2. 
Separate out the high time functions and recompile them at higher levels. If they work and are 
faster, great. If not, too bad. 

Java Compiler Optimization 

Java compilers do not in general have anything similar to the switches in C, and you often have no 
options at all. 

Buy Enough RAM 

Test the program with different amounts of memory and select the best price/performance level. 

Minimize I/O 

Organize your data so that when you do read a disk block, you make maximum use of it and you 
don't have to read it again. One obvious thing is to use the mmap() calls to map files into the 
address space instead of calling read(). This eliminates an extra kernel memory copy and allows 
you to give access pattern hints to the OS. 

Again, Java does not have any such options. The only way to get data into the program is to call 
read(). Unfortunately, system calls are particularly expensive in Java because Java must do a lot 
of setup before calling the native code, so I/O in Java is significantly slower than even regular I/O 
in C. 

Minimize Cache Misses 
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Organize your data so that when you do load a cache line, you make maximum use of it and you 
don't have to load it again (see Reducing Cache Misses). 

Any Other Loop Optimizations 

There are all sorts of things you might be able to do to assist the compiler in performing 
optimizations that it can't do by itself for some reason: inlining functions, loop unrolling, loop 
interchange, loop fusion, etc. Generally, these things are done by the optimizer. We will look at 
the assembly code for very tight loops just to verify our expectations. Your vendor documentation 
will help here. 

Thread-Specific Performance Optimizations 

Now that we have wildly emphasized the importance of doing all the normal performance work 
first, let's take a look at the stuff that's specific to multithreaded programs. There are just a couple 
of performance areas specific to MT: reducing contention, minimizing overhead, and creating the 
right number of threads. 

Reducing Contention 

Clearly, we do not want to have lots of CPUs waiting around idle because they can't get a mutex 
they need. Equally obviously, we cannot neglect proper locking to avoid this contention. Your 
options for dealing with this situation are limited by what you're doing. 

In some circumstances, you will be able to divide your global data into smaller groups, with more 
locks. Then a thread that needs to use item 1 will not block other threads that need item 2. This 
will work only if the two items are not used together all the time. This is fine-grained locking. 
There is a trade-off between grain size and overhead. Other times, you'll be able to substitute 
readers/writer locks for mutexes. 

Minimizing MT Overhead 

There are a few different threads functions that you might call often enough to make a significant 
impact upon performance. The first case is the fine-grained vs. course-grained locking trade-off. 
In cases where different data items are used together, making the locking finer-grained will 
increase the overhead due to locking, slowing the total performance even though contention may 
be reduced. In the friends/ enemies program (Manipulating Lists), it is possible for us to lock 
every single list node individually. This will increase the parallelism of the program over the 
global mutex design, but total runtime will be many times worse. 

What is the right granularity? It will be obvious in most cases, but sometimes the only solution is 
to experiment. 

Reducing Paging 

In most operating systems, overlapping I/O and computation can be accomplished without threads. 
Most operating systems have some sort of asynchronous I/O that allows you to issue an I/O 
request, then go back to what you were doing without waiting for it to complete. When it does 
complete, a signal will be sent to your process and you will then ask the operating system which 
request it was that completed and deal with it as you please. (Obviously, this is not a direct issue 
for Java, which has nothing similar.) 

This asynchronous I/O can be awkward to deal with, but it will do the job. Using threads instead 
of asynchronous I/O is much easier to program and equally fast (Figure 15-7). The one place 
where async I/O will not work is with page faults. When a nonthreaded program takes a page fault, 
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it waits. Threaded programs can finesse this, because there is no problem with thread 4 continuing 
to run while thread 1 is waiting for a page fault. The finesse yields a nice performance 
improvement for many programs, even on uniprocessor machines. 

Figure 15-7. Using Threads to Optimize Paging 

 

Communications Bandwidth 

Sometimes the amount of data that needs to be exchanged between threads for a program is very 
low compared to the total computing time. For example, a chess position can be encoded into a 
dozen or so bytes, whereas the time to compute the best move might be hours. Such a problem, 
which also requires only a tiny amount of synchronization, can be productively spread across 
thousands of very distant processors that don't even share memory.[7] Distributed parallel systems 
such as PVM are well suited to such problems. 

[7] In one of the big computer chess tournaments back in the late 1980s, one of the contestants 
managed to convince several thousand of us to run a networked chess program over the weekend. 

When the data/computation ratio is higher, or when more synchronization is required, distributing 
across a network is not feasible, as the communications costs would exceed the CPU time to 
execute the entire computation locally. Most image processing programs fit into this category. 
Dithering a 1000 x 1000 image might take 1 second on one CPU and require very little 
synchronization. Executing this program on 1000 CPUs would take only 1 ms of computation 
time, yet moving that 1-meg image out and back across a network would take far longer. 
Executing it on a 10-CPU shared memory multiprocessor would make far more sense, taking more 
like 100 ms total. 

Right Number of Threads 

You want to have enough threads to keep all the CPUs busy all the time (if possible), but not so 
many that the CPUs are doing unnecessary context switching. Determining exactly the right 
number is ultimately an empirical experiment. We give rough estimates in How Many LWPs?. 

Short-Lived Threads 
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Thread creation and synchronization time is quite low (about 1.5 ms on an 110-MHz SS4), 
making it reasonable to dispatch relatively small tasks to different threads. How small can that 
task be? Obviously, it must be significantly larger than the thread overhead. 

Something like a 10 x 10 matrix multiply (requiring about 2000 FP ops @ 100 Mflops = 20 µs) 
would be much too small to thread. By contrast, a 100 x 100 matrix multiply (2M FP ops @ 100 
Mflops = 20 ms) can be threaded very effectively. If you were writing a matrix routine, your code 
would check the size of the matrices and run the threaded code for larger multiplies, and run the 
simple multiply in the calling thread for smaller multiplies. The exact dividing point will be about 
3 ms. You can determine this empirically, and it is not terribly important to hit exactly. 

One ISV we worked with was doing an EDA simulation, containing millions of 10-µs tasks. To 
say the least, threading this code did not produce favorable results (it ran much slower!). They 
later figured out a way of grouping the microtasks into larger tasks and threading those. The 
opposite case is something like NFS, which contains hundreds of 40-ms tasks. Threading NFS 
works quite well. 

Dealing with Many Open Sockets 

In C, C++, etc., when you want to have a large number of clients connected to your server at the 
same time, you use a select()[8] call [in Win32 it's waitForMultipleObjects()]. This 
function takes a list of file descriptors as an argument and returns when there is data ready on one 
of them. This allows a single thread to wait on 1000 sockets. This is a good thing because the 
overhead of having 1000 threads, each waiting on a single socket (as we've done in our programs), 
would be prohibitive. 

[8] Or poll(), which is actually more common now, due to its ability to handle very large numbers 
of open connections. 

Unfortunately, Java does not have anything similar, putting an extra constraint on the size and 
scalability of your server. In Java you must have one thread devoted to each client, rendering the 
producer/consumer version of a server awkward. Many of the major Java server programs actually 
use JNI calls into C to make use of the select() there. There is pressure for Java to implement 
select(). 

 

The Lessons of NFS 

One practical problem in evaluating the performance of threaded programs is the lack of available 
data. There are simply no good analyses of real threaded programs that we can look at. (There are 
analyses of strictly computational parallel programs but not of mixed usage programs, client/ 
server, etc.) Nobody's done it yet! Probably the best data we have comes from NFS, which we 
shall look at now. 

The standard metric for evaluating NFS performance is the SPEC LADDIS benchmark, which 
uses a predefined mix of file operations intended to reflect realistic usage (lots of small file 
information requests, some file reads, and a few file writes). As the NFS performance goes up, 
LADDIS spreads the file operations over a larger number of files on more disks to eliminate trivial, 
single-disk bottlenecks. 

An NFS server is very demanding on all subsystems, and as the hardware in one area improves, 
NFS performance will edge up until it hits a bottleneck in another. Figure 15-8 shows 
configurations and performance results for a variety of systems. Notably, all of these systems are 



 217

configured below their maximum size. Adding disks, controllers, or CPUs will not improve the 
performance. They do not use the maximum throughput of either I/O or memory buses. 

Figure 15-8. NFS Throughput on a Series of Sun UE Machines (The performance 
improvement is somewhat exaggerated, as a two-way UE6000 will outperform a 

two-way UE 2.) 

 

In all of these maximum performance configurations, the bottleneck is contention and memory 
latency. One CPU will be working on some portion of a file system and will have locked inodes, 
allocation tables, etc., that another CPU requires. Once these locks are released, the other CPUs 
may have to context switch to the appropriate thread. It will certainly have to take a lot of cache 
misses to load those newly changed tables. Additional CPUs will not improve the situation, but 
higher-performance CPUs will. This is because one CPU can now do more work, hence the data in 
cache will be used more, reducing both the number of misses and the amount of contention. 

NFS is not a "typical" client/server application in one particular aspect: NFS is started as a typical 
user-level process, but all that process does is to make a single call into the kernel. For the rest of 
its lifetime, NFS remains in the kernel, spawning threads there as it deems necessary. Thus, NFS 
does not have to do any context switching for I/O as normal user-level programs must do, and it 
can avoid the extra step of copying data from kernel buffer to user space.[9] NFS could have been 
written as a user-level program, but the context switching would have killed performance. It was 
never tried.[10] 

[9] Most programs would not benefit from the "optimization" of executing entirely in the kernel. 
Outside the horrible complexity of trying to build and maintain a patched kernel using constantly 
changing internal kernel interfaces, very few programs spend so much time in system calls and so 
little time in their own code. NFS spends about 45% of its time in the transport layer, 45% in the file 
system, and 10% in actual NFS code. Even DBMSs which are known for their enormous I/O 
demands pale in comparison to NFS. The distinction is that DBMSs are going to use much of the 
data they load, as opposed to just pushing it across the network like NFS. 

[10] There is one example of precisely this being done, but it was never optimized to any degree, so 
we can't validly compare the (abysmal) results. 

A 24-way ES6000 can sustain about 21,000 NFS operations/second (about 900 ops/CPU) with a 
latency of about 40 ms. A one-way machine gets about 2000 ops. This implies a requirement of 
500µs on the CPU per NFS op and thus 80 outstanding requests (waiting for the disks) at any one 
time. The limiting factor is CPU power plus locking contention. There is plenty of room for more 
or faster disks, and more network cards, but they wouldn't help. 
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Actual data transfers are accomplished via DMA from/to disks and the network. The data is 
brought into the CPU only to perform checksums; it is never written by the CPU. Checksums have 
horrible data locality—they load lots of data, but use that data only once, and only for a single 
addition. This means that the CPU will spend an inordinate amount of time stalled, waiting for 
cache loads, but that it will do virtually no writes. (Some folks are building checksumming 
hardware for exactly this purpose.) Normal programs spend more time using the data once loaded 
into cache, do more writes, and generally spend less time stalled on cache misses. 

NFS is constructed as a producer/consumer program. The master/slave design was rejected as 
being inappropriate because of the nature of interrupt handling. When a network card gets a packet, 
it issues an interrupt to one of the CPUs (interrupts are distributed in a round-robin fashion on 
Sun's UE series). That CPU then runs its interrupt handler thread. 

For an NFS request, the interrupt handler thread acts as the producer, building an NFS request 
structure and putting that onto a list. It is important for the interrupt handler thread to complete 
very quickly (as other interrupts will be blocked while it's running); thus it is not possible for that 
thread to do any appreciable amount of work (such as processing the request or creating a new 
thread). The consumers pull requests off the queue (exactly like our P/C example) and process 
them as appropriate. Sometimes the required information will be in memory, but usually a disk 
request will be required. This means that most requests will require a context switch. 

Many of the original algorithms used in single-threaded NFS proved to be inappropriate for a 
threaded program. They worked correctly, but suffered from excessive contention when 
appropriate locking was added. A major amount of the work on multithreaded NFS was spent on 
writing new algorithms that would be less contentious. 

The results? An implementation that scales extremely well on upward of 24 CPUs. 

 

Summary 

Performance tuning is a very complex issue that has numerous trade-offs to be considered. Once a 
performance objective and level of effort has been established, you can start looking at the 
computer science issues. Even then the major issues will not be threading issues. Only after you've 
done a great deal of normal optimization work will you turn your eyes toward threads. We give a 
cursory overview of the areas you need to consider, and wish you the best of luck. 
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Chapter 16. Hardware 
• Types of Multiprocessors 
• Bus Architectures 
• Memory Systems 

In which we look at the various designs for SMP machines (cache architectures, interconnect 
topologies, atomic instructions, invalidation techniques) and consider how those designs affect our 
programming decisions. Some optimization possibilities are looked at. 

 

Types of Multiprocessors 

In dealing with MT as we have described it here, we are also making some assumptions about the 
hardware we are going to be using. Everything we discussed is based on our using shared memory 
symmetric multiprocessor (SMP) machines. There are several other types of multiprocessor 
machines, such as distributed shared memory multiprocessors (Cray T3D, etc.) and massively 
parallel multiprocessors (CM-1, etc.), but these require very different programming techniques. 

Shared Memory Symmetric Multiprocessors 

The fundamental design of this machine requires that all processors see all of main memory in an 
identical fashion. Even though a memory bank might be physically closer to one CPU than 
another, there is no programming-level distinction in how that memory is accessed. (Hardware 
designers can do all sorts of clever things to optimize memory access behind our backs, as long as 
we are never aware of them.) 

The other distinguishing aspect of this machine is that all CPUs have full access to all resources 
(kernel, disks, networks, interrupts, etc.) and are treated as peers by the operating system. Any 
CPU can run kernel code at any time (respecting locked regions, of course) to do anything. Any 
CPU can write out to any disk, network device, etc., at any time. Hardware interrupts may be 
delivered to any CPU, although this is a weaker requirement and is not always followed.[1] 

[1] In practice, interrupts are generally distributed to CPUs in a round-robin fashion. 

All of the multiprocessors in the PC, workstation, and server realms are shared memory symmetric 
multiprocessors: the two-way Compaq machines and all of the Sun, SGI, HP, DEC, HAL, and 
IBM RISC machines. (IBM also builds the SP-2, a large, distributed memory machine—basically, 
a cluster of PowerServers.) Obviously, all manufacturers have their own internal designs and 
optimizations, but for our purposes, they have essentially the same architecture. 

The CPU 

All of the CPUs have the same basic design. There's the CPU proper (registers, instruction set, 
fetch, decode, execution units, etc.), and there's the interface to the memory system. Two 
components of the memory interface are of particular interest to us. First there's an internal cache 
(I$[2]—typically 20–32 kB), then an external cache (E$—typically, 0.5–16 MB),[3] and finally, 
there's a store buffer. The I$ holds all of the most recently accessed words and provides single-
cycle access for the CPU. Should the I$ in CPU 0 contain a word that CPU 1 changes, there has to 
be some way for CPU 0 to beware of this change. E$ access is about 5 cycles, with the same 
coherency issue. This is problem 1. 
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[2] "$" stands for U.S. dollars (i.e., money). Another word for paper money is cash, which sounds 
just like the way Americans pronounce cache. Aren't hardware designers funny? 

[3] The distinction between unified caches and divided caches (one section for instructions, a 
different section for data) is not particularly interesting for what we're doing. 

The store buffer is a small, specialized cache that holds words the CPU is writing out to memory. 
The idea is that instead of requiring the CPU to stall while a write is going on (it takes 30–100 
cycles), the word will be placed into the store buffer, which will then arrange to write the word out 
to main memory when it sees fit. This way the CPU can run at full speed, not worrying about 
exactly when a word arrives in main memory. 

Of course, the store buffer must be closely coupled with the I$ and memory fetch unit to ensure 
that the CPU has a coherent view of memory. It wouldn't do for CPU 0 to write x1234545F into 
location x00000010, then load x00000010 and not see x1234545F. Hardware architects take 
care of that, so we don't have to bother. The other issue with using a store buffer is that of 
determining when writes arrive in main memory. CPU 0 might write out dozens of words, placing 
them in the store buffer, while CPU 1, which then accesses those words, wouldn't see the changes, 
because the store buffer hasn't written them out yet. This is problem 2. 

Just to further complicate the hardware picture, it is possible for the hardware designers to give the 
store buffer more latitude in its choice of which words to write out when. Total store order refers 
to a design that requires the store buffer to write words to main memory in the same order as the 
instruction stream. It can be more efficient for the store buffer to write words out in a different 
order (perhaps it can write a series of contiguous words out together; perhaps it can write a word 
to memory bank 1, then memory bank 2). There are a variety of schemes for this out-of-order 
writing (partial store order, weak order, etc.). The importance to us is that we must not rely on 
write order! This is problem 3. 

One more complication is that CPUs might do out-of-order execution, too. If a CPU has to wait 
for a cache fill before executing instruction 1, it is allowed to look at instruction 2. If there is no 
dependency on 1, the CPU may proceed to execute 2 first. This is a wonderful thing for hardware 
architects, as it gives them enormous leeway in their designs, allowing the CPU to run at 
maximum possible speeds. It also complicates CPU design, ensuring full employment for 
hardware designers. For us software types, it means that we cannot rely on order of execution.[4] 
Also problem 3. 

[4] There are some fancy algorithms, such as Decker's algorithm, which avoid using mutexes by 
depending upon the write order of CPUs. These techniques will not work on modern SMP machines. 

The System 

Figure 16-1 shows a typical SMP system. Each CPU has its own on-chip "I$" and store buffer. It 
also has a much larger, off-chip E$. All external communication is done over a single memory bus. 
Part of the memory bus protocol for all these machines is that each CPU will do bus snooping. 
Every memory transaction will be observed by every bus snooper, and every time that CPU 0 
writes a word out to main memory, every other bus snooper will see it and invalidate[5] that entry 
in its own caches (both "E$" and "I$"). The next time that CPU 1 wants to use that word, it will 
look in its own cache, see that the entry has been marked invalid, and go out to main memory to 
get the correct value. 

[5] There are other schemes for dealing with this problem, such as cache broadcast, which simply 
sends out the updated value immediately, but this won't change our programming decisions. 

Figure 16-1. SMP System Architecture 
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What if CPU 1 also wants to write out the same word? What if CPU 1's store buffer is waiting to 
write it out? No answer. It would never happen, because that would mean that two different 
threads were manipulating the same data at the same time without a mutex and that's not proper. 
(If you did this anyway, the value would just get overwritten.) Problem 1 solved. 

What if a global variable is in a register so the CPU doesn't see the invalidated word in cache? 
This also won't happen because the compiler is not allowed to keep nonlocal data in registers 
across function calls [e.g., pthread_mutex_lock()!]. 

Store Barriers 

Problems 2 and 3 are solved with the same mechanism—store barriers. A store barrier is a 
machine instruction which says[6], effectively, "flush the store buffer." The CPU will then stall 
until the store buffer has been written out to main memory. On a SPARC machine, there are two 
instructions, stbar and membar. 

[6] In reality it says, "Place a token here in the output buffer and prevent any future writes from 
crossing this boundary." This is actually more efficient than flushing the store buffer, but harder to 
explain. 

Now then, when should we flush the store buffer? Whenever a CPU has changed some data that it 
wants other CPUs to see. This would be shared data, of course, and shared data may be used by 
other CPUs only after the first CPU has released the lock protecting it. And that's when stbar is 
called—when a mutex is being released. This is done by all the synchronization variable functions, 
so you will never call it yourself. 

Thus, the short answer to all the problems above is, "Protect shared data with a mutex." 

 

Bus Architectures 

The design of the main memory bus does not have much effect on how we write MT programs 
specifically, but it does have enormous influence over how fast our programs run, and for high-
performance programs we must pay it respect. Depending on the specific program, anywhere from 
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25% to 90% of the runtime will be devoted to waiting for the memory bus. (You can find 
programs that run entirely in cache and have zero percent bus waits, but they are the exceptions.) 

There are two primary bus designs in use in SMP machines. There is the simple, direct-switched 
bus such as the MBus, which was used in Sun's early SMP machines and the SPARCstation 10 s 
and 20 s. Then there is the more expensive, more complex, packet-switched bus (a.k.a. split-
transaction bus) such as is used in all the server machines from all the manufacturers (Sun's 
SPARCservers, Sun's Ultra series, SGI's Challenge series, HP's PA-RISC, IBM's POWERservers, 
DEC's Alpha servers, HAL's Mercury series, Cray's S6400 series, etc.). In addition to these, there 
are also crossbar switches that allow several CPUs to access several different memory banks 
simultaneously (Sun's Ultra servers and SGI's Origin servers). 

Direct-Switched Buses 

In a direct-switched bus (Figure 16-2), memory access is very simple. When CPU 0 wants to read 
a word from main memory, it asserts bus ownership, makes the request, and waits until the data is 
loaded. The sequence is: 

Figure 16-2. Direct-Switched Memory Bus 

 

1. CPU 0 takes a cache miss. E$ must now go out to main memory to load an entire cache 
line (typically, 8 words). 

2. CPU 0 asserts bus ownership (perhaps waiting for a current owner to release). 
3. CPU 0 loads the desired address onto the bus address lines, then strobes out that address 

on the address strobe line. 
4. Memory sees the strobe, looks at the address, finds the proper memory bank, and then 

starts looking for the data. DRAM is fairly slow and takes roughly a microsecond[7] to 
find the desired data. 

[7] Depending on when you're reading this book! 

5. Once found, memory puts the first set of words onto the bus's data lines and strobes it into 
the E$. It then loads the next set of words, strobes that out, and continues until the entire 
cache-line request has been satisfied. 

The total bus transaction latency, from initial request to final transfer, is on the order of 1 µs for all 
machines. It simply takes DRAM that long to find the data. Once found, DRAM can deliver the 
data quite rapidly, upward of 60 ns per access, but the initial lookup is quite slow. 
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On a direct-switched bus, the total memory bandwidth is quite small, not because of limited bus 
speeds, but because each transaction occupies the bus for so long, most of the time just waiting. 
Obviously, this is not an optimal situation. Sun's MBus was designed to accommodate up to four 
CPUs. In practice, it was found that four CPUs generated too much bus traffic in most programs, 
and the vast majority of MBus machines were shipped with just two CPUs. 

Packet-Switched Buses 

In a packet-switched (a.k.a. split-transaction) bus (Figure 16-3), the transaction is split between 
the CPU's request and the memory's reply. The objective of this design is to overcome the 
enormous periods of dead time that the direct-switched buses suffer. In this design the CPU will 
release bus ownership while memory is busy looking up the address, hence freeing it for use by 
other CPUs. The sequence is: 

1. CPU 0 takes a cache miss. E$ must now go out to main memory to load an entire cache 
line (typically, 8 words). 

2. CPU 0 asserts bus ownership (perhaps waiting for a current owner to release). 
3. It loads the desired address onto the bus address lines, then strobes out that address on an 

address strobe line. 
4. Memory sees the strobe, looks at the address, finds the proper memory bank, and then 

starts looking for the data. 
5. At this point, CPU 0 releases bus ownership. 
6. Once found, memory reasserts bus ownership. 
7. Memory then strobes the data into CPU 0's E$. 

Figure 16-3. Packet-Switched Memory Bus 

 

Total latency for a packet-switched bus is no shorter than for a direct-switched bus, but because 
the bus is now free for use by other CPUs, the total throughput is much, much higher. Sun's 
UE10000 can run productively with upward of 64 CPUs on a single bus. 

Crossbar Switches 

A crossbar is a routing switch that allows any one element on one axis to communicate directly 
with any one element on the other axis. This does not affect the ability of other elements on the 
first axis to communicate with other elements on the second. Contention occurs only when two 
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elements on one axis want to communicate with the same element on the second. Crossbar 
switches are much faster than buses—and more expensive. 

The practical limit on crossbar switches right now (1999) seems to be about 4 x 4 (Figure 16-4), 
the size of both the Sun and SGI designs. To build machines larger than four CPUs, some 
additional interconnect is required. On the larger Sun Ultra machines, a centerplane bus is used 
that can accommodate up to 16 quad CPU boards. On the larger SGI machines, an entirely 
different approach is used. 

Figure 16-4. Cluster Using a Crossbar Switch 

 

Hierarchical Interconnects 

The practical (and legal[8]) limit to bus length is approximately 16 boards. Beyond that you have 
horrendous problems with signal propagation. The "obvious" solution to this limit is to build a 
hierarchical machine with clusters of buses communicating with other clusters of buses, ad 
infinitum. In its simplest form, this is no big deal. Want some more CPUs? Just add a new cluster! 
Sure, you'll see longer communication latencies as you access more distant clusters, but that's just 
the way things are. 

[8] 186,000 miles/second. It's not just a good idea, it's the law! 

There is one aspect of SMP design that makes a mess of this simple model—cache memory. We 
need to use caches to avoid saturating the interconnect, but at the same time caches need to be 
kept coherent, and that's tricky. If the cache for CPU 169 contains an entry for address 
x31415926, and CPU 0 writes into that address, how is cache 169 going to get invalidated? 
Propagating every invalidate across the entire interconnect would saturate it quickly. The object 
now becomes finding a method to propagate invalidations only to those caches that need them. 

Built along the designs of Stanford's DASH project, the SGI Origin (Figure 16-5) uses a small 
crossbar for its clusters and an expandable, hierarchical lattice instead of a bus. Embedded in each 
cluster is an invalidation directory, which keeps track of which other clusters have cached copies 
of its local memory. When main memory is written to, the directory knows to which clusters to 
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send invalidations. The result is that the basic machine can be expanded well past the 16-board 
limit of bus-based machines, at a cost of about 150 ns extra latency for each hop across the lattice. 
The Origin is spec'd to expand out to 4096 CPUs. Now the only problem is writing programs that 
can use 4096 CPUs. 

Figure 16-5. Hierarchical Design of the SGI Origin Series 

 

ccNUMA 

Cache coherent nonuniform memory architecture is what the Origin does. The Origin clearly 
supports a coherent cache via its elaborate scheme for directly cache invalidates. It also supports 
nonuniform (speed) memory access, as on-board memory access is much faster than off-board 
access. There are also strict bus-based systems that are CCNUMA. Sun's machines are not among 
these, as they all define access memory to run at the same speed on-board and off-board. 

Packet-Switched Buses and ldstub 

There is one place we care about the bus design very directly (see Figure 16-6). Remember 
ldstub, the mutex instruction? Well, the definition of ldstub says that it must perform its work 
atomically. For a packet-switched bus, this means that it must retain bus ownership throughout the 
entire operation, first fetching the byte in question, then writing all ones out to it. In other words, 
using ldstub completely defeats the packet-switched nature of a packet-switched bus! 

Figure 16-6. Packet-Switched Memory Bus Running ldstub 
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There is no way around the fundamental problem, as ldstub must be atomic. It must occupy the 
bus for the duration. What we can do is simply not call it too often. In particular, this means 
modifying our definition of spin locks. Whereas our first definition of spin locks resulted in our 
calling ldstub on every iteration of the loop (thus flooding the bus), our better definition (Code 
Example 16-1) will avoid calling ldstub unless we're fairly sure that it will succeed. What we'll 
do is spin in a loop, looking at the value of the ownership byte. As long as it's owned, we'll just 
keep spinning, looking at the value in cache, not generating any bus traffic at all. 

Example 16-1 Spin Locks Done Better 

/* Implementation dependent. This is valid only for Solaris 2.5 */ 
void spin_lock(mutex_t *m) { 
    int i; 
 
    for (i = 0; i < SPIN_COUNT; i++) { 
        if (m->lock.owner64 == 0)              /* Check w/o ldstub */ 
            if (pthread_mutex_trylock(m) != EBUSY) 
                return;             /* Got it! */ 
       /* Didn't get it, continue the loop */ 
    } 
 
    pthread_mutex_lock(m);      /* Give up and block */ 
} 

When the lock is released, the owner CPU will write out zero, which our bus snooper will see, 
invalidating our copy of the byte. On our next iteration we'll get a cache miss, reload from main 
memory, and see the new value. We'll call trylock (hence ldstub), and if we're lucky, it will 
succeed and we'll get lock ownership. On the off chance that some other CPU sneaks in there at 
exactly the right nanosecond, our ldstub will fail, and we'll go back to spinning. Generally, you 
should expect spin locks to be provided by your vendor. 

The Thundering Herds 

This is as far as we're going to go with spin locks. This covers 99.9% of all programs that need 
spin locks. For that final 0.1%, where there is enormous contention for a single spin lock, even 
this scheme will suffer. If there are 10 CPUs all spinning on this lock, the moment it's released, all 
ten of them will take cache misses, flooding the bus first with cache load requests, then ldstub 
requests. This is known as the thundering herds problem and is discussed in more detail by 
Hennessy and Patterson (see Appendix B). Suffice it to say, if you're suffering from this problem, 
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you have real problems. The best thing you can do is to find another algorithm with less 
contention. 

LoadLocked/StoreConditional and Compare and Swap 

We mentioned that there are other types of atomic instructions that are a bit more versatile. On 
SPARC v9, there is the Compare and Swap if Equal instruction. On the Alpha, there is a different 
approach to the same issue, using two instructions, known as Load Locked and Store Conditional 
(Code Example 16-2). 

Example 16-2 Atomic Increment Using LoadLocked and StoreConditional 

try_again:LoadLocked address_1 -> register_1 
          add register_1, 1 -> register_2 
          StoreConditional register_2 -> address_1 
          Compare register_2, 0 
          branch_not_equal try_again 

The Alpha instructions require a tiny bit more hardware but reward the designer with an atomic 
instruction that doesn't lock the memory bus. Alongside the bus snooper hardware is one more 
register (Figure 16-7). When a LoadLocked instruction is issued, the data is fetched directly 
from main memory, and that address is recorded in the register. Should some other CPU write to 
that address, the register notices it. Later the program will issue a StoreConditional 
instruction. This instruction looks at the register before doing the store. If the register says that the 
address is unchanged, the store proceeds. If the address has been written to already, the store 
doesn't take place. After StoreConditional is finished, the programmer must check to see if 
the store took place. If so, all is well. If not, go back and repeat. 

Figure 16-7. SMP System Architecture 

 

Building a mutex with these instructions is simple. Of more interest are the other types of 
synchronization we can do, such as atomic increment/decrement, and atomic list insertion. In 
effect we will be implicitly locking the word in question, updating it, and releasing the implicit 
lock. The important distinction is that we can now execute these operations with no possibility of 
the lock owner going to sleep. 
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In Code Example 16-2 we assume that memory location address_1 will not change between the 
time we read it and the time we execute the StoreConditional. If it does change, we simply 
loop back and try it again. This operation is equivalent to acquiring a lock, incrementing the word, 
and releasing the lock, with the exception that it is impossible to go to sleep while holding the lock. 
We cannot mix use of these instructions and normal mutex locks. 

The advantage to these instructions is that they run roughly twice as fast as mutex-protected code 
and there is no danger of being context switched in the middle of execution. The disadvantage is 
that the operations you can perform are very simple and may not be sufficient to our purposes. 
Inserting an element onto the front of a list is simple, but inserting elsewhere in the list is 
impossible. (Yes, we can correctly change the next pointer of item_n, but item_n might have 
been removed from the list while we were reading the next pointer!) For more general use we 
need mutex locks. 

The tricky part is that you can use these instructions to increment or decrement a variable 
automatically, but you can't make any decisions based on "current" value because the variable's 
value may change before you make your decision. In normal code you would make a decision 
based on the value of a variable while in a critical section, so that the variable couldn't change. 
You will sometimes see the use of these instructions referred to as lock-free synchronization. 

All of this is quite interesting of course, but it is not applicable to Java, as you have no ability to 
access such low-level instructions without going through JNI. Going through JNI would both 
break the program's portability (it would not be a pure Java program anymore) and it would be 
slow (going through JNI is expensive). 

Lock-Free Semaphores and Reference Counting 

Semaphores need to know if a decrement attempt succeeded or not. If successful, there is nothing 
else for the semaphore to do. It's done (this will be our "fast path"—the most common case). 
Should the semaphore value already be zero, a bit of careful programming will allow the thread to 
go to sleep confident that the next sem_post() will wake it up. This means that sem_wait() 
can execute in a single instruction (we don't even have to block out signals because no lock is 
being held)! Calls to sem_post() will be somewhat more complex (they have to look for 
sleepers) but still very fast. 

Reference counting is one of the few other things that you can use such atomic instructions for, 
because the only decision you make in reference counting occurs when the count hits zero. Once 
zero, the reference count cannot be changed (there are no pointers left to the item to copy), hence 
you can rely on this value. 

Volatile: The Rest of the Story 

At last we have the background we need to discuss volatile. As in C, volatile ensures that a 
variable will not be cached in either registers or memory cache. Every read of that variable will go 
out to the main memory bus, and every write will result in a write on the main memory bus. 
Moreover, volatile will insert a store barrier after every write. This means that things like 
Dekker's algorithm will work, even on an out-of-order execution machine. 

Now, what does this give you? Very, very little. You can write something like Dekker's 
algorithm[9] to do locking instead of using locks. You can write data atomically and in order, but 
for the same reasons as above, it's unlikely to give you want you want. Consider that every use of 
a volatile variable requires a main memory read. Every main memory read costs upward of 
100 cycles, whereas a simple direct nonvolatile use of the same variable would execute in one 
cycle. 
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[9] Dekker's algorithm is basically a clever way of building locks for a known number of threads 
based on the assumption that writes to main memory arrive in order. Without a volatile declaration, 
it is not possible to implement on an out-of-order machine. 

The definition of volatile does imply that 64-bit data (e.g., doubles and longs) will be treated 
atomically. On a machine that does 64-bit writes (UltraSPARC, Alpha, etc.), this is 
straightforward to implement. On a machine that only does 32-bit writes (SPARC v7, x86, etc.) 
this is a bit more difficult. To meet the definition of volatile, it is actually necessary for 32-bit 
machines to maintain a lock specifically for 64-bit volatile data. 

It is unlikely that you will ever use volatile at all.[10] Be careful! 

[10] In the 2nd edition of his book, Doug Lea (see Appendix B) is including a simple example of using 
volatile to manage a list. The code is amazingly complex for such a simple problem. I figure that if 
it's that difficult for Doug to get it right, I don't want to be doing it at all! 

Atomic Reads and Writes 

Most writes on most systems are either 32 or 64 bits wide, aligned on the appropriate word 
boundary. Such writes are atomic—you never have to be concerned that the first 16 bits have been 
written before the second 16 bits. What good does this do you? Very little. You cannot test a value 
because it may change. You cannot increment a value because someone else might be using it at 
the same time. You may be able to figure out a tricky way of combining this fact with a 
volatile declaration to allow you to avoid using a lock, but it probably won't make your 
program go any faster. 

Interlocked Instructions 

In Win32 there are a set of interlocked functions [InterlockedIncrement(), 
InterlockedDecrement(), and InterlockedExchange()] which call the respective 
interlocked instructions on x86 machines. These instructions provide equivalent functionality to 
the fancy synchronization instructions we just looked at. Although some Win32 programmers will 
gladly attest to their glory, they don't actually provide the C program with much value, and they 
cannot be called from Java. Use locks! 

 

Memory Systems 

The memory system in modern SMP machines is designed to be ignored. You shouldn't have to 
spend any time thinking about it—it should just work. And it succeeds in this, to a degree. As long 
as you are writing a program that is reasonably well behaved and that doesn't have overwhelming 
needs for absolute maximum performance, you can skip over this section. Probably 95% of all 
programs fit into this category. As for the other 5% percent… 

In 1980, memory speeds were about the same as CPU speeds, and a machine could access main 
memory in a single cycle. Since then, DRAM speeds have improved by an order of magnitude and 
CPU speeds by almost four. Direct main memory access now costs between 30 and 100 CPU 
cycles. It is not at all unusual for a CPU to spend over half its time stalled, waiting for memory. 
To the degree that you can reduce the number of main memory accesses (i.e., cache misses), you 
will be handsomely paid in program performance. (N.B.: There is nothing unique to MP machines 
or MT programs here.) 

Reducing Cache Misses 
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So how to reduce cache misses? There are a couple of generalities that we can point to, but not 
much more. Happily, these generalities do cover a lot of programs. 

1. Write your program so that you never have to load a cache line more times than is 
absolutely necessary. 

2. Organize your data so that when you do load a cache line, you are able to make use of all 
the data. 

3. Keep data used regularly by different threads out of the same cache line. 

Depending upon your particular program, it may or may not be reasonable to apply the above. For 
well-behaved programs that reuse the data in cache many times, a great deal can be done just 
covering these three rules. We can show a factor of 10 difference between a naive matrix multiply 
and the most highly optimized implementation, all due to better cache management. For programs 
with very poor data locality, such as NFS or databases, which spend a lot of time bringing in new 
data and looking at it only once, it is almost impossible to do anything at all. 

Two SPECfp95 benchmarks were submitted by Sun for almost the identical machine. The first 
was a 400-MHz, 8-way UE 3500 with 4-MB E$. The second was the same, but with an 8-MB E$. 
We show (in Table 16-1) the three most affected benchmarks along with the geometric average for 
SPECfp. 

Table 16-1. Selected SPEC Benchmarks for Two UE 3500s 
  4-MB E$  8-MB E$  

101.tomcat  105  122  
102.swim  278  671  
107.mgrid  108  147  
SPECfp95  50.1  57.7  

Cache Blocking 

For something like matrix manipulation or image processing, a naive algorithm might load and 
reload a cache line numerous times. The same operation can be performed much faster in a more 
clever algorithm that does cache blocking—arranging to load a subset of the data and use it many 
times before loading a new block. 

A naive multiply algorithm would multiply all of row 1 by column 1. Then row 1 by column 2, 
column 3, etc. Next, row 2 would be multiplied with each column, etc. For a 1024 x 1024 matrix, 
each row would be loaded only once, but the columns would be reloaded 1024 times! Assuming 
64-bit floats and 64-byte cache lines, that adds up to a total of 128k cache loads. 

A cache-blocked program would multiply rows 1-64 with columns 1–64, then columns 65–128, 
then 129–192, etc. Each of those sets will fit completely in a 2-MB E$, so the total number of 
cache loads will be reduced to a mere 16k column load plus 1k row loads. 

That's the basics of cache blocking. There's plenty more that can be done. For example, you can 
optimize I$ blocking on top of the E$ blocking. You can take into account the writing scheme 
(does the CPU write back via the cache, write through the cache, or write around it?). You can 
recall that E$ is physically mapped, hence it requires a TLB translation. (The translation lookaside 
buffer performs high-speed virtual-to-physical mappings.) Of course, TLBs are very small. The 
Sun TLB for the large SC2000 server holds a translation for only 0.5 MB, so if you can avoid 
referencing data in cache beyond the current contents of the TLB, you can avoid extraneous TLB 
misses. Then you may also wish to consider which data is coming from which memory bank. 
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We really don't expect you to deal with these fine-grained optimizations. We don't. They involve a 
lot of careful estimation and painstaking verification, and they have to be tailored to individual 
machines. But this kind of thing is possible, it does yield impressive improvements for some 
programs, and the truly high-performance obsessive types do it. (Dakota Scientific's numerical 
libraries take all of these parameters into account and get impressive results.) 

Data Reorganization 

What if you had a large number of records about people—names, ages, salaries, addresses, 
favorite programming languages, etc.? To calculate the average salary for these folks, you would 
have to bring in the cache block with the first person's salary in it (along with seven other words), 
add that to the total, then bring in the next person's salary, etc. Each cache miss would bring in 
exactly one piece of useful data, and every salary would require a cache miss. 

If you organized the data differently, placing all of the salaries into one array, all of the names in 
another, etc., you would be able to make much better use of each cache load. Instead of one salary 
being loaded with each miss, you'd get eight, significantly reducing cache wait times. 

This is not something you'd do for a casual program. When you have this kind of program design 
and data usage, and you are desperate for optimal performance, that's when you do this kind of 
thing (see Portability ). 

Word Tearing 

What is the minimum-size data item that you can write to memory? On most modern machines it's 
8 bits. On some it's 32. It's possible that on some machines it could be 64! 

Now, what would happen if you used one lock to protect the first bit in a word, and another lock to 
protect the second? It wouldn't work. Every time you wrote out bit 1, you would overwrite bit 2, 
and if someone else was using bit 2, … Too bad. 

Don't do that. Happily, it is easy to avoid word tearing and it would be a pretty odd program 
indeed that actually violated this restriction. 

False Sharing 

A cache memory is divided up into cache lines (typically, eight words) which are loaded and 
tracked as a unit. If one word in the line is required, all eight are loaded. If one word is written out 
by another CPU, the entire line is invalidated. Cache lines are based on the idea that if one word is 
accessed, it's very likely that the next word will be also. Normally, this works quite well and yields 
excellent performance. Sometimes it can work against you. 

If eight integers happened to be located contiguously at a line boundary, and if eight different 
threads on eight different CPUs happened to use those (unshared) integers extensively, we could 
run into a problem. CPU 0 would write a[0]. This would, of course, cause the a[0] cache line to 
be invalidated on all the other CPUs. CPU 1 now wishes to read a[1]. Even though it actually has 
a valid copy of a[1] in cache, the line has been marked invalid, so CPU 1 must reload that cache 
line. And when CPU 1 writes a[1], CPU 0 will invalidate its cache line, etc., etc. 

This is what is called false sharing. On an 8-way, 244-MHz UE4000, the program shown in Code 
Example 16-3 runs in 100 s when the integers are adjacent (SEPARATION == 1), and in 10 s 
when the integers are distant (SEPARATION == 16). It is an unlikely problem (it can happen, 
however), one that you wouldn't even look for unless you did some careful performance tuning 
and noticed extensive CPU stalls. Without specialized memory tools, the only way you could find 
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this out is by counting instructions and dividing by CPU speed. If there is a large discrepancy, you 
can infer memory system stalls (see Memory Latency ). 

Example 16-3 False Sharing 

int a[128]; 
 
public class FalseSharing { 
    int index; 
 
    public void run() { 
        while (MANY_INTERATIONS) 
            a[index]++; 
    } 
 
    ... 
 
    for (i = 0; i < 8 ;i++) 
        new FalseSharing(i * SEPARATION).start(); 
 
    ... 
} 
 

Summary 

There are numerous machine designs, most of which will not affect our programming decisions. 
There are a lot of issues concerning memory coherency, all of which are solved by using proper 
locking. For very high performance programs, clever, semiportable cache blocking schemes and 
data organization can have an enormous impact. 
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Chapter 17. Examples 
• Threads and Windows 
• Displaying Things for a Moment (Memory.java) 
• Socket Server (Master/Slave Version) 
• Socket Server (Producer/Consumer Version) 
• Making a Native Call to pthread_setconcurrency() 
• Actual Implementation of POSIX Synchronization 
• A Robust, Interruptible Server 
• Disk Performance with Java 
• Other Programs on the Web 

In which several complete programs are presented. The details and issues surrounding the way 
they use threads are discussed, and references to other programs on the Net are made. 

This chapter contains several example programs that use Java threads. The examples use threads 
to demonstrate different concepts from previous chapters. All the example code (except for the 
JNI example) has been compiled and run on Solaris, IRIX, Digital UNIX, and Windows NT. 

Use this code in whatever manner you choose; many of the concepts demonstrated in the 
examples can be reworked to be used in your applications. Of course, there are some bugs in the 
code somewhere. All the source code used in this book is available on the Web (see Code 
Examples). 

 

Threads and Windows 

This example (Code Example 17-1) uses threads to speed up the operation of a GUI program 
which has long running operations. Without threads, this program would have to wait for each 
long-running operation to complete before the next button could be pushed. 

Example 17-1 ThreadedSwing Program 

//  ThreadedSwing/ThreadedSwing.java 
 
/* 
  When the user pushes a button, disable it and sleep for 6 seconds. 
  If "Threaded," do the sleeping in a new thread, allowing the 
  other buttons to remain active. If "Non-Threaded," do the sleeping 
  in the SWING thread, effectively disabling the other buttons. 
 
  After sleeping, reenable the button by calling invokeLater(). 
  (Swing is NOT thread-safe.) 
 
  CF: Same program in AWT: ThreadedAWT and in PThreads: ThreadWin.c 
*/ 
 
 
import java.applet.*; 
import java.awt.*; 
import java.awt.event.*; 
import com.sun.java.swing.*; 
import Extensions.*; 
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public class ThreadedSwing extends JFrame { 
    static boolean useThreads = false; 
    static boolean KILL = false; 
 
    public ThreadedSwing() { 
        ThreadedJButton button; 
 
        if (System.getProperty("KILL") != null) 
            KILL = true; 
 
        setTitle("ThreadedSwing"); 
        JPanel topPanel = new JPanel(); 
        getContentPane().add(topPanel); 
 
        ThreadButtonListener tbl = new ThreadButtonListener(); 
        NumericButtonListener nbl = new NumericButtonListener(); 
 
        button = new ThreadedJButton("Non-Threaded"); 
        topPanel.add(button); 
        button.addActionListener(tbl); 
 
        for (int i = 1; i < 5; i++) { 
            button = new ThreadedJButton(""+i); 
            topPanel.add(button); 
            button.addActionListener(nbl); 
        } 
    } 
 
    public static void main(String args[]) { 
        ThreadedSwing mainFrame = new ThreadedSwing(); 
 
        mainFrame.pack(); 
        mainFrame.setVisible(true); 
 
        // Killer MUST be in another thread. 
        if (KILL) 
            new Thread(new Killer(120)).start(); 
   } 
} 
 
 
 
//  ThreadedSwing/NumericButtonListener.java 
 
/* 
  This classes listens only for button pushes on the numbered buttons. 
*/ 
import java.applet.*; 
import java.awt.*; 
import java.awt.event.*; 
import com.sun.java.swing.*; 
import Extensions.*; 
 
public class NumericButtonListener implements ActionListener  { 
    public void actionPerformed(ActionEvent event) { 
        ThreadedJButton currentButton = 
(ThreadedJButton)event.getSource(); 
 
        System.out.println("Pressed " + currentButton); 
        currentButton.setEnabled(false); 
        System.out.println(currentButton + " disabled."); 
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        DoWorker w = new DoWorker(currentButton); 
 
        if (ThreadedSwing.useThreads)  
            new Thread(w).start(); 
        else  
            w.run(); 
    } 
} 
 
 
 
class DoWorker implements Runnable { 
    ThreadedJButton button; 
 
    public DoWorker(ThreadedJButton b) { 
        button = b; 
    } 
 
    public void run() { 
        Thread selfName = Thread.currentThread(); 
 
        System.out.println(button + " sleeping... " + selfName); 
        InterruptibleThread.sleep(6000); 
        System.out.println(button + " done. " + selfName); 
 
        // This will run workComplete() in Swing main thread. 
        // This is the main point of the whole example. 
        SwingUtilities.invokeLater(new DidWorker(button)); 
    } 
} 
 
 
class DidWorker implements Runnable { 
    ThreadedJButton button; 
   
    public DidWorker(ThreadedJButton b) { 
        button = b; 
    } 
 
    public void run() {    // Run only in Swing main thread. 
        Thread selfName = Thread.currentThread(); 
 
        button.setEnabled(true); 
        System.out.println(button + " reenabled. " + selfName); 
    } 
} 
 
 
 
//  ThreadedSwing/ThreadButtonListener.java 
 
/* 
  This classes listens only for button pushes on the 
  "Threaded" / "Non-Threaded" button. 
*/ 
 
import java.applet.*; 
import java.awt.*; 
import java.awt.event.*; 
import com.sun.java.swing.*; 
import Extensions.*; 
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public class ThreadButtonListener implements ActionListener  { 
    public void actionPerformed(ActionEvent event) { 
        ThreadedJButton currentButton = 
(ThreadedJButton)event.getSource(); 
 
        System.out.println("Pressed " + currentButton); 
        ThreadedSwing.useThreads = !ThreadedSwing.useThreads; 
 
        if (ThreadedSwing.useThreads) 
            currentButton.setText("Threaded"); 
        else 
            currentButton.setText("Non-Threaded"); 
    } 
} 
 
 
//  ThreadedSwing/ThreadedJButton.java 
 
/* 
  Once upon a time this was an interesting class.  Now it 
  provides a nice print string. 
*/ 
 
import java.applet.*; 
import java.awt.*; 
import com.sun.java.swing.*; 
import Extensions.*; 
 
public class ThreadedJButton extends JButton { 
    public ThreadedJButton(String s) { 
        super(s); 
    } 
 
    public String toString() { 
        return("ThreadedJButton_" + getText()); 
    } 
} 

In a "normal" windowing application, when a button is pressed, some task is executed and then 
control in the program is returned to the window. This is fine if the time required to execute the 
task is minimal. If the time required for the task is not minimal, the window freezes or the clock 
icon is displayed while the task is executing. This behavior is not desirable in most cases, because 
the graphical interface should always be active for the user to select other actions. 

This example demonstrates how we can get around the freezing problem. A simple window is 
created and filled with pushbutton widgets. When a button is pushed, the program simulates some 
processing [i.e., sleep(6000)] that would normally cause the interface to freeze. In this 
example the work is performed in separate threads. This way, when a button is pressed, a thread is 
created to do the work, and the window can return to its event processing for the user (Figure 17-
1). 

Figure 17-1. ThreadedSwing Window Example 
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When you run this example, you will see that when a button is pressed, it changes colors and is 
deactivated while the work is being done. However, you can press as many buttons as you like, 
one right after the other without waiting for the first to complete. 

This program is exactly what was described in Are Libraries Safe?. The main thread builds a 
window. This starts up an event thread that then enters the event loop and waits for input. When 
you push a button, the callback ThreadButtonListner.actionPerformed() runs, 
deactivates the button, changes its colors, and (optionally) creates a new thread (T2) to run the 
work function [DoWorker.run()]. 

The event thread then returns to the event loop. You press another button and the cycle repeats. In 
the meantime (back at the ranch), the new thread has started up and begun running. With our 
second push, a third thread (T3) has started up, just like T2. After a few seconds, T2 completes its 
work and calls invokeLater[new DidWorker()] and exits. 

The event thread sees the invokeLater request and runs the method DidWorker.run(). That 
function sets the button back to the original colors and reactivates the button. Now only T3 is 
running. Soon it will complete and repeat the actions of T2. In this fashion, the event loop is 
always active and the Swing calls are made only from the event thread. 

If you push the "Threaded" button, the program will not use threads, but rather, it will do all the 
work directly in the event thread. And the program will slow down a lot. 

Notice that we are using a runnable as the item of work to be performed and we are going to allow 
it to be run either in a new thread or in the event thread itself. This is one of the reasons that 
runnables are good. 

 

Displaying Things for a Moment (Memory.java) 

Sometimes you would like an applet (or any windowing program) to display something for the 
user to see for a short time, then continue on to do other things. In their excellent book Java by 
Example (see Appendix B), Jackson and McClellan show a little program that tests human 
memory. We wrote an abbreviated version of it. It shows four colored boxes: red, blue, green, 
yellow (Figure 17-2). When the game starts, it makes one of those boxes brighter for a couple 
seconds, then dims it again. Next it chooses another (at random) and brightens that for a couple 
seconds. 

Figure 17-2. The Memory Game 
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After the pattern has been displayed, the player must now take the mouse and duplicate the 
sequence. If the game flashed blue, green, red, green, the player must mouse blue, green, red, 
green. Pretty simple. 

The question comes up: How can we arrange for the flashing colors to be displayed to the player? 
If we ran this game entirely in the main applet thread, it wouldn't work. All painting happens in 
the main applet thread, so if you made a box bright blue, you could then request a repaint, but that 
repaint would not occur until your function returned. If you tried to have your function sleep, the 
repainting would have to wait. 

So running the snippet of code shown in Code Example 17-2 in the main applet thread would 
brighten a box, request a repaint, sleep, then dim the box, etc. After you were all done with this, 
your method would return and then the repaints would happen all at once. Not very useful. 

Example 17-2 How to Display Something for a Short Time 

private void reset() { 
    for (int i = 0; i < patternLength; i++) { 
        // Select random cell 
 
        int randomX = (int)((Math.random() * 10) % numCellsOnSide); 
        pattern[i] = Cell.cells[randomX]; 
 
        // Display the pattern square by redrawing it briefly in a 
        // brighter version of its current color. 
 
        chosenCell = Cell.cells[randomX]; 
        chosenCell.brighten(); 
        repaint(); 
 
        // Sleep so the user can see the bright color before we 
        // darken it again.  
 
        InterruptibleThread.sleep(sleepTime); 
 
        // Redraw the square in its original color before going to 
        // the next square. 
 
        chosenCell.darken(); 
        repaint(); 
 
        // Sleep between squares.  
        InterruptibleThread.sleep(sleepTime); 
    } 
} 
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The right way to do this is to run your method in a separate thread. This way, when you run the 
method, the applet thread is idle. You request a repaint, you go to sleep, and now the repaint can 
occur in the applet thread! 

 

Socket Server (Master/Slave Version) 

The socket server example uses threads to implement a "standard" socket port server. A standard 
socket server listens on a socket port and when a message arrives, forks a process to service the 
request. The server program first sets up all the needed socket information. The server then enters 
a loop, waiting to service a socket port. When a connect request is sent to the socket port, the 
server creates a new thread to handle the requests on this socket file descriptor. 

The newly created listener thread then receives requests on this socket in the function 
producer() until the string "End" comes across. For each request, the listener thread creates a 
new thread to handle it. That worker thread processes the request in processRequest(), which 
sleeps for a bit (simulating disk I/O) and then sends a reply back across the file descriptor. 

The client side of the example (not shown) sends 1000 requests to the server for each file 
descriptor you request on the command line (default 1). It waits for each reply and exits when the 
server returns "End." This client code can also be run from different machines by multiple users. 

The code is a little bit artificial because we wrote it to look as much as possible like our 
producer/consumer example. We also added some instrumentation to it, so it will count the 
number of threads created and running. One notable artifice is that we accept 1000 requests from 
each socket rather than one request from each of 1000 sockets, as you might expect. Our design 
gives the program a two-level structure, with the main thread waiting for new socket requests [in 
the accept() call]. The main thread creates a new thread to handle each new socket, and that 
new thread then waits for the 1000 requests, spawning 1000 additional threads, one per request. 

 

Socket Server (Producer/Consumer Version) 

Run the master/slave code on a fast enough machine and you will discover that it creates so many 
threads that it runs out of memory! This is not a good thing. One solution is to keep careful track 
of how many threads you have created and how many have exited. A better solution would be to 
redesign the program to be a producer/consumer model. This way you will be able to control the 
number of threads with no problem and you will be able to use the list of outstanding requests as a 
buffer for when the number of requests exceeds the ability of the program to handle them. 

Of course, if the rate of incoming requests exceeds the ability to reply for too long, you will 
eventually have to simply reject the requests. You could have the producer thread send explicit 
rejections to the client programs, or it could simply refuse to call accept() until there is room on 
the list. In this case, the kernel will queue up a few requests, then simply refuse to acknowledge 
any more requests. 

Most of the code for the producer/consumer version (Code Example 17-3) is identical to that in 
the master/slave version. You will notice that most of the code is stolen directly from Code 
Example 6-12 . Both the producer() and consumer() functions are identical. Really, all that 
we're doing is redirecting the producer, from creating new threads for each request, to placing 
those requests onto a queue and letting the consumers worry about them. 
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Example 17-3 Producer/Consumer Socket Program 

// ServerProducerConsumer/Server.java 
 
/* 
  A simple server program.  It sets up a TCP port for the client 
  program to connect to. Then it accepts connections, spawning a 
  new producer thread for each. [Java has no "select()" function.] 
 
  It starts up nConsumers consumer threads to pull requests off the 
  list and process them, sending a reply string back to the client. 
 
  Any IO failures are handled by printing out an error message, 
closing 
  the socket in question, then ignoring it.  Check out the location 
of 
  the exception handlers and which methods throw exceptions. This is 
  carefully designed and *should* be fully robust. 
 
  This version is really just a producer/consumer program that 
happens 
  to run across a socket. 
*/ 
 
import java.io.*; 
import java.net.*; 
import Extensions.*; 
 
public class Server { 
    ServerSocket   serverSocket; 
    static int     port = 6500; 
    static int     delay = 10; 
    static int     spin = 10; 
    static boolean DEBUG = false; 
    static int     nConsumers = 10; 
    static int     MAX_LENGTH = 10; 
    static boolean KILL = false; 
 
    public static void main(String[] args) { 
        Server server = new Server(); 
        Thread t; 
        int stopperTimeout = 10;        // 10s 
 
        if (args.length > 0) { 
            port = Integer.parseInt(args[0]); 
        } 
 
        if (args.length > 1) { 
            delay = Integer.parseInt(args[1]); 
        } 
 
        if (args.length > 2) { 
            spin = Integer.parseInt(args[2]); 
        } 
 
        if (args.length > 3) { 
            nConsumers = Integer.parseInt(args[3]); 
        } 
 
        if (args.length > 4) { 
            stopperTimeout = Integer.parseInt(args[4]); 
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        } 
 
        if (System.getProperty("DEBUG") != null) { 
            DEBUG = true; 
        } 
 
        if (System.getProperty("KILL") != null) { 
            KILL = true; 
        } 
 
        System.out.println("Server(port: " + port + 
            " delay: " + delay + "ms spin: " + spin + 
            "us nConsumers: " + nConsumers + " stopperTimeout " + 
            stopperTimeout + "s)"); 
 
        if (KILL) { 
            new Thread(new Killer(120)).start(); 
        } 
 
        server.runServer(); 
    } 
 
    public void runServer() {           // Executes in main thread 
        Socket   socket; 
        Workpile workpile = new Workpile(MAX_LENGTH); 
 
        try { 
            serverSocket = new ServerSocket(port); 
            System.out.println("Server now listening on port " + 
port); 
 
            for (int i = 1; i < nConsumers; i++) { 
                Thread t = new Thread(new Consumer(workpile)); 
                t.start(); 
            } 
 
            while (true) { 
                socket = serverSocket.accept(); 
                Client client = new Client(socket); 
                Thread t = new Thread(new Producer(workpile, client)); 
                t.start(); 
                System.out.println("Server[" + t.getName() + 
                    "]\tStarted new client: " + client); 
            } 
        } catch (IOException e) {       // Log failure, then ignore 
it. 
            System.out.println("Cannot get I/O streams in new 
Client()" + e); 
        } 
    } 
 
    public Server() { 
    } 
} 
 
 
 
//  ServerProducerConsumer/Client.java 
 
import java.io.*; 
import java.net.*; 
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public class Client { 
    int          outstandingRequests = 0; 
    Socket       socket; 
    InputStream  is; 
    OutputStream os; 
    int          delay = 10; 
    int          count = 0; 
    static int   total = 0; 
    int          MessageLength = 70; 
 
    public String toString() { 
        return("<Client: " + count +">"); 
    } 
 
    public Client(Socket s) throws IOException { 
        socket = s; 
        is = socket.getInputStream(); 
        os = socket.getOutputStream(); 
        synchronized (getClass()) { 
            total++; 
            count = total; 
        } 
    } 
 
    public Request read() throws IOException { 
        byte[] b = new byte[MessageLength]; 
 
        int n = is.read(b); 
 
        if (n != MessageLength) 
            throw new IOException(this + "Read too few characters " + 
n); 
 
        incrementOutstandingRequests(); 
        return new Request(this, b); 
    } 
 
    // Methods something like these might be useful...  :-) 
    public synchronized void incrementOutstandingRequests() { 
        outstandingRequests++; 
    } 
 
    public synchronized void decrementOutstandingRequests() { 
        outstandingRequests--; 
        if (outstandingRequests == 0) 
            notifyAll();                // In case someday there's 
more than 1. 
    } 
 
    public synchronized void waitForOutstandingRequests() { 
        boolean interrupted=false; 
 
        while (outstandingRequests != 0) { 
            try { 
                wait(); 
            } catch (InterruptedException e) { 
                interrupted = true; 
            } 
        } 
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        if (interrupted) 
            Thread.currentThread().interrupt(); 
    } 
} 
 
 
 
//  ServerProducerConsumer/Consumer.java 
 
import java.io.*; 
import Extensions.*; 
 
public class Consumer implements Runnable { 
    Workpile workpile; 
 
    public Consumer(Workpile w) { 
        workpile = w; 
    } 
 
    public void run() { 
        while (true) { 
            workpile.mutex.lock(); 
 
            while (workpile.empty()) { 
                workpile.consumerCV.condWait(workpile.mutex); 
            } 
 
            Request request = workpile.remove(); 
            workpile.mutex.unlock(); 
            workpile.producerCV.condSignal(); 
            request.process(); 
        } 
    } 
} 
 
 
 
//  ServerProducerConsumer/Producer.java 
 
import java.io.*; 
import Extensions.*; 
 
public class Producer implements Runnable { 
    Workpile workpile; 
    Client   client; 
 
    public Producer(Workpile w, Client c) { 
        workpile = w; 
        client = c; 
    } 
 
    public void run() { 
        String selfName = Thread.currentThread().getName(); 
 
        try { 
            for (int i = 0; true; i++) { 
                Request request = client.read(); 
                if (request.string.startsWith("End")) { 
                    client.decrementOutstandingRequests(); 
                    client.waitForOutstandingRequests(); 
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                    // Send "End" right back to client.  We're done! 
                    client.os.write(request.bytes); 
                    client.socket.close(); 
 
                    System.out.println("Server[" + selfName + 
                        "]\tCompleted processing."); 
 
                    InterruptibleThread.exit(); 
                } 
 
                workpile.mutex.lock(); 
 
                while (workpile.full()) { 
                    workpile.producerCV.condWait(workpile.mutex); 
                } 
 
                workpile.add(request); 
                workpile.mutex.unlock(); 
                workpile.consumerCV.condSignal(); 
            } 
        } catch (IOException e) {               // Log failure, then 
ignore it. 
            try { 
                client.socket.close(); 
            } catch (IOException ioe) { 
            } 
 
            System.out.println("Server[" + selfName + 
                "]\tException during processing." + e); 
 
            InterruptibleThread.exit(); 
        } 
    } 
} 
 
 
 
//  ServerProducerConsumer/Request.java 
import java.io.*; 
import java.net.*; 
import Extensions.*; 
 
public class Request { 
    Client           client; 
    byte[]           bytes; 
    Thread           self; 
    String           string = ""; 
    int              count; 
    static final int MessageLength = 70; 
    static int       total = 0; 
 
    public String toString() { 
        int  i = string.indexOf(0);  // Find end-of-string. 
 
        if (i < 1) 
            i = 1; 
 
        return("<Request: " + client + " " + self.getName() + 
            " '" + string.substring(0, i) + "'>"); 
    } 
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    public Request(Client s, byte[] b) { 
        client = s; 
        bytes = b; 
        self = Thread.currentThread(); 
        string = new String(b, 0); 
 
        synchronized (this.getClass()) { 
            count = ++total; 
        } 
 
        if (Server.DEBUG) { 
            System.out.println("Server[" + self.getName() + 
                "]\tCreated: " + this); 
        } 
 
        if (((count % 1000) == 0) && Server.DEBUG) { 
            System.out.println("Server[" + self.getName() + 
                "]\tCreated: " + count + " requests."); 
        } 
    } 
 
    public void process() { 
        Thread self =  Thread.currentThread(); 
 
        try { 
            byte reply[] = new byte[MessageLength]; 
            String s = new String(bytes, 0); 
            s = "[Server " + self.getName() + "] Reply: " + count + " 
to: " + s; 
            s.getBytes(0, MessageLength-1, reply, 0); 
            InterruptibleThread.sleep(Server.delay); 
            client.os.write(reply); 
            client.decrementOutstandingRequests(); 
 
            if ((count % 1000) == 0) { 
                System.out.println("Server[" + self.getName() + 
                    "]\tProcessed: " + count + " requests."); 
            } 
 
            if (Server.DEBUG) { 
                System.out.println("Server[" + self.getName() + 
                    "]\tProcessed: " + this); 
            } 
        } catch (IOException e) {               // Log failure, then 
ignore it. 
            try { 
                client.socket.close(); 
            } catch (IOException ioe) { 
            } 
 
            System.out.println("Server[" + self.getName() + 
                "]\tException during processing." + e); 
        } 
    } 
} 
 
 
 
// ServerProducerConsumer/Workpile.java 
 
/* 
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  A Workpile is a container for a list of Requests and the 
synchronization 
  variables that protect its internals. The synchronization and 
management 
  of the list is EXTERNAL to the class because I want to illustrate 
its 
  use in the producer/consumer code (and to make this program as 
similar 
  as possible to the C version). 
 
  The Workpile is constructed on top of a List (see Extensions). It 
could 
  equally well be implemented by subclassing Vector; unfortunately, 
Vector 
  is HORRIBLY inefficient for lists. 
*/ 
 
 
import java.io.*; 
import Extensions.*; 
 
public class Workpile { 
    List         list = List.nil; 
    int          length = 0; 
    static int   max = 10; 
    Mutex        mutex = new Mutex(); 
    ConditionVar producerCV = new ConditionVar(); 
    ConditionVar consumerCV = new ConditionVar(); 
    boolean      stop = false; 
 
    public Workpile(int i) { 
        max = i; 
    } 
 
    public void add(Request request) { 
        list = list.cons(request); 
        length++; 
    } 
 
    public Request remove() { 
        Request request = (Request) list.first; 
 
        list = list.next; 
        length--; 
        return request; 
    } 
 
    public boolean empty() { 
        return length == 0; 
    } 
 
    public boolean full() { 
        return length == max; 
    } 
} 

Now a little problem we've glossed over. You may have noticed that our program has no way to 
tell if it has sent out all the pending replies before the "End" request comes across. It is possible 
that the client program takes care of this, though ours doesn't. Obviously, this must be done to 
have a properly running program. Lots of techniques are possible, none of which are uniquely 
outstanding. We made a couple of minor additions to the server which allow it to keep track of the 
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number of outstanding requests per client. These are the methods 
incrementOutstandingRequests(), decrementOutstandingRequests(), and 
waitForOutstandingRequests(). When the client sends the "End" message, we will not 
close the socket until the number of outstanding requests has dropped to zero. 

 

Making a Native Call to pthread_setconcurrency() 

Here we simply show the basic interface for making a native call to set the concurrency level to 10. 
Code Example 17-4 uses the Solaris UI threads function thr_setconcurrency(), which will 
run on all post-Solaris 2.1 systems [pthread_setconcurrency() is part of UNIX98 and not 
implemented until Solaris 7]. 

Example 17-4 Setting the Concurrency Level in Solaris (TimeDiskSetConc.java) 

/* NativeThreads.c  */ 
 
#include <thread.h> 
#include <unistd.h> 
#include <jni.h> 
 
JNIEXPORT void JNICALL Java_Test_NativeTSetconc(JNIEnv *env, jclass 
obj) { 
    thr_setconcurrency(10); 
} 
 
 
/*  Test.java */ 
 
public class Test { 
    static native void NativeTSetconc(); 
    static {System.loadLibrary("NativeThreads"); 
 
    public static void main(String argv[]) { 
        ... 
        NativeTSetconc(); 
        ... 
    } 
} 
 
 

Actual Implementation of POSIX Synchronization 

In Code Example 17-5 we have the actual implementations of explicit POSIX-style mutexes and 
condition variables. Take note of how InterruptedException is handled. 

Example 17-5 Correct Implementation of Mutexes and Condition Variables 

// Extensions/Mutex.java 
 
/* 
  Pthreads style mutexes.  Not recursive. 
*/ 
package Extensions; 
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import java.io.*; 
 
public class Mutex { 
    Thread owner = null; 
 
    public String toString() { 
        String name; 
 
        if (owner == null) 
            name = "null"; 
        else 
            name = owner.getName(); 
 
        return "<" + super.toString() + "owner:" + name +">"; 
    } 
 
 
    // Note that if we are interrupted, we will simply resend that 
    // interrupt to ourselves AFTER we've locked the mutex.  The 
caller 
    // code will have to deal with the interrupt. 
    public synchronized void lock() { 
        boolean interrupted = false; 
 
        while (owner != null) { 
            try { 
                wait(); 
            } catch (InterruptedException ie) { 
                interrupted = true; 
            } 
        } 
 
        owner = Thread.currentThread(); 
        if (interrupted) 
            Thread.currentThread().interrupt(); 
    } 
 
    public synchronized void unlock() { 
        if (!owner.equals(Thread.currentThread())) 
            throw new IllegalMonitorStateException("Not owner"); 
 
        owner = null; 
        notify(); 
    } 
} 
 
 
 
//  Extensions/ConditionVar.java 
 
/* 
  A Pthreads style condition variable. 
 
  Note that if you use these, you must handle InterruptedException 
  carefully. condWait() will return as if from a spurious wakeup 
  if interrupted. If your code allows interrupts to be sent, you 
  MUST look at InterruptedException inside the while() loop: 
 
  while (!condition) { 
      condWait(m); 
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      if (Thread.interrupted()) {throw something/do something!} 
      } 
 
*/ 
 
package Extensions; 
 
import java.io.*; 
 
public class ConditionVar { 
    public void condWait(Mutex mutex) { 
        boolean interrupted = false; 
 
        while (true) { 
            try { 
                synchronized (this) { 
                    mutex.unlock(); 
                    wait(); 
                    break; 
                } 
            } catch (InterruptedException ie) { 
                interrupted = true; 
            } 
        } 
 
        mutex.lock(); 
  
        if (interrupted) 
            Thread.currentThread().interrupt(); 
    } 
 
    public void condWait(Mutex mutex, long timeout) 
        boolean interrupted = false; 
 
        while (true) { 
            try { 
                synchronized (this) { 
                    mutex.unlock(); 
                    wait(timeout); 
                    break; 
                } 
            } catch (InterruptedException ie) { 
                interrupted = true; 
            } 
        } 
 
        mutex.lock(); 
 
        if (interrupted) 
            Thread.currentThread().interrupt(); 
    } 
 
    public synchronized void condSignal() { 
        notify(); 
    } 
 
    public synchronized void condBroadcast() { 
        notifyAll(); 
    } 
} 
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A Robust, Interruptible Server 

Our next program (Code Example 17-6) is a variation of our old friend the producer/consumer 
version of a network server. In this version of it, we show how we can use 
InterruptedException to shut down the server on demand as we did in our StopQueue 
example. The main distinction between this program and StopQueue is that this version will not 
only interrupt the threads waiting on sockets, but it will also handle any of the checked exceptions 
no matter what the client code is doing. 

Note that we do close the socket as soon as we get the InterruptedException because it may 
not be in a recoverable state. 

Example 17-6 A Robust Server 

// ServerInterruptible/Server.java 
 
/* 
  A simple server program.  It sets up a TCP port for the client 
  program to connect to. Then it accepts connections, spawning a 
  new producer thread for each. [Java has no "select()" function.] 
 
  It starts up nConsumers consumer threads to pull requests off the 
  list and process them, sending a reply string back to the client. 
 
  Any IO failures are handled by printing out an error message, 
closing 
  the socket in question, then ignoring it.  Check out the location 
of 
  the exception handlers and which methods throw exceptions. This is 
  carefully designed and *should* be fully robust. 
 
  This version is really just a producer/consumer program that 
happens 
  to run across a socket. 
 
  Unlike the StopQueueSolution, which has the consumer threads exit 
at 
  stop time (that was done for the illustration of synchronization), 
this 
  program simply stops accepting new requests, closing the socket as 
soon 
  as the final reply has been issued. The Client program is sent an 
"End" 
  message then, and left to its own devices to deal with the fact 
that the 
  socket has been closed. 
 
  This program uses InterruptedIOException, hence MUST be compiled 
under 
  Java 2. 
*/ 
 
import java.io.*; 
import java.net.*; 
import Extensions.*; 
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public class Server { 
    ServerSocket        serverSocket;           // reading from  port 
    static int          port = 6500; 
    static int          delay = 10;             // Sleep time / 
Request (ms) 
    static int          spin = 10;              // CPU-spin time (us) 
    static boolean      DEBUG = false; 
    static int          nConsumers = 10; 
    static int          MAX_LENGTH = 10;        // Max length of 
Workpile 
    static int          MAX_OPEN = 1000;        // Max open file 
descriptors 
    static int          outstandingClients = 0; 
    static Workpile     workpile; 
    static Thread[]     consumers; 
    static Thread[]     producers; 
    static int          nProducers=0;           // # active clients 
    static int          stopperTimeout = 10;    // 10s 
    static int          killerTimeout = 120;    // 2min 
    static boolean      KILL = false; 
    static Thread       acceptor;               // Thread doing 
accept() 
 
    public static void main(String[] args) { 
        Server server = new Server(); 
 
        if (args.length > 0) 
            port = Integer.parseInt(args[0]); 
 
        if (args.length > 1) 
           delay = Integer.parseInt(args[1]); 
 
        if (args.length > 2) 
           spin = Integer.parseInt(args[2]); 
 
        if (args.length > 3) 
            nConsumers = Integer.parseInt(args[3]); 
 
        if (args.length > 4) 
            stopperTimeout = Integer.parseInt(args[4]); 
 
        if (args.length > 5) 
            killerTimeout = Integer.parseInt(args[5]); 
 
        if (System.getProperty("DEBUG") != null) 
            DEBUG = true; 
 
        if (System.getProperty("KILL") != null) 
            KILL = true; 
 
        System.out.println("Server(port: " + port + " delay: " + 
            delay + "ms spin: " + spin + "us nConsumers: " + 
            nConsumers + " stopperTimeout " + stopperTimeout + 
            "s killerTimeout " + killerTimeout + "s)"); 
 
        server.runServer(); 
    } 
 
    public void runServer() { // Executes in main thread 
        Socket socket; 
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        if (KILL) 
            new Thread(new Killer(120)).start(); 
 
        acceptor = Thread.currentThread(); 
        consumers = new Thread[nConsumers]; 
        producers = new Thread[MAX_OPEN]; 
        workpile = new Workpile(MAX_LENGTH); 
 
        for (int i = 0; i < nConsumers; i++) { 
            consumers[i] = new Thread(new Consumer(workpile)); 
            consumers[i].start(); 
        } 
 
        for (int i = 0; i < 3; i++) {         // Main start/stop loop 
            try { 
                serverSocket = new ServerSocket(port); 
                
System.out.println("\n========================================="); 
                System.out.println("Server now listening on port " + 
port); 
 
                nProducers = 0; 
                new Thread(new Stopper(workpile, 
stopperTimeout)).start(); 
                for (int j = 0; true; j++) {        // New client 
loop 
                    try { 
                        socket = serverSocket.accept(); 
                        Client client = new Client(socket); 
 
                        synchronized (this) { 
                            waitIfTooManyClients(); 
                        } 
 
                        Thread t = new Thread(new Producer(this, 
client)); 
                        t.start(); 
                        producers[j] = t; 
                        nProducers = j + 1; 
                        System.out.println("Server[" + t.getName() + 
                            "]\tStarted new client: " + client); 
                    } catch (SocketException ie) { 
                        synchronized (workpile) { 
                            System.out.println("Acceptor " + ie); 
                            Thread.interrupted();  //SocketException 
does NOT clear flag! 
                            if (workpile.stop) 
                                break;   // stop better be true! 
                            System.out.println("Impossible bug! Stop 
must be true."); 
                            System.exit(-1); 
                        } 
                    } 
                }                                 // End of new 
client loop 
 
                serverSocket.close(); 
                waitForOutstandingClients(); 
                System.out.println("Server shutdown complete."); 
                InterruptibleThread.sleep(2000);  // "Feels" better 
to delay here. 
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                workpile.stop=false; 
            } catch (IOException e) {     // Log failure, then die. 
                System.out.println("Exiting on " + e); 
                System.exit(-1); 
            } 
        }                                     // End of start/stop 
loop 
 
        System.out.println("Exiting normally."); 
        System.exit(-1); 
    } 
 
    public Server() { 
    } 
 
    public synchronized void incrementOutstandingClients() { 
        outstandingClients++; 
    } 
 
    public synchronized void decrementOutstandingClients() { 
        outstandingClients--; 
        if ((outstandingClients == 0) || (outstandingClients == 
MAX_OPEN-1)) 
            notifyAll();                // In case someday there's 
more than 1. 
    } 
 
    public synchronized void waitForOutstandingClients() { 
        boolean interrupted = false; 
 
        while (outstandingClients != 0) { 
            try { 
                wait(); 
            } catch (InterruptedException e) { 
                interrupted = true; 
            } 
        } 
 
        if (interrupted) 
            Thread.currentThread().interrupt(); 
    } 
 
    public void waitIfTooManyClients() { // NOT synchronized! 
        boolean interrupted = false; 
 
        while (outstandingClients == MAX_OPEN) { 
            try { 
                wait(); 
            } catch (InterruptedException e) { 
                interrupted = true; 
            } 
        } 
 
        if (interrupted) 
            Thread.currentThread().interrupt(); 
    } 
} 
 
 
 
//  ServerInterruptible/Client.java 
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import java.io.*; 
import java.net.*; 
 
public class Client { 
    public int          outstandingRequests = 0; 
    public Socket       socket; 
    public InputStream  is; 
    public OutputStream os; 
    public int          delay = 10; 
    public int          count = 0; 
    public static int   total = 0; 
    public int          MessageLength = 70; 
 
    public String toString() { 
        return "<Client: " + count +">"; 
    } 
 
    public Client(Socket s) throws IOException { 
        try { 
            socket = s; 
            is = socket.getInputStream(); 
            os = socket.getOutputStream(); 
            synchronized (getClass()) { 
                total++; 
                count = total; 
            } 
        } catch (IOException ie) {      // Included for 
illustration/debugging 
            System.out.println(ie + " in new Client()"); 
            throw ie; 
        } 
    } 
 
    public Request read() throws InterruptedIOException, IOException 
{ 
        byte[] b = new byte[MessageLength]; 
 
        try { 
            int n = is.read(b); 
            if (n != MessageLength) 
                throw new IOException(this + " read too few 
characters " + n); 
            incrementOutstandingRequests(); 
            return new Request(this, b); 
        } catch (IOException ie) {      // Included for 
illustration/debugging 
            System.out.println(ie + " in client.read()"); 
            throw ie; 
        } 
    } 
 
// Methods something like these might be useful...  :-) 
 
    public synchronized void incrementOutstandingRequests() { 
        outstandingRequests++; 
    } 
 
    public synchronized void decrementOutstandingRequests() { 
        outstandingRequests--; 
        if (outstandingRequests == 0) 
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            notifyAll();                // In case someday there's 
more than 1. 
    } 
 
    public synchronized void waitForOutstandingRequests() { 
        boolean interrupted=false; 
 
        while (outstandingRequests != 0) { 
            try { 
                wait(); 
            } catch (InterruptedException e) { 
                interrupted = true; 
            } 
        } 
 
        if (interrupted) 
            Thread.currentThread().interrupt(); 
    } 
 
} 
 
 
 
 
// ServerInterruptible/Consumer.java 
 
import java.io.*; 
import Extensions.*; 
 
public class Consumer implements Runnable { 
    Workpile workpile; 
 
    public Consumer(Workpile w) { 
        workpile = w; 
    } 
 
    public void run() { 
        Request request; 
        String  selfName = Thread.currentThread().getName(); 
 
        while (true) { 
            try { 
                synchronized (workpile) { 
                    while (workpile.empty()) { 
                        workpile.wait(); 
                    } 
 
                    request = workpile.remove(); 
                    workpile.notifyAll(); 
                } 
 
                request.process(); 
            } catch (InterruptedException ie) {   // Never called. 
                System.out.println(ie + " in consumer.run() " + 
selfName); 
            } 
        } 
    } 
} 
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// ServerInterruptible/Producer.java 
 
import java.io.*; 
import Extensions.*; 
 
public class Producer implements Runnable { 
    public Workpile         workpile; 
    public Client           client; 
    public Server           server; 
    public static String    END = "End"; 
    public final int        MessageLength = 70; 
    public byte[]           END_BYTES = new byte[MessageLength]; 
 
    public Producer(Server s, Client c) { 
        server = s; 
        workpile = server.workpile; 
        client = c; 
        END.getBytes(0, MessageLength-1, END_BYTES, 0); 
    } 
 
    public void run() { 
        String selfName = Thread.currentThread().getName(); 
 
        server.incrementOutstandingClients(); 
        for (int i = 0; true; i++) { 
            try { 
                Request request = client.read(); 
                if (request.string.startsWith("End")) { 
                    client.decrementOutstandingRequests(); 
                    client.waitForOutstandingRequests(); 
 
                    // Send "End" right back to client.  We're done! 
                    client.os.write(END_BYTES); 
                    client.socket.close(); 
                    System.out.println("Server[" + selfName + 
                        "]\tCompleted processing."); 
                    break; 
                } 
 
                synchronized (workpile) { 
                    while (workpile.full() && !workpile.stop) { 
                        workpile.wait(); 
                    } 
 
                    workpile.add(request); 
                    workpile.notifyAll(); 
                    if (workpile.stop) 
                        break; 
                } 
            } catch (InterruptedException e) { 
                System.out.println(e + " in producer.run() for " + 
client); 
                synchronized (workpile) {if (workpile.stop) break;} 
                System.out.println("Impossible bug. Stop must be 
true!"); 
            } catch (InterruptedIOException e) { 
                System.out.println(e + " in producer.run() for " + 
client); 
                synchronized (workpile) { 
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                    if (workpile.stop) 
                        break; 
                } 
                System.out.println("Impossible bug. Stop must be 
true!"); 
            } catch (IOException e) {             // Log failure, 
then ignore it. 
                System.out.println(e + "in producer.run()."); 
                break; 
            } 
        } 
 
        client.waitForOutstandingRequests(); 
 
        try { 
            client.os.write(END_BYTES); 
            client.socket.close(); 
        } catch (IOException ioe) { 
        } 
 
        server.decrementOutstandingClients(); 
        System.out.println("Server[" + selfName + 
                "] exiting from producer.run()."); 
        InterruptibleThread.exit(); 
    } 
} 
 
 
 
 
//  ServerInterruptible/Request.java 
 
import java.io.*; 
import java.net.*; 
import Extensions.*; 
 
public class Request { 
    Client           client; 
    byte[]           bytes; 
    Thread           self; 
    String           string = ""; 
    int              count; 
    static final int MessageLength = 70; 
    static int       total = 0; 
 
    public String toString() { 
        int i = string.indexOf(0);  // Find end-of-string. 
 
        if (i < 1) 
            i = 1; 
 
        return "<Request: " + client + " " + self.getName() + 
            " '" + string.substring(0, i) + "'>"; 
    } 
 
    public Request(Client s, byte[] b) { 
        client = s; 
        bytes = b; 
        self = Thread.currentThread(); 
        string = new String(b, 0); 
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        synchronized (this.getClass()) { 
            count = ++total; 
        } 
 
        if (Server.DEBUG) { 
            System.out.println("Server[" + self.getName() + 
                "]\tCreated: " + this); 
        } 
 
        if (((count % 1000) == 0) && Server.DEBUG) { 
            System.out.println("Server[" + self.getName() + 
                "]\tCreated: " + count + " requests."); 
        } 
    } 
 
    public void process() { 
        Thread self =  Thread.currentThread(); 
 
        try { 
            byte reply[] = new byte[MessageLength]; 
            String s = new String(bytes, 0); 
            s = "[Server " + self.getName() + "] Reply: " + count + " 
to: " + s; 
            s.getBytes(0, MessageLength-1, reply, 0); 
            InterruptibleThread.sleep(Server.delay); 
            client.os.write(reply); 
            client.decrementOutstandingRequests(); 
 
            if ((count % 1000) == 0) { 
                System.out.println("Server[" + self.getName() + 
                        "]\tProcessed: " + count + " requests."); 
            } 
 
            if (Server.DEBUG) { 
                System.out.println("Server[" + self.getName() + 
                        "]\tProcessed: " + this); 
            } 
        } catch (InterruptedIOException e) {      // Log failure, 
then ignore it. 
            System.out.println(e + " in request.process()."); 
        } catch (IOException e) {               // Log failure, then 
ignore it. 
            // A consumer *may* still be working on requests for a 
client that 
            // has been closed! (Shouldn't happen.) 
            System.out.println(e + " in request.process()."); 
        } 
    } 
} 
 
 
 
 
//  ServerInterruptible/Stopper.java 
 
import java.io.*; 
import Extensions.*; 
 
public class Stopper implements Runnable { 
    Workpile workpile; 
    int      delay; 
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    public Stopper(Workpile w, int d) { 
        workpile = w; 
        delay = d; 
    } 
 
    public void run() { 
        InterruptibleThread.sleep(delay*1000); 
        System.out.println("Stopping..."); 
 
        synchronized (workpile) { 
            workpile.stop = true; 
            workpile.notifyAll(); 
        } 
 
        //  for (int i=0; i < Server.nConsumers; i++) 
        //     Server.consumers[i].interrupt(); 
        for (int i = 0; i < Server.nProducers; i++) 
            Server.producers[i].interrupt(); 
 
        Server.acceptor.interrupt(); 
    } 
} 
 
 
 
 
 
//  ServerInterruptible/Workpile.java 
 
/* 
  A Workpile is a container for a list of Requests and the 
synchronization 
  variables that protect its internals. The synchronization and 
management 
  of the list is EXTERNAL to the class because I want to illustrate 
its 
  use in the producer/consumer code  (and to make this program as 
similar 
  as possible to the C version). 
 
  The Workpile is constructed on top of a List (see Extensions). It 
could 
  equally well be implemented by subclassing Vector; unfortunately 
Vector 
  is HORRIBLY inefficient for lists. 
*/ 
 
 
import java.io.*; 
import Extensions.*; 
 
public class Workpile { 
    List       list = List.nil; 
    int        length = 0; 
    static int max = 10; 
    boolean    stop = false; 
 
    public Workpile(int i) { 
        max = i; 
    } 
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    public void add(Request request) { 
        list = list.cons(request); 
        length++; 
    } 
 
    public Request remove() { 
        Request request = (Request) list.first; 
 
        list = list.next; 
        length--; 
        return request; 
    } 
 
    public boolean empty() { 
        return length == 0; 
    } 
 
    public boolean full() { 
        return length == max; 
    } 
} 
 
 

Disk Performance with Java 

Our final program (Code Example 17-7) is a simple test of disk performance with multiple threads. 
Because disk controllers can overlap incoming requests from the CPU, having lots of outstanding 
requests is a good thing and yields a performance improvement upward of twofold. This program 
demonstrates that fact and the value of making native call to thr_setconcurrency() on 
Solaris platforms. A nearly identical program in C yields slightly (about 25%) better results due to 
the expense of Java making calls into the native read() system call. 

Example 17-7 Measuring Disk Access Throughput 

// TimeDisk/Test.java 
 
/* 
  This program runs a set of read() calls against one large file. 
  It runs with one or more threads so you can see the performance 
  effect of MT.  Each read() gets one byte from a random location. 
  You can run it for a number of iterations and get mean and SD. 
 
  Make sure that there are links in /tmp pointing to wherever you 
  can find room. 
 
  lrwxrwxrwx   1 bil other ... time_disk0.tmp -> 
/disk2/6/temp_disk_test 
  ln -s /disk2/6/temp_disk_test /tmp/time_disk0.tmp 
 
  The file must be much larger than physical memory.  10x would be 
great, 
  but 2x will do.  Expect "performance" to improve as the mbufs get 
  loaded.  For a file 2x Physical, initial 100/s will improve to 
200/s 
  (as 50% of the file will become cached).  To populate the cache, 
you 
  can run this program for awhile. 
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  runtime    = (Physical Memory / PAGE_SIZE)   / READS_PER_SECOND 
  eg: 
  160seconds = (128MB          / (8KB/PAGE))  / 100 
 
 
  NB: This only runs under Java 2. 
  CF: Same program in C: time_disk.c 
*/ 
 
import java.io.*; 
import java.util.*; 
import Extensions.*; 
 
public class Test implements Runnable { 
    static int      MAX_FILE_SIZE = 1024*1024*1024; 
    static int      PAGE_SIZE = 8192; 
    static int      MAX_PAGES = (MAX_FILE_SIZE/PAGE_SIZE); 
    static int      MAX_THREADS = 512; 
    static int      MAX_DENSITY = 100; 
    static int      MAX_READS; 
    static int[]    hits = new int[MAX_PAGES]; 
    static int[]    density = new int[MAX_DENSITY]; 
    static String   path="/tmp/time_disk0.tmp"; 
    static int      spinTime = 0, runtime = 10, nThreads = 1; 
    static int      iterations = 1; 
    static boolean  setConcurrency = false; 
    static int[]    nProcessed; 
    static boolean  DEBUG = false; 
    static Thread[] threads; 
    static boolean  stop = false; 
 
    static native void pthread_setconcurrency(int i); 
    static {System.loadLibrary("PThreadsInterface");} 
    // System.out.println("Loaded");} 
 
    Random ran; 
    int    me; 
 
    public void run() { 
        int              err; 
        long             length; 
        byte[]           b = new byte[2]; 
        RandomAccessFile fd = null; 
        long             fileOffset; 
        Thread           self = Thread.currentThread(); 
 
        try { 
            fd = new RandomAccessFile(path, "r"); 
            length = fd.length(); 
 
            for (int i = 0; i < MAX_READS; i++) { 
                if (stop) 
                    break; 
 
                fileOffset =  Math.abs((ran.nextInt() * PAGE_SIZE) % 

length); 
 
                hits[(int) fileOffset / PAGE_SIZE]++; 
 
                //if (DEBUG) 
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                // System.out.println(t + " reading at " + 
fileOffset); 
 
                fd.seek(fileOffset); 
                err = fd.read(b, 0, 1); 
                if (err == -1) { 
                    throw new IOException(); 
                } 
 
                InterruptibleThread.spin(spinTime * 1000); 
                nProcessed[me]++; 
 
                // It's interesting to see the results of yield() 
here  
                // when using > 1 GREEN THREADS. (The results are 
what                 
                // you expect -- same performance only spread to all                
                // threads.) You would never include this in a "real"  
                // program. 
 
                //      Thread.yield(); 
            } 
 
            // If one thread completes MAX_READS, all quit. 
            // This is probably because you're using GREEN THREADS. 
            stop = true; 
        } catch (IOException e) { 
            System.out.println("Is " + path + " correct? \n" +e); 
            System.exit(-1); 
        } 
    } 
 
    public static void main(String argv[]) throws Exception { 
        int      totalProcessed; 
        double[] rates = new double[MAX_THREADS]; 
        double   S = 0.0, mean, rate_sum = 0.0, realtime; 
        Thread   t; 
 
        if (argv.length > 0) 
            nThreads = Integer.parseInt(argv[0]); 
 
        if (argv.length > 1) 
            spinTime = Integer.parseInt(argv[1]); 
 
        if (argv.length > 2) 
            runtime = Integer.parseInt(argv[2]); 
 
        if (argv.length > 3) 
            iterations = Integer.parseInt(argv[3]); 
 
        if (argv.length > 4) 
            setConcurrency = (Integer.parseInt(argv[4]) == 1); 
 
        if (System.getProperty("DEBUG") != null) DEBUG = true; 
 
        System.out.println("Test(nThreads: " + nThreads + 
            " spinTime: " + spinTime + "ms runtime: " + runtime + 
            "s iterations " + iterations + " setConcurrency: " + 
            setConcurrency + ")"); 
 
        if (spinTime > 0) 
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            InterruptibleThread.calibrateSpin(); 
 
        MAX_READS = 200*runtime;       // About 2x fastest current 
disk 
        nProcessed = new int[nThreads]; 
        threads = new Thread[nThreads]; 
        if (setConcurrency) 
            pthread_setconcurrency(nThreads + 1); 
 
        for (int j = 0; j < iterations; j++) { 
            for (int i = 0; i < MAX_PAGES; i++) 
                hits[i] = 0; 
 
            for (int i = 0; i < MAX_DENSITY; i++) 
                density[i]=0; 
 
            for (int i = 0;i < nThreads; i++) 
                nProcessed[i]=0; 
 
            totalProcessed = 0; 
 
            long start = new Date().getTime(); 
 
            for (int i = 0; i < nThreads; i++) { 
                Random ran = new Random(start + i); 
                t = new Thread(new Test(i, ran)); 
                t.start(); 
                threads[i] = t; 
            } 
 
            start = new Date().getTime(); 
            InterruptibleThread.sleep(runtime*1000); 
            stop = true; 
 
            for (int i = 0; i < nThreads; i++) { 
                threads[i].join(); 
            } 
 
            long end = new Date().getTime(); 
            realtime = (end - start) / 1000.0; 
 
            for (int i = 0; i < nThreads; i++) { 
                if (DEBUG) { 
                    System.out.println("Thread " + i + 
                        " processed \t" + nProcessed[i]); 
                } 
 
                totalProcessed +=nProcessed[i]; 
            } 
 
            for (int i = 0; i < MAX_PAGES; i++) { 
                if (hits[i] < MAX_DENSITY) 
                    density[hits[i]]++; 
                else { 
                    if (DEBUG) { 
                        System.out.println("Page " + i + " got " + 
                            hits[i] + " hits!"); 
                    } 
                } 
            } 
 



 264

            if (DEBUG) { 
                System.out.println("nHits \t nPages"); 
                for (int i = 0; i < MAX_DENSITY; i++) { 
                    if (density[i] > 0) 
                        System.out.println(i + "\t " + density[i]); 
                } 
            } 
 
            if (iterations == 1) { 
                System.out.println("Processed " + totalProcessed + 
                    " in " + realtime + "s. Rate\t" +  
                    (totalProcessed/realtime) + "/s."); 
            } 
 
            rates[j] =  totalProcessed / realtime; 
            rate_sum += totalProcessed / realtime; 
 
            stop = false; 
        } 
 
        if (iterations > 1) { 
            mean = rate_sum / iterations; 
 
            for (int i = 0; i < iterations; i++) 
                S += (mean - rates[i]) * (mean - rates[i]); 
 
            S = Math.sqrt(S / (iterations - 1)); 
 
            System.out.println("Mean rate: " + mean + 
                    "/sec, Standard Deviation: " + S); 
        } 
 
        System.exit(0); 
    } 
 
    public Test(int i, Random r) { 
        ran = r; 
        me = i; 
    } 
} 
 
 
 
 
/*                 TimeDisk/PThreadsInterface.c        */ 
 
#include <thread.h> 
#include <unistd.h> 
#include <jni.h> 
 
JNIEXPORT void JNICALL 
  Java_Test_pthread_1setconcurrency(JNIEnv *env, jclass obj, jint i) 
{ 
  thr_setconcurrency(i); 
} 
 
/*                   TimeDisk/compile.csh              */ 
 
# This is a Java2 only-program (for native threads and 
# InterruptedIOException). 
setenv JAVAHOME /disk2/6/Java/jdk1.2/jdk1.2beta4 



 265

setenv JH_INC3 ${JAVAHOME}/include 
setenv JH_INC2 ${JAVAHOME}/include/solaris 
setenv CLASSPATH .:/export/home/bil/programs/Java/Extensions/classes 
 
# Java's going to get the interface code from . 
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:. 
 
# Tell Java to use native threads. 
setenv THREADS_FLAG native 
 
${JAVAHOME}/bin/javac *.java 
${JAVAHOME}/bin/javah -stubs Test 
${JAVAHOME}/bin/javah -jni Test 
 
cc -G -I${JH_INC3} -I${JH_INC2} PThreadsInterface.c -lthread \ 
   -o libPThreadsInterface.so 
 
 

Other Programs on the Web 

There are a small series of other programs on the Web page that may be of some interest. Each of 
them has points of interest, but none of them is sufficiently interesting for us to print in its entirety. 
You may well find the programs helpful in clarifying details about how to write code for specific 
situations and for how to use the APIs. Several are variations of the programs in previous chapters, 
and several are simple test programs which illustrate how some of the fancier extension functions 
work, such as FIFO mutexes, recursive mutexes, mutexes with timeouts. 

 

Summary 

Several Java programs were shown, each with a certain point to elucidate. As with all the example 
programs, translation to POSIX or Win32 is (supposed to be) straightforward and is left as an 
exercise for the reader. 
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Appendix A. Internet 
• Threads Newsgroup 
• Code Examples 
• Vendor's Threads Pages 
• Threads Research 
• Freeware Tools 
• Other Pointers 
• The Authors on the Net 

 

Threads Newsgroup 

For discussion, questions and answers, and just general debate about threading issues, there is a 
newsgroup on the Internet (started by Bil). The issues discussed are not confined to any one 
vendor, implementation, standard, or specification. 

comp.programming.threads 

There are two FAQs for the newsgroup, the first high-level and general (maintained by Brian), the 
other very low-level and specific (maintained by Bil): 

http://www.serpentine.com/~bos/threads-faq 

http://www.LambdaCS.com 

 

Code Examples 

All the code examples in this book (and direct counterparts in PThreads) are available via the Web: 

http://www.LambdaCS.com 

 

Vendor's Threads Pages 

The SunSoft Web page (designed by Marianne, maintained by Dan) includes an FAQ on UI 
threads, performance data, case studies, and demonstration programs. It also has a lot of pointers 
to other pages on it. 

http://www.sun.com/software/Products/Developer-products/threads/ 

The IBM threads page includes a short exposition on POSIX threads programming and IBM's 
implementation: 

http://developer.austin.ibm.com/sdp/library/ref/about4.1/df4threa.html 

http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/genprogc/thread_quick_ref.htm 

http://www.serpentine.com/%7Ebos/threads-faq
http://www.lambdacs.com/
http://www.lambdacs.com/
http://www.sun.com/software/products/developer-products/threads/
http://developer.austin.ibm.com/sdp/library/ref/about4.1/df4threa.html
http://www.rs6000.ibm.com/doc_link/en_us/a_doc_lib/aixprggd/genprogc/thread_quick_ref.htm
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DEC's documentation pages include a "Guide to DECthreads": 

http://www.unix.digital.com/faqs/publications/base_doc/DOCUMENTATION/HTML/AA-
Q2DPC-TKT1_html/threads_title.html 

Or, for something (unfortunately, only slightly) more "wieldy": 

http://www.unix.digital.com/faqs/publications/base_doc/DOCUMENTATION/HTML/BOOKSH
ELF.HTM 

 

Threads Research 

There is a bibliography of several hundred papers related to threading (created and maintained by 
Torsten). The papers are largely theoretical, exploring the outer limits of threading and 
concurrency: 

http://liinwww.ira.uka.de/bibliography/Os/threads.html 

A good number of people are doing research and development on all sorts of threads-related issues. 
Here are a few of the major ones. 

Doug Lea (the famous author previously mentioned) has written some on-line stuff on Java 
Threads and has the code for his book there also. 

http://gee.cs.oswego.edu/dl 

Douglas Schmidt wrote an extensive package to facilitate threading and interprocess 
communication called "The Adaptive Communication Environment (ACE)." 

http://www.cs.wustl.edu/~schmidt/ACE.html 

 

Freeware Tools 

Two useful tools are available as unsupported from Sun. TNFview (by Bonnie's group) allows you 
to look at the exact timing of different events in a program. Proctool (Morgan's brainchild) gives 
you a view of the high-level operations of processes and LWPs on Solaris. 

http://soldc.sun.com/developer/support/driver (TNFView) 

http://www.sunfreeware.com (Proctool) 

 

Other Pointers 

You can see the "Single UNIX® Specification" at 

http://www.rdg.opengroup.org/unix/online.html 

http://www.unix.digital.com/faqs/publications/base_doc/documentation/html/
http://www.unix.digital.com/faqs/publications/base_doc/documentation/html/
http://www.unix.digital.com/faqs/publications/base_doc/documentation/html/BOOKSHELF.HTM
http://www.unix.digital.com/faqs/publications/base_doc/documentation/html/BOOKSHELF.HTM
http://liinwww.ira.uka.de/bibliography/os/threads.html
http://gee.cs.oswego.edu/dl
http://www.cs.wustl.edu/%7Eschmidt/ace.html
http://soldc.sun.com/developer/support/driver
http://www.sunfreeware.com/
http://www.rdg.opengroup.org/unix/online.html
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To see all the details on performance measurements, the SPEC homepage is 

http://www.specbench.org 

For about $140 you can get the actual POSIX threads spec (IEEE 1003.1) from IEEE. It is a 
specification, more intended for implementers than programmers, so it is very likely not what you 
want. But, if you do: 

http://www.ieee.org 

customer.service@ieee.org 

 

The Authors on the Net 

If you would like to contact the authors directly, you can send mail to Daniel.Berg@sun.com and 
Bil@LambdaCS.COM. We would like to hear from you about what you liked or disliked about 
the book, and what we may be able to improve. 

Daniel recently left Cyrus Inc. and has returned to Sun as worldwide director of Advanced Internet 
Consulting Practice. 

Bil left Sun and is currently running his own company, Lambda Computer Science, teaching, and 
consulting on multithreaded programming. 

http://www.specbench.org/
http://www.ieee.org/
mailto:customer.service@ieee.org
mailto:Daniel.Berg@sun.com
mailto:Bil@LambdaCS.COM
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Appendix B. Books 
• Threads Books 
• Related Books 

 

Threads Books 

The following are the other books in publication to date. Some of the examples, explanations, 
figures, etc., in them will be better than those in this text. Some of them will simply explain things 
better for you. We have read each of them carefully and have our own preferences. All of them are 
sufficient for their purposes. 

Java Threads 

Doug Lea, Concurrent Programming in Java. Reading, MA: Addison-Wesley, 1997 (240 pages, 
source on the Web). Describes how to write multithreaded programs in Java, using design patterns. 
Well written from a computer science point of view, although perhaps overwhelming for the 
hacker-oriented. Familiarity with design patterns is a necessity. 

Scott Oaks and Henry Wong, Java Threads. Sebastopol, CA: O'Reilly, 1997 (252 pages, source on 
the Web). Describes how to write multithreaded programs in Java in a more conventional, 
programmer-oriented style. Explanations are clear, though often simplistic. The programs 
illustrate the points well, yet tend to gloss over problem areas in Java. 

Stephen J. Hartley, Concurrent Programming—The Java Programming Language. Oxford 
University Press, 1998 (250 pages, source on the Web). Describes how to write multithreaded 
programs in Java in a more conventional, programmer-oriented style. Somewhat simplistic, 
intended as an undergraduate text. 

POSIX Threads 

Steve Kleiman, Devang Shah, and Bart Smaalders, Programming with Threads. Upper Saddle 
River, NJ: SunSoft Press, Feb. 1996 (534 pages, source on the Web). Covers POSIX threads, 
concentrating on the Solaris implementation. It has a small but adequate introduction, then 
concentrates on more advanced programming issues. The examples are good because they are 
realistic and show you what to expect. They are bad because they are very realistic and obscure 
the main points in the text. 

Len Dorfman and Marc J. Neuberger, Effective Multithreading with OS/2. New York: McGraw-
Hill, Nov. 1995 (280 pages, source on diskette). Gives a brief introduction, then focuses the rest of 
the discussion on the API and examples. It covers the OS/2 API. 

Charles J. Northrup, Programming with UNIX Threads. New York: Wiley, Mar. 1996 (400 pages, 
source via FTP). Covers the UI threads library, focusing on the UNIXware implementation. The 
presentation is oriented around the API and contains numerous examples. 

Thuan Q. Pham and Pankaj K. Garg, Multithreaded Programming with Windows NT. Upper 
Saddle River, NJ: Prentice Hall, Jan. 1996 (220 pages, source on diskette). Focusing on the NT 
library, this book gives some comparison with other libraries. While it describes concepts and 
designs well, it lacks many of the practical details and glosses over problems. 
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Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell, Pthreads Programming. Sebastopol, 
CA: O'Reilly, Nov. 1996 (268 pages, source via FTP). Concentrates on the Digital implementation 
of POSIX. It gives a good explanation of the concepts but is a little too condensed to do them 
justice. Includes a major section comparing the final standard to draft 4, DCE. 

Scott J. Norton and Mark D. Dipasquale, ThreadTime. Upper Saddle River, NJ: HP Professional 
Books, Dec. 1996 (530 pages, source on diskette). Describes POSIX threads with concentration on 
the HP-UX implementation. Includes an excellent introduction, computer science descriptions, 
and standards discussion. 

Dave Butenhof, Programming with POSIX Threads. Reading, MA: Addison-Wesley, May 1997 
(380 pages, source on the Web). Concentrates more on architecture than any specific 
implementation of POSIX threads. A lucid exposition of concepts and discussion of standards 
from one of the guys on the committee. Japanese translation available. 

Bil Lewis and Daniel J. Berg, Threads Primer. Upper Saddle River, NJ: SunSoft Press, Oct. 1995 
(320 pages, source on the Web). This is the first edition of the primer, which covers UI threads. It 
lacks the depth of many of the other books but gives a more extensive explanation of the 
fundamentals. Japanese translation available. 

Bil Lewis and Daniel J. Berg, Multithreaded Programming with PThreads. Upper Saddle River, 
NJ: SunSoft Press, 1998 (380 pages, source on the Web). This is the second edition of the primer, 
which covers POSIX threads. It has much more depth than the Primer and also gives more 
extensive explanation of the fundamentals. Multithreaded Programming with PThreads is very 
similar to Multithreaded Programming with Java Technology, and the programming examples are 
directly comparable. Japanese translation available. 

Win32 Threads 

Jim Beveridge and Robert Wiener, Multithreading Applications in Win32. Reading, MA: 
Addison-Wesley, Jan. 1997 (368 pages, source on diskette). Describes Win32 threads (NT and 
Win95). Includes some comparison to POSIX. Excellent discussion of the practical aspects of 
programming Win32. Many insightful comments on both the good parts and the more problematic 
parts. 

Shashi Prasad, Multithreading Programming Techniques. New York: McGraw-Hill, Jan. 1997 
(410 pages, source on diskette and the Web). Describes and contrasts the multithreading libraries 
of POSIX, UI, Mach, Win32, and OS/2. Each library has its own chapters and its own code 
examples. This means that the introduction and presentation of concepts is lighter, but the 
examples are ported across the various platforms, making this a good reference for porting. 

 

Related Books 

Jeffrey Richter, Advanced Windows NT: The Developer's Guide to the Win32 Application 
Programming Interface. Redmond, WA: Microsoft Press, 1994. This book contains about 200 
pages that cover the NT threads API and its use. It covers the API well, contains a good amount of 
code, but has very little on the concepts. 

Robert A. Iannucci, Editor, Multithreaded Computer Architecture: A Summary of the State of the 
Art. New York: Kluwer Academic Publishers, 1994. This book is a collection of papers dealing 
with hardware design considerations for building specialized machines that can support 
multithreaded programs. 
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Derrel R. Blain, Kurt R. Delimon, and Jeff English, Real-World Programming for OS/2 2.1. 
Upper Saddle River, NJ: Sams Publishing/Prentice Hall PTR, 1993. This book contains about 50 
pages that cover the OS/2 threads API and its use. It covers the API well, contains one nice 
example, but is very short. 

Solaris Multithreaded Programming Guide. Upper Saddle River, NJ: SunSoft Press, 1995. This is 
the documentation that comes with Solaris 2.4 and contains the UI API. It is also available as part 
of the Solaris AnswerBook® and on the Web (see Vendor's Threads Pages). 

John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative Approach, 2nd 
ed. San Francisco: Morgan Kaufmann, Inc., 1996 (800 pages). This is the definitive text on 
computer design—CPU, memory system, and multiprocessors. Not about threads per se, but 
everything underneath. Superb research and exposition! 

Daniel E. Lenoski and Wolf-Dietrich Weber, Scalable Shared-Memory Multiprocessing. San 
Francisco: Morgan Kaufmann, 1995 (340 pages). This takes up in great detail what Hennessy and 
Patterson describe in mere passing detail. It describes the state of SMP research as it led to the 
Stanford DASH machine, and now the SGI Origin series and HAL Mercury. Superb research and 
exposition! 

Jerry R. Jackson and Alan L. McClellan, Java by Example. Upper Saddle River, NJ: SunSoft Press, 
1997. This is a nice introduction to Java and contains one particular example using threads that we 
use as the basis for one of our programs (Memory). 
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Appendix C. Timings 
 

Timings 
 
 

Timings 

The choice of which synchronization variable to use depends partially on its execution speed. This 
is particularly applicable when choosing between using a mutex lock and a readers/writer lock. 
The design of programs calling Java functions in tight loops will also depend upon these numbers 
for optimizations. For the most part, however, all of these times are short enough that they may be 
ignored. 

Because of the dependence of these tests upon several unusual instructions (ldstub and stbar 
on SPARC), machines with different cache or bus designs will exhibit nonuniform scaling 
(meaning that a context switch may be twice as fast on a 20-MHz processor as it is on a 10-MHz 
processor, but locking a mutex might take the same amount of time). Different releases of Java 
may also exhibit different timings. 

Execution times on other platforms may also differ significantly, but probably in roughly the same 
ratios (e.g., creating a thread will be a couple of orders of magnitude faster than creating a 
process). The one obvious exception to this is the semaphore, which should be almost as fast as 
mutexes on machines with the more complex atomic instructions. 

The major conclusions you should draw from these numbers are: 

• Synchronized sections are faster than RWlocks. 
• Testing for interruption is moderately fast. Disabling it is slower. 
• Processes are more expensive than threads. 
• TSD is slower than just using instance variables ("fake" TSD). 

The programs we ran to get the numbers shown in Table C-1 are available on the Web. 

The tests in C are in the PThreads directory, and those in Java are all in the TimeTests directory. 
The Java tests are run by calling 

%java Test. 

Mutex Lock/Unlock 

Acquire, then release, a POSIX mutex (Java Mutex) with no contention. 

Table C-1. Timings of Various Thread-Related Functions on POSIX and Java (µs)
Function  PThreads  Java 1.1.5  Java 2 
Mutex lock/unlock 1.8 30 30 
Explicit synchronized   10 3 
Implicit synchronized   13 4 
Readers/writer lock/unlock  4.5  70  80  
Semaphore post/wait  4.3  40  20  
object.notify()  n/a 3 3 
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CV.condSignal()  0.2 30 30 
Context switch (unbound threads)  89  430  80  
Context switch (bound threads)  42  n/a  n/a  
Context switch (processes)  54  n/a  n/a  
Cancellation disable/enable  0.6  50  50  
Test for deferred cancellation  0.25  7  0.2  
Createan unbound thread  330  1500  1500  
Create a bound thread  720  n/a  n/a  
Create a process  45,000  n/a  n/a  
Reference a global variable  0.02  0.2  0.08  
Reference thread-specific data  0.59  n/a  65  
Reference "fake" TSD  n/a 7 3 

Explicit Synchronized 

Acquire, then release, a synchronized section with no contention with the object mentioned 
explicitly: synchronized(object){}. 

Implicit Synchronized 

Call an empty synchronized method with no contention. 

Readers/Writer Lock/Unlock 

Acquire, then release, a readers/writer lock as a writer with no contention. 

Semaphore Post/Wait 

Increment an unnamed semaphore, then decrement it. (On machines with LoadLocked 
instructions, in POSIX this operation should take about the same time as a simple mutex 
lock/unlock.) 

notify() 

Call notify() on an object that has no waiters. 

condSignal() 

Call condSignal() on a condition variable that has no waiters. 

Local Context Switch (unbound) 

Call sched_yield() from each of two unbound threads. (This number is much higher than 
expected, much slower than seen on an SS10.) 

Call Thread.yield(). 

Local Context Switch (bound) 
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Call sched_yield() from each of two bound threads. 

Process Context Switch 

Call sched_yield() from each of two processes. 

Cancellation Disable/Enable 

Call pthread_setcancelstate(DISABLE) then ENABLE. 

Call InterruptibleThread.disable(), then Inter-ruptibleThread.enable(). 

Test for Deferred Cancellation 

Call pthread_testcancel(). 

Call Thread.interrupted(). 

Reference a Global Variable 

Load a single word into a register. 

Reference Thread-Specific Data 

Call pthread_getspecific(). 

Call (Integer) tsd.get(). 

Reference "Fake" Thread-Specific Data 

Call (TSDThread) Thread.currentThread().j. 
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Appendix D. APIs 
• Function Descriptions 
• The Class java.lang.Thread 
• The Interface java.lang.Runnable 
• The Class java.lang.Object 
• The Class java.lang.ThreadLocal 
• The Class java.lang.ThreadGroup 
• Helper Classes from Our Extensions Library 
• The Class Extensions.InterruptibleThread 
• The Class Extensions.Semaphore 
• The Class Extensions.Mutex 
• The Class Extensions.ConditionVar 
• The Class Extensions.RWLock 
• The Class Extensions.Barrier 
• The Class Extensions.SingleBarrier 

This appendix contains a very brief description of the Java threads API. 

 

Function Descriptions 

In the sample entry below, the method name comes first. Next are the method and argument list 
(sometimes there'll be two methods shown, should they be very closely related). A short paragraph 
describing the basic operation follows (it may well leave out some details). Next comes a 
reference to the most applicable portion of the text. Finally, any comments that seem appropriate 
are given. 

start 
   public void start() 
         throws IllegalThreadStateException 

Calling the start() method on an instance of Thread will cause the appropriate run() method 
to execute in a new thread. 

Reference:  Chapter 4.  

 
 

The Class java.lang.Thread 

The class Thread defines thread objects. When the start() method is called, an actual running 
thread is created which the Thread object can control. It is important to distinguish between the 
object (which is just memory and a set of methods) and the running thread (which executes code). 
All static thread methods apply to the current thread. 

Thread 
   public Thread() 
   public Thread(String name) 
   public Thread(Runnable runObj) 
   public Thread(Runnable runObj, String name) 
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               throws SecurityException, 
               IllegalThreadStateException 

These create a new thread object. 

References:  Chapters 4 and 10.  
 
MIN_PRIORITY MAX_PRIORITY NORM_PRIORITY 
   public final static int MIN_PRIORITY = 1; 
   public final static int MAX_PRIORITY = 10; 
   public final static int NORM_PRIORITY = 5; 

These are the minimum, maximum, and default priorities for normal threads. 

Reference:  Chapter 5.  
Comment:  You will probably never use these functions.  
 
start 
   public void start() 
         throws IllegalThreadStateException 

Calling the start() method on an instance of Thread will cause the appropriate run() method 
to execute in a new thread. 

Reference:  Chapter 4.  
 
run 
   public void run() 

This is the method you define that actually executes the code you want. The base method simply 
looks to see if there is a Runnable and calls its run() method. 

Reference:  Chapter 4.  
 
currentThread 
   public static Thread currentThread() 

This method returns the current thread object. 

Reference:  Chapter 4.  
 
join 
   public final void join() 
   public final void join(long milliseconds) 
   public final void join(long milliseconds, long nanosec) 
        throws InterruptedException 

This waits for the thread to exit. 

Reference:  Chapter 4.  
Comment:  Rarely used.  
 
stop 
   public final stop() 
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   public final stop(Throwable t) 

This kills the thread asynchronously. 

Reference:  Chapter 4.  
Comment:  It is deprecated in Java 2. Don't use it.  
 
sleep 
   public static void sleep(long milliseconds) 
   public static void sleep(long milliseconds, long nanosec) 
         throws InterruptedException 

This causes the current thread to go to sleep for the specified time. The precision of the wakeup is 
OS dependent. A typical minimum resolution is 10 ms. (Solaris defaults to 10 ms; root can set it to 
1 ms. On Digital UNIX it's a mibisecond, 1/1024 second, 0.9765 ms.) 

Reference:  Chapter 4.  
Comment:  Fine for test programs. Probably will never use this in a real program.  
 
destroy 
   public final void destroy() 

This causes the thread to exit immediately, running no finally sections, and releasing no locks. 
This was included in the Java spec to handle the extreme case of broken threads that ignore 
stop(). It is virtually impossible to use correctly and has never been implemented. 

Reference:  Chapter 4.  
 
isAlive 
   public final boolean isAlive() 

This returns true if the target thread is still alive. 

Reference:  Chapter 4.  
 
yield 
   public static void yield() 

This causes the current thread to give up its LWP (or CPU) to another thread at the same or a 
higher priority level (if any). It is legal for yield() to do nothing, so you must not rely on it. 

Reference:  Chapter 5.  
Comment:  You probably will never use this function.  
 
setPriority getPriority 
   public final void setPriority(int newPriority) 
         throws SecurityException, IllegalArgumentException 
   public final int getPriority() 

These change (return) the priority level of the thread. The priority level must be between 
MIN_PRIORITY and MAX_PRIORITY if the thread group to which this thread belongs may set a 
lower bound than MAX_PRIORITY. 
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Reference :  Chapter 5.  
Comment:  You probably will never use these functions.  
 
suspend 
   public final void suspend() 

This causes the thread to stop running and wait until you call thread.resume(). Because 
suspension is asynchronous, you have no idea what the target thread was doing when you 
suspended it. For example, it may hold some locks that your other threads need. This makes it 
virtually impossible to use. 

Reference:  Chapter 5.  
Comment:  It has been deprecated in Java 2.  
 
resume 
   public final void resume() 

This causes a suspended thread to resume. 

Reference:  Chapter 5.  
Comment:  It has been deprecated in Java 2.  
 
interrupt 
   public void interrupt() 

This sets the interrupt flag and causes the target thread to throw an InterruptedException if 
it is blocked on (or as soon as it executes) an interruptible method or 
InterruptedIOException if it is blocked on I/O. 

Reference:  Chapter 9.  
 
interrupted 
   public static boolean interrupted() 

This returns the value of the interrupt flag for the current thread and clears it. 

Reference:  Chapter 9.  
 
isInterrupted 
   public boolean isInterrupted() 

This returns the value of the interrupt flag for the thread. 

Reference:  Chapter 9.  
Comment:  You will probably never use this.  
 
getThreadGroup 
   public final ThreadGroup getThreadGroup() 

This returns the thread group for this thread object. 

Reference:  Chapter 10.  
 



 279

checkAccess 
   public void checkAccess() throws SecurityException 

If there is a security manager, its checkAccess() method is called with the Thread as an 
argument. 

Reference:  Chapter 10.  
 
getName setName 
   public String getName() 
   public void setName(String name) 
               throws SecurityException 

This gets/sets the print name for the thread. 

Reference:  Chapter 4.  
 
isDaemon setDaemon 
   public boolean isDaemon() 
   public void setDaemon(boolean on) 
               throws SecurityException, 
               IllegalThreadStateException 

This gets/sets this thread to be a daemon. You cannot change the status of a running thread. 

Reference:  Chapter 10.  
 
countStackFrames 
   public int countStackFrames() 

This returns the depth of the stack. 

Reference:  Chapter 10.  
Comments:  Deprecated in Java 2. Not well defined in any case.  
 
dumpStack 
   public static void dumpStack() 

This prints out the stack. 

Reference:  Chapter 10.  
 
activeCount 
   public static int activeCount() 

This returns the number of active threads in the current thread's thread group. 

Reference:  Chapter 10.  
Comments:  Deprecated in Java 1.1. See ThreadGroup.allThreadsCount().  
 
enumerate 
   public static final int enumerate(Thread tarray[]) 

This fills tarray with as many currently active threads as fit, returning that number. 
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Reference:  Chapter 4.  
Comment:  Deprecated in Java 1.1. See ThreadGroup.allThreads().  
 
 

The Interface java.lang.Runnable 

This interface provides the building blocks for threads. You implement this interface, define a 
run() method on the class, and pass an instance of it to the thread. 

run 
   public void run() 

This is the method you define that actually executes the code you want. 

Reference:  Chapter 4.  
Comment:  This is the only way to start anything.  
 
 

The Class java.lang.Object 

All objects have a lock and wait set associated with them. 

synchronized 
           synchronized 

This language keyword causes the current thread to obtain the hidden lock for the object. If the 
lock is already held by the current thread, it will essentially increment a counter for that lock (it's a 
recursive lock). If the lock is held by a different thread, this thread will go to sleep waiting for it to 
become available. 

Reference:  Chapter 6.  
 
wait 
   
           public void wait()  
              throws InterruptedException 

This causes the current thread to block until it is awakened by either a call to notify(), 
interruption, or by a spurious wakeup. It will release the synchronization lock for the object as it 
goes to sleep and reacquire it before returning. 

Reference:  Chapter 6.  
 
notify notifyAll 
            public void notify() 
            public void notifyAll() 

These cause (one/all) of the threads that are in a wait() call for this object to wake up and return. 

Reference:  Chapter 6.  
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The Class java.lang.ThreadLocal 

This class implements thread local storage by defining an object that can hold different values for 
different threads. 

ThreadLocal 
   public ThreadLocal() 

This creates a new thread local object. 

Reference:  Chapter 8.  
 
get set 
   public Object get() 
   public void set(Object o) 

These functions set/get a thread-local value for this object. 

Reference:  Chapter 8.  
 
 

The Class java.lang.ThreadGroup 
ThreadGroup 
   public ThreadGroup(String name) throws SecurityException 
   public ThreadGroup(ThreadGroup parent, String name) 
         throws SecurityException, Null Pointer Exception 

These create a new thread group. 

Reference:  Chapter 10.  
 
toString 
   public String toString() 

This returns a printable string. 

Reference:  Chapter 10.  
 
checkAccess 
   public final void checkAccess() throws SecurityException 

If there is a security manager, its checkAccess() method is called with the ThreadGroup as 
an argument. 

Reference:  Chapter 10.  
 
getName 
   public final String getName() 
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This returns the name that you gave to the group. 

Reference:  Chapter 10.  
 
getParent 
   public final ThreadGroup getParent() 

This returns the parent of this group. 

Reference:  Chapter 10.  
 
parentOf 
   public final boolean parentOf(ThreadGroup g) 

This returns true if this is the parent. 

Reference:  Chapter 10.  
 
stop 
   public final void stop() throws SecurityException 

This calls stop() on every thread and thread group in this group. 

Reference:  Chapter 10.  
Comments:  Deprecated in Java 2.  
 
suspend 
   public final void suspend() 
               throws SecurityException 

This calls suspend() on every thread and thread group in this group. 

Reference:  Chapter 10.  
Comments:  Deprecated in Java 2.  
 
resume 
   public final void resume() 
               throws SecurityException 

This calls resume() on every thread and thread group in this group. 

Reference:  Chapter 10.  
Comments:  Deprecated in Java 2.  
 
destroy 
   public final void destroy() 
               throws SecurityException, 
               IllegalThreadStateException 

This removes the group if it is empty. If the thread group has subgroups, destroy() is called on 
each of those first. Finally, the newly destroyed thread group is removed from its parent. 

Reference:  Chapter 10.  
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getMaxPriority setMaxPriority 
   public final void getMaxPriority() 
   public final void setMaxPriority(int newMaxPrio)throws 
         SecurityException, IllegalArgumentException 

This gets/sets the maximum priority allowed for any thread in this group. 

Reference:  Chapter 10.  
 
isDaemon setDaemon 
   public final void isDaemon() 
   public final void setDaemon(boolean daemon) throws 
         SecurityException 

This gets/sets this group to be a daemon. 

Reference:  Chapter 10.  
 
threadsCount 
   public int threadsCount() 

This counts the threads in this group. 

Reference:  Chapter 10.  
 
allThreadsCount 
   public int allThreadsCount() 

This counts the threads in this group and subgroups. 

Reference:  Chapter 10.  
 
groupsCount 
   public int groupsCount() 

This counts the groups in this group. 

Reference:  Chapter 10.  
 
allGroupsCount 
   public int allGroupsCount() 

This counts the groups in this group and subgroups. 

Reference:  Chapter 10.  
 
threads 
   public Thread[] threads() 

This returns an array of all the threads in this group. 

Reference:  Chapter 10.  
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allThreads 
   public Thread[] allThreads() 

This returns an array of all the threads in this group and subgroups. 

Reference:  Chapter 10.  
 
groups 
   public ThreadGroup[] groups() 

This returns an array of all the groups in this group. 

Reference:  Chapter 10.  
 
allGroups 
   public ThreadGroup[] allGroups() 

This returns an array of all the groups in this group and subgroups. 

Reference:  Chapter 10.  
 
activeCount 
   public int activeCount() 

This returns the number of groups in this group. 

Reference:  Chapter 10.  
Comments:  Deprecated in Java 1.1. Use allThreadsCount().  
 
activeGroupCount 
   public int activeGroupCount() 

This returns the number of groups in this group. 

Reference:  Chapter 10.  
Comments:  Deprecated in Java 1.1. Use allGroupsCount().  
 
enumerate 
   public int enumerate(ThreadGroup list[]) 
   public final void enumerate(ThreadGroup list[], boolean 
         recurse) 

This is deprecated. Use allThreads(). 

Reference:  Chapter 10.  
Comments: Deprecated in Java 1.1. Use allThreads-Count() or threads(), 

allGroups(), or groups().  
 
list 
   public final void list() 

This is a debugging utility that prints out a detailed description of this thread group. 
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Reference:  Chapter 10.  
 
allowThreadSuspension 
   public final boolean allowThreadSuspension(boolean on) 

This was never implemented. 

uncaughtException 
   public final void uncaughtException(Thread t, Throwable e) 

This is called whenever a thread in this group dies via an uncaught exception. 

Reference:  Chapter 10.  
 
 

Helper Classes from Our Extensions LibraryThe Class 
Extensions.InterruptibleThread 

This is one of the classes that we defined for this book to provide a consistent interface for dealing 
with certain problems. Some of those problems are artificial, a product of trying to write uniform 
example code in both POSIX and Java. 

exit 
   public void exit() 

This causes the current thread to exit. It is syntactic sugar for 
Thread.currentThread().stop(). 

Reference: Chapter 4.  
Comment:  We wrote this method while trying to deal with the absence of such a 

function and the absence of any advice on this apparent oversight. We have 
subsequently been convinced that this is the wrong way to do things and that 
you should always return from the run() method (see Exiting a Thread ).  

public void interrupt() 

This sets the interrupt flag and causes the target thread to throw an InterruptedException if 
it is blocked on (or as soon as it executes) an interruptible method or 
InterruptedIOException if it is blocked on I/O. 

Reference:  Chapter 9.  
 
disableInterrupts 
   public void disableInterrupts() 

This causes the current thread to set a flag indicating that it is not interruptible. The method 
interrupt() will look at this. 

Reference:  Chapter 9.  
 
enableInterrupts 
   public void enableInterrupts() 
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This causes the current thread to set a flag indicating that it is interruptible. The method 
interrupt() will look at this. If the flag indicates a pending interrupt, that interrupt will be 
reissued at this time. 

Reference:  Chapter 9.  
 
 

The Class Extensions.Semaphore 

This is one of our classes. It implements POSIX-style semaphores. It is probably not useful except 
for demo programs. 

semWait 
           public void semWait() 

This attempts to decrement the value of the semaphore. If it succeeds, it simply returns. If the 
value is zero, this will cause the current thread to go to sleep until another thread increments it. 

Reference:  Chapter 6.  
 
semPost 
            public void semPost() 

This increments the value of the semaphore, waking up one thread (if any are sleeping). 

Reference:  Chapter 6.  
 
 

The Class Extensions.Mutex 

This is one of our classes. It implements POSIX-style (non-recursive) mutex locks. Use only when 
synchronized sections won't work, such as chained locking. 

lock 
       public void lock() 

This locks the mutex. If the lock is held by a different thread, this thread will go to sleep, waiting 
for it to become available. 

Reference:  Chapter 6.  
 
unlock 
        public void unlock() 

This unlocks the mutex, waking up one thread (if any are sleeping). 

Reference:  Chapter 6.  
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The Class Extensions.ConditionVar 

This is one of our classes. It implements POSIX-style condition variables. Use only when 
synchronized sections and wait/notify won't work. 

condWait 
             public void condWait(Mutex m) 

This causes the current thread to block until it is awakened by either a call to condSignal() or 
by a spurious wakeup (not by interruption). It will release the mutex lock for the object as it goes 
to sleep, and reacquire it before returning. 

Reference:  Chapter 6.  
 
condSignal condBroadcast 
            public void condSignal() 
            public void condBroadcast() 

These cause (one/all) of the threads that are in a condWait() call to wake up and return. 

Reference:  Chapter 6.  
 
 

The Class Extensions.RWLock 

This is one of our classes. It implements POSIX-style readers/ writer locks. RWlocks are useful 
only in very limited circumstances. Time your program carefully first! 

readLock writeLock 
   public void readLock() 
   public void writeLock() 

This locks the RWLock in either reader or writer mode. If a read lock is held by a different thread, 
this thread will be able to get another read lock directly. If a write lock is requested, the current 
thread must go to sleep, waiting for it to become available. 

Reference:  Chapter 7.  
 
unlock 
   public void unlock() 

This unlocks the RWLock (both for readers and for writers). If this is the last reader, it will wake 
up one writer thread (if any are sleeping). If this is a writer, it will wake up one writer thread (if 
any are sleeping); otherwise, it will wake up all the sleeping threads with reader requests. 

Reference:  Chapter 7.  

 
 

The Class Extensions.Barrier 
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This is one of our classes. It implements barriers. 

Comment: You won't use these very often, but if you're implementing something like a 
simulation, these might come in useful.  

 
Barrier 
   public Barrier (int i) 

This creates a barrier object with a count of i. 

Reference:  Chapter 7.  
 
barrierSet 
   public synchronized void barrierSet(int i) 

This resets the barrier count to i. 

Reference:  Chapter 7.  
 
barrierWait 
   public synchronized void barrierWait() { 

This causes the calling thread to block until count threads have called barrierWait(). 

Reference:  Chapter 7.  

 
 

The Class Extensions.SingleBarrier 

This is one of our classes. It implements barriers with a divided set of waiters and posters. 

Comment:  You won't use these very often, perhaps only for example programs.  
 
SingleBarrier 
   public SingleBarrier (int i) 

This creates a single-barrier object with a count of i. 

Reference:  Chapter 7.  
 
barrierSet 
   public synchronized void barrierSet(int i) 

This resets the single barrier count to i. 

Reference:  Chapter 7.  
 
barrierWait 
   public synchronized void barrierWait() { 

This causes the calling thread to block until barrierPost() has been called count times. 
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Reference:  Chapter 7.  
 
barrierPost 
   public synchronized void barrierPost() { 

This increments the counter for how many times barrierPost() has been called. 

Reference:  Chapter 7.  
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Glossary 
API  

The set of function calls in a library, along with their arguments and their semantics. APIs 
are published so that programmers can always know which interface a vendor supports. 

 

asynchronous signal  

A signal that is sent to a process independently of what the process happens to be doing. 
An asynchronous signal can arrive at any time whatsoever, with no relation to what the 
program happens to be doing (cf. synchronous signal). 

 

async I/O  

An abbreviation for asynchronous input/output—normally, I/O calls block in the kernel 
while waiting for data to come off a disk, a tape, or some other "slow" device. But async 
I/O calls are designed not to block. Such calls return immediately, so the user can 
continue to work. Whenever the data comes off the disk, the process will be sent a signal 
to let it know the call has completed. 

 

atomic operation  

An operation that is guaranteed to take place "at a single time." No other operation can do 
anything in the middle of an atomic operation that would change the result. 

 

blocking system call  

A system call that blocks in the kernel while it waits for something to happen. Disk reads 
and reading from a terminal are typically blocking calls. 

 

cache memory  

A section of very fast (and expensive) memory that is located very close to the CPU. It is 
an extra layer in the storage hierarchy and helps "well-behaved" programs run much 
faster. 

 

CDE  

An abbreviation for common desktop environment—the specification for the look and feel 
that the major UNIX vendors have adopted. CDE includes a set of desktop tools. 
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CDE is the major result of the Cose agreement. It is a set of tools and window toolkits 
(Motif 1.2.3), along with supporting cross-process communications software (ToolTalk®), 
which will form the basis of the window offerings of all major UNIX vendors. Each 
vendor will productize CDE in its own fashion and ultimately maintain separate source 
bases, doing its own value-add and its own bug fixing. 

 

coarse-grained locking  
See [fine-grained locking] 

 
 
 
context switch  

The process of removing one process (or LWP or thread) from a CPU and moving 
another one on. 

 

critical section  

A section of code that must not be interrupted. If it doesn't complete atomically, some 
data or resource may be left in an inconsistent state. 

 

daemon  

A process or a thread that works in the background. The pager is a daemon process in 
UNIX. 

 

DCE  

An abbreviation for distributed computing environment—a set of functions deemed 
sufficient to write network programs. It was settled upon and implemented by the original 
OSF (Open Software Foundation). DCE is the environment of choice of a number of 
vendors including DEC and HP, while Sun has stayed with ONC+™. As part of the Cose 
agreement, all of the vendors will support both DCE and ONC+. 

 

deadlock  

A situation in which two things are stuck, each waiting for the other to do something first. 
More things can be stuck in a ring, waiting for each other, and even one thing could be 
stuck, waiting for itself. 

 

device driver  
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A program that controls a physical device. The driver is always run as part of the kernel, 
with full kernel permissions. Device drivers may be threaded, but they would use the 
kernel threads library, not the library discussed in this book. 

 

dynamic library  

A library of routines that a user program can load into core "dynamically." That is, the 
library is not linked in as part of the user's executable image but is loaded only when the 
user program is run. 

 

errno  

An integer variable that is defined for all ANSI C programs (PCs running DOS as well as 
workstations running UNIX). It is the place where the operating system puts the return 
status for system calls when they return error codes. 

 

external cache  

Cache memory that is not physically located on the same chip as the CPU. External cache 
(a.k.a. "E$") is slower than internal cache (typically, around five cycles versus one) but 
faster than main memory (upward of 100 cycles, depending upon architecture). 

 

FIFO  

An abbreviation for first in, first out—a kind of a queue. Contrast to last in, first out, 
which is a stack. 

 

file descriptor  

An element in the process structure that describes the state of a file in use by that process. 
The actual file descriptor is in kernel space, but the user program also has a file descriptor 
that refers to this kernel structure. 

 

fine-grained locking  

The concept of putting lots of locks around tiny fragments of code. It's good because it 
means that there's less contention for the individual locks. It's bad because it means that 
the program must spend a lot of time obtaining locks. Coarse-grained locking is the 
opposite concept and has exactly the opposite qualities. 

 

green threads  
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This is a threads package that was used during the initial development of Java. It is not a 
native threads library and cannot take advantage of multiple CPUs, nor can it do 
concurrent I/O. 

 

internal cache  

Cache memory (a.k.a. I$) that is located on the same chip as the CPU and hence is very 
fast. 

 

Interrupt  

An external signal that interrupts the CPU. Typically, when an external device wants to 
get the CPU's attention, it asserts a voltage level on one of the CPU pins. This causes the 
CPU to stop what it's doing and run an interrupt handler. 

Java also has an interrupt() method that interrupts a thread. 

 

interrupt handler  

A section of code in the kernel that is called when an interrupt comes in. Different 
interrupts will run different handlers. 

 

kernel mode  

A mode of operation for a CPU in which all instructions are allowed (cf. user mode). 

 

kernel space  

The portion of memory that the kernel uses for itself. User programs cannot access it (cf. 
user space). 

 

kernel stack  

A stack in kernel space that the kernel uses when running system calls on behalf of a user 
program. All LWPs must have a kernel stack. 

 

kernel threads  

Threads that are used to write the operating system ("the kernel"). The various kernel 
threads libraries may be similar to the user threads library (e.g., Solaris) or may be totally 
different (e.g., Digital UNIX). 
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LADDIS  

A standardized set of calls used to benchmark NFS performance. It was created by and is 
monitored by SPEC. 

 

Library  

A collection of routines that many different programs may wish to use. Similar routines 
are grouped together into a single file and called a library. 

 

library call  

One of the routines in a library. 

 

LWP  

An abbreviation for lightweight process—a kernel schedulable entity. 

 

memory management unit  
See [MMU] 
 
 
 

memory-mapped file  

A file that has been "mapped" into core. This is just like loading the file into core, except 
that any changes will be written back to the file itself. Because of this, that area of 
memory does not need any "backing store" for paging. It is also much faster than doing 
reads and writes because the kernel does not need to copy the kernel buffer. 

 

MMU  

An abbreviation for memory management unit—the part of the computer that figures out 
which physical page of memory corresponds to which virtual page and takes care of 
keeping everything straight. 

 

Motif  

A description of what windows should look like, how mouse buttons work, etc. Motif is 
the GUI that is the basis for CDE. The word Motif is also used as the name of the libraries 
that implement the Motif look and feel. 
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multitasking OS  

An operating system that can run one process for awhile, then switch to another one, 
return to the first, etc. UNIX, VMS, MVS, TOPS, etc., are all multitasking systems. DOS 
and Microsoft® Windows™ are single-tasking operating systems. (Although MS-
Windows™ can have more than one program active on the desktop, it does not do any 
kind of preemptive context switching between them.) 

 

NFS  

An abbreviation for network file system—a kernel program that makes it possible to 
access files across the network without the user ever knowing that the network was 
involved. 

 

page fault  

The process of bringing in a page from disk when it is not memory resident. When a 
program accesses a word in virtual memory, the MMU must translate that virtual address 
into a physical one. If that block of memory is currently out on disk, the MMU must load 
that page in. 

 

page table  

A table used by the MMU to show which virtual pages map to which physical pages. 

 

POSIX  

An acronym for portable operating system interface. This refers to a set of committees in 
the IEEE that are concerned with creating an API that can be common to all UNIX 
systems. There is a committee in POSIX that is concerned with creating a standard for 
writing multithreaded programs. 

 

Preemption  

The act of forcing a thread to stop running. 

 

preemptive scheduling  

Scheduling that uses preemption. Time slicing is preemptive, but preemption does not 
imply time slicing. 
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Process  

A running program and all the states associated with it. 

 

process structure  

A kernel structure that describes all the relevant aspects of a process. 

 

program counter  

A register in the CPU that defines which instruction will be executed next. 

 

race condition  

A situation in which the outcome of a program depends upon the luck of the draw—
which thread happens to run first. 

 

realtime  

Anything that is timed by a wall clock. Typically, this is used by external devices that 
require servicing within some period of time, such as raster printers and aircraft autopilots. 
Realtime does not mean any particular amount of time but is almost always used to refer 
to sub-100-ms (and often sub-1-ms) response time. 

 

reentrant  

A function is reentrant when it is possible for it to be called at the same time by more than 
one thread. This implies that any global state be protected by mutexes. Note that this term 
is not used uniformly and is sometimes used to mean either recursive or signal-safe. 
These three issues are orthogonal. 

 

shared memory  

Memory that is shared by more than one process. Any process may write into this 
memory, and the others will see the change. 

 

SIGLWP  

A signal that is implemented in Solaris and used to preempt a thread. 
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signal  

A mechanism that UNIX systems use to allow a process to be notified of some event, 
typically asynchronous and external. It is a software analog to hardware interrupts. 

 

signal mask  

A mask that tells the kernel (or threads library) which signals will be accepted and which 
must be put onto a "pending" queue. 

 

SIGSEGV  

A signal that is generated by UNIX systems when a user program attempts to access an 
address that it has not mapped into its address space. 

 

SIGWAITING  

A signal that is implemented in Solaris and used to tell a threaded process that it should 
consider creating a new LWP. 

 

SPEC  

An organization that creates benchmark programs and monitors their use. 

 

store buffer  

A buffer in a CPU that caches writes to main memory, allowing the CPU to run without 
waiting for main memory. It is a special case of cache memory. 

 

SVR4  

An abbreviation for System Five, Release 4—the merger of several different flavors of 
UNIX that was done by Sun and AT&T. SPEC 1170 merges SVR4, POSIX, and BSD—
the main UNIX "flavors"— to specify a common base for all future UNIX 
implementations. 

 

synchronous signal  
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A signal that is sent to a process "synchronously." This means that it is the direct result of 
something that process did, such as dividing by zero. Should a program do a divide-by-
zero, the CPU will immediately trap into a kernel routine, which in turn will send a signal 
to the process (cf. asynchronous signal). 

 

system call  

A function that sets up its arguments, then traps into the kernel in order to have the kernel 
do something for it. This is the only means a user program has for communication with 
the kernel. 

 

time-sliced scheduling  

An algorithm that allocates a set amount of time for a process (or LWP or thread) to run 
before it is preempted from the CPU and another one is given time to run. 

 

Trap  

An instruction that causes the CPU to stop what it is doing and jump to a special routine 
in the kernel (cf. system call). 

 

user mode  

An operating mode for a CPU in which certain instructions are not allowed. A user 
program runs in user mode (cf. kernel mode). 

 

user space  

That area of memory devoted to user programs. The kernel sets up this space but 
generally never looks inside (cf. kernel space). 

 

virtual memory  

The memory space that a program thinks it is using. It is mapped into physical memory 
by the MMU. Virtual memory allows a program to behave as if it had 100 Mbytes, even 
though the system has only 32 Mbytes. 

 

Xview  

A library of routines that draws and operates Openlook GUI components on a screen. It is 
based on the SunView™ library of the mid-1980s and has been superseded by CDE Motif. 
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